Social Change—A Necessary Component of Resource Planning

E. William Anderson

Currently, we are working in a setting where we have good knowledge, much practical experience, and many successful on-the-land examples of renewable resource management. There is a great deal of public support for managing renewable resources without environmental impairment. Several national legislative Acts, beginning with the National Environmental Policy Act of 1969 and including the Public Rangelands Improvement Act of 1978, provide strong guidelines and the incentives for resource agencies to coordinate between themselves and with user groups. Among the states having resource management legislation is Oregon, for example, with its Land Conservation and Development Act of 1973 and its Forest Practices Act of 1975.

With this combination of supportive factors, it might seem a simple matter to get on with the job of achieving good resource management. But it is not that simple, partly because achieving good resource management involves both biophysical and social changes (Chambers 1979). Among the many factors related to the management of renewable resources, social changes deserve special attention because of the great amount of resource planning at various levels that is going on throughout the country.

The training and experience of renewable resource workers is primarily related to achieving biophysical changes in the ecosystem. How to concurrently achieve the necessary social changes is not well known by this group; yet this is where the program often bogs down because both kinds of changes are mandatory if resource management is to be genuinely effective and long-lasting.

Obtaining social changes, as related to use and management of renewable resources, is intricate. It involves varied personal opinions and long-formed, often inherited, habits and lifestyles of individuals in user groups. It involves the objectives and goals of members of resource-oriented organizations and agencies. It involves institutional procedures, handbooks, regulations and reporting systems that are dear to the hearts of both governmental and industrial bureaucrats. It involves the constant strain to achieve peer-status and economic remuneration in today’s dollar-oriented, materialistic society.

There is no need to continue theorizing about social changes as a component of improving resource use/environmental quality relationships. We should get on with the real issue, which is how to do it and in a way that is acceptable to those involved.

This issue has troubled me for years because of the many technically sound and practical resource management plans which have been totally or partially ignored, rejected, or circumvented because of resistance to change. I think there is a way to successfully obtain needed social changes by resource managers and users concurrently with changing the use and management of the resource itself. Therefore, I propose to you this thesis: significant social changes can be achieved by the way we go about planning the use and management of renewable resources, i.e. by the planning process we use.

To help you understand my viewpoint, I want to focus in on the planning process known as Coordinated Resource Management Planning (CRMP) (Anderson, 1977). In this process, a group consisting of the land owners, resource managers, and major users of the planned area concurrently develop the rationale upon which decisions are based. However, the owners and managers do not abrogate their authority and responsibility to make the final decisions, but they do this after listening to the viewpoints and options of others. This contrasts with the commonly used referral system, which is time-taking, costly, delays on-the-land action, and provides little or no opportunity to listen to the rationale of proposals and options of others, or to have a verbal in-put.

In addition to achieving needed biophysical changes, the CRMP process has repeatedly demonstrated its effectiveness in achieving needed social changes among those involved in the plan. Because the participants in this process are totally involved from beginning to end, they develop a sense of responsibility and confidence in the outcome. They increase their awareness of total resource relationships and interactions. They become more knowledgeable because they listen to viewpoints, experiences, goals, and options of others. All of this helps them amend the viewpoints they had at the beginning, which is part of the social change that is needed. This is done in an inconspicuous manner by personal volition and without undue pressure. Social changes achieved in this manner are usually long-lasting and even self-expanding.

Obviously, not all people respond equally. The track record is, as you would expect, that some individuals will change their resource-oriented social habits and others strongly resist.

In years past, there have been some serious deficiencies in resource planning procedures. Some still exist and new ones have been added. These deficiencies were part of the basic reasons why the coordinated planning process was devised. Overcoming these deficiencies is important if we are to actually accomplish both biophysical and social changes that are long-lasting.

These deficiencies, and how the CRMP process compensates for them, include:

1. The need to make resource management decisions in unison. This is a basic component of the coordinated planning process.

2. The need for practicality in the plan. The coordinated planning group represents multiple expertise and expe-
3. The need to consider the second and third order of consequences that take place when something is done out on the land is assured by the varied interests, training, and experiences of the CRM planning group working in unison.

4. The need to provide a basis for sound economic evaluation. The economic welfare of a resource-based operation is affected by the total area involved in the operation irrespective of land ownership. Although the CRMP process is suitable for developing a plan on a sub-watershed, stream corridor, wildlife refuge or other segment of the landscape, it is especially suited for developing a plan on a total economic operation such as a livestock ranch and the public lands involved. In the CRMP process, all ownerships of the planned area are usually included; all major resources and uses made of them are dovetailed to avoid unacceptable conflicts and to produce a single unified program of use and management that is consistent with land capabilities.

5. The need to avoid a practice-by-practice approach or an incomplete consideration of what needs to be done on the planned area. The CRMP process involves utilizing a special format in which resource management systems consisting of combinations of practices which relate to the major uses(s) of the area provide the guidelines for doing a thorough and successful planning job for the entire area. This format also helps keep the attention and discussion of the entire planning group focused on each topic—big game, livestock, timber, etc.—as it arises, thus permitting systematic and effective development of the plan, step by step.

In summary, there is a great need for resource users, owners and managers to collectively make resource management decisions, and abide by them, so that the lawyers, courts and politicians will not have to do this for us.

In the development of our personal philosophy on resource use and management, we should remember that, historically, man has struggled to provide his basic needs—food, shelter, clothing—in that order of priority. This is true today and will be for generations to come. Utilization of our resources—land, vegetation, animals, water, air—is basic to life itself. There is no alternative to use. Use with environmental preservation, not use versus preservation, is the real challenge. But if we are to achieve long-lasting beneficial results from resource planning, we must obtain certain necessary social changes as well as biophysical changes in the ecosystem. This has been done with reasonable success by properly using the coordinated resource management planning process.

References Cited

Evaluation of Exotic-British Breed Crosses

What is the performance potential of exotic X British breed crosses in Canadian cattle herds?

In 1971, scientists at the Lethbridge, Lacombe, and Brandon Research Stations began to evaluate the reproductive performance of 10 types of first cross hybrid cows and the growth and carcass traits of their progeny. Comparisons were made in two contrasting environments; the short grass prairie range near Manyberries, Alberta, and the semi-intensive farm type conditions at Brandon, Manitoba. Simmental, Charolais, and Limousin semen was used on Hereford, Angus, and Shorthorn cows to produce nine of the crosses and a Hereford-Angus cross cow herd was used for comparison. Also six breeds of sire were evaluated as producers of market animals. Beefmaster and Red Angus semen was used on yearling heifers and semen from Chianina, Charolais, Simmental, and Limousin was used on first cross cows.

Initial analyses indicated that first cross cows sired by Limousins produced less weight of calf to weaning per cow exposed to breeding than the Hereford-Angus cross at both locations. Cows sired by Simmentals produced the most calf weight at both locations. (Ranking of the 10 first cross cow groups based on their progeny performance for growth and carcass traits will be completed with the final data are collected in 1979.)

Calves sired by Beefmaster bulls were heavier than Red Angus sired calves at birth and weaning and required more calving assistance. Average feedlot gains of calves from the two sire breeds were similar. Beefmaster sired yearlings had a slightly higher dressing percent, a larger rib eye, and carried less external fat.

Percent difficult calvings and preweaning mortality of male calves were less for the Limousin sired calves than for those sired by any of the other three large breeds. Charolais and Chianina sired calves required the most calving assistance, while the Charolais sired calves had the highest percent preweaning mortality.

Limousin sired calves were lighter at birth, weaning, and slaughter, and gained less than progeny of other sire breeds. Chianina, Charolais, and Simmental sired calves were equal essentially in all four of those traits. Dressing percentage was greater for the Limousin progeny, with the Simmental averaging lower than the other groups, due primarily to a heavier hide weight. Limousin sired progeny had the greatest proportion of lean and the lowest proportion of bone. Chianina sired calves had the most bone and Simmental sired calves the least lean.

Final analyses of this phase of the project will be completed after the collection of 1979 carcass data.—J.E. Lawson in Lethbridge Weekly Letter