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On the Ground
• Cheatgrass (Bromus tectorum L.) dramatically
changes shrub steppe ecosystems in the Northern
Great Basin, United States.

• Current-season cheatgrass location and percent
cover are difficult to estimate rapidly.

• We explain the development of a near-real-time
cheatgrass percent cover dataset and map in the
Northern Great Basin for the current year (2015),
display the current years map, provide analysis of
the map, and provide a website link to download the
map (as a PDF) and the associated dataset.

• The near-real-time cheatgrass percent cover data-
set and map were consistent with non-expedited,
historical cheatgrass percent cover datasets and
maps.

• Having cheatgrass maps available mid-summer can
help land managers, policy makers, and Geographic
Information Systems personnel as they work to
protect socially relevant areas such as critical wildlife
habitats.
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reas where cheatgrass (Bromus tectorum L.) existed
in the Northern Great Basin of the United States
during the recent past are indicative of where
environmental conditions are conducive for its
growth, where cheatgrass and its seeds likely exist now, and
where cheatgrass is expected to germinate and grow, at least
into the near future. Cheatgrass in this area causes serious
concern because this invasive annual grass helps increase fire
frequency, and the spread1,2 of cheatgrass in shrub steppe

A

environments (Fig. 1). Fires become most problematic when
they burn shrub steppe ecosystems and native vegetation is
replaced by invasive annual grasses. Invasive annual grasses
experience a positive feedback loop with fire, where an
increase in annual grass leads to more fires and more fires lead
to an increase in annual grass. Fires denude landscapes and, in
the process, cause the emission of carbon into the atmosphere,
degradation of air quality, reduction of grazing acres, and
increase in soil erosion. Fires also burn wildlife habitat, which
negatively affects sagebrush obligates including greater sage
grouse (Centrocercus urophasianus).3 Greater sage grouse
populations declined an average of 2% per year from 1965
to 2003,4 and this decline has been linked to loss of the shrub
steppe. As greater sage grouse populations declined,
concern about the species’ survival and its habitat heightened.
This heightened concern led to consideration of the
greater sage grouse as an endangered species.3 Therefore,
knowing early in the summer where, and at what percent
cover, cheatgrass exists during a current year could help reveal
where cheatgrass might influence a current year’s fire
occurrences and behavior. Possessing this knowledge could
help land managers, fire modelers, and policy makers as
they work to protect socially relevant areas such as critical
wildlife habitats. To expeditiously identify the location and
percent cover of cheatgrass, we developed a near-real-time
cheatgrass percent cover dataset and map using a two-step
modeling process. This two-step process is described below
in the “Estimating Cheatgrass Percent Cover” section.
First, however, we describe the Northern Great Basin
and briefly describe cheatgrass characteristics and its effect
in this ecoregion.
Northern Great Basin and Cheatgrass
The Northern Great Basin, and its adjacent areas, is

located in a semiarid environment where the 30-year
(1981–2010) precipitation average equals about 434 mm
and average temperatures range from a minimum of -11° C to
a maximum of 13.8° C.5 Average elevation equals 1,679 m
lands
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Figure 1. A cheatgrass-infested shrub steppe environment in the Northern Great Basin. Cheatgrass 1) provides a fine fuel that increases fire frequency
and 2) fills space between shrubs that effectively spreads fire, increasing fire size. Photo courtesy of Stephen P. Boyte.
(North American Vertical Datum 88). The region is
dominated by shrubs and grasses, and the primary shrubs
are three subspecies of big sagebrush (Artemisia tridentata
Nutt.). These three big sagebrush subspecies include
Wyoming (A.t. Nutt. wyomingensis), basin (A.t. Nutt.
tridentata), and mountain (A.t. Nutt. vaseyana). Little
sagebrush (A. arbuscula Nutt.), black sagebrush (A. nova A.
Nelson), and threetip sagebrush (A. tripartita Rydb.) are also
commonly found in the study area. Other shrub species
present include rabbitbrush (Chrysothamnus Nutt.) and
bitterbrush (Purshia tridentata [Pursh] DC). Common
grasses, other than cheatgrass, include Thurber’s needle
grass (Achnatherum thurberianum [Piper] Barkworth), Sand-
berg bluegrass (Poa secunda J. Presl), bluebunch wheatgrass
(Pseudoroegneria spicata [Pursh] Á. Löve), crested wheatgrass
(Agropyron cristatum L. Gaertn.), and Idaho fescue (Festuca
idahoensis Elmer). Economic activities of Northern Great
Basin rural areas are primarily livestock grazing, recreation,
mining, forestry, and cultivated agriculture.

Cheatgrass is a winter annual grass that first invaded shrub
steppe ecosystems in the western United States more than 100
years ago,6 and it continues to spread today. Cheatgrass is the
predominant invasive annual grass in the Northern Great
Basin shrub steppe where it invades ecosystems after
disturbances such as fire,7 development, and heavy grazing.
Fire is the most common driver of cheatgrass invasion in the
study area where human activities and lightning strikes cause
fires. In these disturbed areas, where extensively rooted
perennial grasses and biological soil crusts have been severely
reduced or eliminated, cheatgrass germinates and initiates
growth before most other plants can re-establish. By starting
its lifecycle earlier, cheatgrass can deplete available soil
resources, leaving a resource gap when other plants need
these resources, thus hindering their ability to establish and
grow. The cheatgrass growing season differs from the growing
season of most other plants in the Northern Great Basin.
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Cheatgrass germinates sometime between early fall and late
spring, depending on conditions, and then in a short time
frame, sets seed, senesces, and dies before most other plants
reach peak greenness. As a result, cheatgrass emits a
phenological (growth) signal during spring and summer that
is different than most other plants. Sandberg bluegrass’
phenological signal can prove to be an exception because the
two species have similar phenological patterns, although on
eastern Washington State sand dunes, Sandberg bluegrass’
phenological development preceded cheatgrass’.8 To help
mitigate confusion between cheatgrass and Sandberg blue-
grass phenological signals, we spatially define the start of
spring cheatgrass growth at strongly infested (≥ 30%
cheatgrass percent cover) sites.9 Sandberg’s bluegrass percent
cover would typically not be so high. The cheatgrass signal can
be observed by satellites and identified, which allows us to
estimate cheatgrass percent cover throughout the Northern
Great Basin.10 Wildlife and livestock forage on cheatgrass for
a short time before it sets seed, which is before most other
food sources are available in early spring, but the overall
impact of cheatgrass on Northern Great Basin ecosystems is
considered negative.

Our focus was on shrub steppe environments, and
cheatgrass invasion is not likely to be a strong invader at
higher elevations in these environments because of soil
moisture and temperature regimes and increased competition
from perennial species.11 For example, in the Northern Great
Basin, cheatgrass percent cover estimates showed substantially
lower average values in shrub steppe environments between
1,750 and 2,000 m (b2.0%) when compared to the study area
as a whole (8.96%);9 therefore, model development focused
on areas at or below 2,000 m elevation. In lower elevations
with less competition, cheatgrass responds to annual precip-
itation with more rapid growth than native plants;12 therefore,
when and where there is more precipitation and less
competition from natives, cheatgrass is more likely to be
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dominant. Conditions can become too arid for cheatgrass to
dominate ecosystems in the Great Basin, but our time series
indicates this phenomenon most likely will occur south of the
study area. Annual precipitation patterns vary widely through
space and time in these environments, so the location and
percent cover of cheatgrass does vary from year to year. Fires
also vary in space and time each year and are dependent on
conditions (e.g., presence of fuels like dried cheatgrass) and
incidences (e.g., lightning strikes or human activities that
cause ignitions).
i https://nccwsc.usgs.gov/display-project/4f8c64d2e4b0546c0c397b46/

5006f498e4b0abf7ce733f92.
ii R2 = 0.98; RMSE = 0.87.
iii R² = 0.69.
Estimating Cheatgrass Percent Cover
We used a two-step process to produce an expedited

estimation of the location and percent cover of cheatgrass in
the Northern Great Basin. In the first step, we developed
parameters for an ecological model using regression-tree
software. This model was trained on cheatgrass percent cover
data13 from 2001 and 2006. We combined this cheatgrass
data with information from site-specific variables that, for the
most part, changed little during our study period. These
site-specific variables included topography, land cover, soil
characteristics, geographic position, and a water flow index,14

and were used to optimize the model’s estimate of cheatgrass
percent cover in the study area. These site-specific variables
have been used successfully in other ecological modeling
studies15,16 to improve model accuracies. We also added four
datasets to our model that were created from satellite data,
specifically expedited Moderate Resolution Imaging
Spectroradiometer17 (eMODIS) normalized difference veg-
etation index (NDVI) data. These eMODIS-NDVI-derived
variables are: 1) annual cheatgrass growing season NDVI
(GSN), 2) annual summertime periods, 3) annual cheatgrass
indices, and 4) annual start of season time, a measure of initial
spring green up. The GSN (defined by a spatially dynamic
start-of-season dataset) and summertime periods (mid-June
to mid-July when cheatgrass has cured and most other
vegetation is still green) are used to help identify cheatgrass
during its growing season and after its growing season,18

respectively, each of which varies depending on location and
environmental conditions. These GSN and summertime
periods also were input into a simple algorithm to calculate
each year’s cheatgrass index, which provides a rough estimate
of annual cheatgrass percent cover.

The eMODISNDVI is available from an archive19 for every
week of every year since 2000 and outputs pixels at spatial
resolutions of 250, 500, and 1,000 m.We used pixels at 250 m.
The NDVI measures the abundance of vegetation greenness
and has been used as a proxy for vegetation production.20 The
eMODISNDVI is available as a continuous weekly time series;
therefore, the variables created from eMODIS NDVI add a
time-step feature to our modeling process. This time-step
feature allows us to use the model algorithms and parameters to
extrapolate cheatgrass percent cover to any year that weekly
eMODIS NDVI is available. We then input our model
algorithms and parameters into a mapping application, along
with raster datasets of all the site-specific variables and the
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eMODIS-NDVI-derived variables from 2000 to 2013. The
mapping application uses open source code available from
RuleQuest,21 and the raster datasets that are input into the
mapping application cover our entire study area. This process
allows us to create cheatgrass percent cover datasets and
associated maps from 2000 to 2013 over our entire study area,
which creates a recent history of cheatgrass dynamics.

In the second step, the regression-tree model parameters
we describe in the first step and apply to the 2000 to 2013 data
are applied to 2015 eMODIS-NDVI-derived variables and
the site-specific variables. This process takes advantage of the
time-step feature that the time-series of eMODIS NDVI data
provide and develops an expedited, estimated near-real-time
cheatgrass percent cover dataset and map for 2015 (Fig. 2).
We completed the dataset and map in early summer 2015.
The datasets and maps for 2000 to 2013 and 2015 are available
onlinei. A dataset available in early summer of each year that
estimates cheatgrass percent cover for that specific year can be
extremely useful. However, to expedite the development of
the 2015 dataset and map and create a near-real-time
output using the historical model parameters, the 2015
eMODIS-NDVI-derived variables require modification.
Modifying 2015eMODIS-NDVI-DerivedVariables
to Expedite Data Development

The near-real-time dataset requires relatively minor changes
to some variables so that the dataset’s development can be
expedited and the dataset released on or around 1 July. First, 11
years (2000-2010) of summertime satellite image data were
averaged and substituted for the 2015 summertime period.
Second, to accelerate the availability of the eMODISNDVI data
used for the 2015 GSN, the data were temporally smoothed22

using a slightly different temporal-moving-window linear
regression at each pixel than the 2000 to 2013 GSN data used.
(We smooth all eMODIS NDVI data to compensate for clouds,
which lower NDVI values.) To validate expediting the
development of GSN, we compared expedited 2006 GSN with
non-expedited 2006 GSN data (Fig. 3) and found strong
consistencies between the two datasetsii. Third, we built a
cheatgrass start of sustained-growth week (SOSW) continuous
variable and substituted it in themodel for the start of season time
continuous variable, which is unavailable. The SOSW model
accuracy is relatively strongiii. Fourth, we used an SOSWdiscrete
class to delineate the timing of 2015GSNpatterns through space.
A categoricalmodel predicted the correct SOSWclass 98% of the
time. Because the tests used to assess the potential effects that the
modifications had on the time-series model return relatively
strong to extremely strong results, these changes are assumed to
have little influence on themodel output. Consequently, the 2015
near-real-time cheatgrass percent cover data provide a consistent
estimate relative to the 2000 to 2013 time series.
Rangelands
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Figure 2. 2015 near-real-time cheatgrass in the Northern Great Basin. The black dashed line delineates the Northern Great Basin, which includes the
Northern Great Basin and Range and Snake River Plain ecoregions. Analysis was conducted for all mapped areas that were unmasked. The mask (white)
covers areas where the 2001 National Land Cover Database classified the land cover as something other than grassland/herbaceous or shrub/scrub, or
elevations were higher than 2,000 m.
Cheatgrass Percent Cover Findings
The 2015 near-real-time cheatgrass percent cover estimate

is displayed as a map (Fig. 2), and the percent cover
distribution ranges from 0 to 100. The overall mean value
for the study area equals 9.85%. The overall standard
deviation, representing the dataset’s variability, equals 12.78.
These statistical measures compare closely to the 2000 to 2013
mean where the cheatgrass percent cover distribution ranges
from 0 to 86, the overall mean value equals 8.96%, and the
overall standard deviation equals 9.36. The 2015 dataset
shows slightly higher cheatgrass percent cover than the
Figure 3. Testing the validity of using near-real-time growing season
NDVI (GSN) as a substitute for non-expedited GSN by comparing 2006
near-real-time GSN to 2006 GSN. Data from 66 points indicate that little
difference results from using near-real-time GSN. The high R² (0.98), the
low RMSE (0.87), and the position of the 1:1 line in relation to the linear
regression line all indicate a comparable output.
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14-year average, with more variability. This slight increase is
likely driven by an 8% increase in annual precipitation for
2015 (429 mm) compared to the 14-year average (398 mm),
where precipitation totals range from 300 to 578 mm per year.
The highest cheatgrass percent cover in both the 2015 and the
2000 to 2013 mean datasets occurs in the Snake River Plain of
southwestern Idaho and east-central Oregon where human
populations and activities (e.g., agriculture and recreation)
typically are higher than in other areas in the Northern Great
Basin. Fire polygons downloaded from the Monitoring
Trends in Burn Severity database23 and overlaid onto the
2015 cheatgrass percent cover map illustrate the connection
between cheatgrass and fire (Fig. 4). In the study area, 293
fires burned from 2011 to 2013. While all fires did not occur
in areas invaded by cheatgrass during 2015, many of the fire
polygons are overlain onto areas of substantial cheatgrass
cover. The 2015 near-real-time cheatgrass percent cover mean
for areas burned in 2011 equaled 19.31. For 2012 burned
areas, the 2015 mean equaled 16.19. For 2013 burned areas,
the 2015 mean equaled 15.84. These means compare to an
overall cheatgrass percent cover mean of 9.85 for 2015, so
areas that recently burned contained substantially higher
cheatgrass percent cover than the study area as a whole.

In the 2015 dataset, almost 18% (~750,000 pixels) of the
study area registers zero cheatgrass percent cover (Fig. 5).
Approximately 50% of the study area has between 1 and 10
cheatgrass percent cover, 23% of the study area has between 11
and 25 cheatgrass percent cover, and 10% has greater than 25
cheatgrass percent cover. To visualize the change reflected in
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Figure 4. 2015 near-real-time cheatgrass in the Northern Great Basin overlain with Monitoring Trends in Burn Severity fire polygons from 2011 to 2013.
This map demonstrates the connection between recent fires and cheatgrass percent cover. The mask (white) covers areas where the 2001 National Land
Cover Database classified the land cover as something other than grassland/herbaceous or shrub/scrub, or elevations were higher than 2,000 m.
the 2015 cheatgrass percent cover estimate, we subtracted the
2000 to 2013 mean value from the 2015 near-real-time value
at each pixel (Fig. 6). The change between datasets ranges
from -54 to 80. The mean change equals 1.28% and the
standard deviation equals 7.26. Figure 7 shows the distribu-
tion of the change values where no change occurs most
frequently, 16% of the time. Change from -10 to -1 occurs
over 38% of the area, and change from 1 to 10 occurs over 33%
of the area. Overall, 87% of the pixels experience a change
between -10 and 10, reflecting relatively close agreement
Figure 5. Estimated 2015 near-real-time cheatgrass percent cover
distribution throughout Northern Great Basin shrub steppe. Percent cover
ranges from 0 to 100, the mean equals 9.85, and the standard deviation,
measuring the datasets variability, equals 12.78.
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between the 2015 near-real-time dataset and the 2000 to 2013
mean. Across the study area of likely rangelands, 8% has no
cheatgrass estimated in either of the two datasets. This finding
implies that 8% of the study area experienced either no
cheatgrass percent cover during the entire study period or
cheatgrass percent cover is too low (b 5%) to be detectable
when using 250-m eMODIS NDVI data.
Conclusions
Development of a near-real-time cheatgrass percent cover

dataset is successful when it is built using the parameters of a
historical cheatgrass model. The success of the dataset is
verified by the consistency of spatial context and cover
magnitude distributions between the historical and
near-real-time datasets. This success is reinforced by the
change map (Fig. 6) where a substantial majority of the study
area experiences relatively small changes (between -10 and 10)
when the 14-year average cheatgrass percent cover dataset is
compared to the 2015 near-real-time cheatgrass percent
dataset. An annual near-real-time cheatgrass percent cover
dataset and associated map could be a valuable addition to
planning for and mitigating fire damage in the Northern
Great Basin shrub steppe (S. Mavor and L. Smith, personal
communication, August 2015). Future research could also
explore downscaling the 250-m near-real-time cheatgrass data
to 30 m using Landsat data, fusing the superior temporal
Rangelands



Figure 6. Change map. The 2000 to 2013 cheatgrass percent cover mean subtracted from the 2015 near-real-time cheatgrass percent cover estimate.
The mask (white) covers areas where the 2001 National Land Cover Database classified the land cover as something other than grassland/herbaceous or
shrub/scrub, or elevations are higher than 2,000 m.

Figure 7. The distribution of change values between the 2000 to 2013
mean and the 2015 near-real-time cheatgrass percent cover estimate.
Change ranges from -54 to 80, the mean change equals 1.28, and the
standard deviation, measuring the datasets variability, equals 7.26.
resolution of eMODIS NDVI data with the higher spatial
resolution of Landsat data. Spatially downscaling this dataset
could enhance its usefulness to land managers and other
personnel25 working to mitigate fire damage and develop
fire plans.
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