Browsing the Literature

This section reviews new publications available about the art and science of rangeland management. Personal copies of these publications can be obtained by contacting the respective publishers or senior authors (addresses shown in parentheses). Suggestions are welcomed and encouraged for items to include in future issues of Browsing the Literature. Contact Jeff Mosley, jmosley@montana.edu.

Animal Ecology

Counterintuitive effects of large-scale predator removal on a midlatitude rodent community. J. L. Maron, D. E. Pearson, and R. J. Fletcher. 2010. Ecology 91:3719–3728. (Division of Biological Science, Univ of Montana, Missoula, MT 59812, USA). In western Montana, exclusion of predators or ungulates did not affect the abundance of Columbian ground squirrels or deer mice. Abundance of montane voles, however, was suppressed by weasels.

Influence of woody vegetation on grassland birds within reclaimed surface mines. B. M. Graves, A. D. Rodewald, and S. D. Hull. 2010. Wilson Journal of Ornithology 122:646–654. (School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA). Grassland birds avoided woody vegetation, and nesting success of Grasshopper sparrows and Henslow's sparrows was lower near woody vegetation; authors concluded that tree and shrub encroachment needs suppressed to benefit grassland birds.

Grazing Management

A review: the use of livestock protection dogs in association with large carnivores in the Rocky Mountains. C. Urbigkit and J. Urbigkit. 2010. Sheep and Goat Research Journal 25:1–8. (PO Box 1663, Pinedale, WY 82941, USA). Identifies breeds of livestock protection dogs best suited for use around large carnivores, such as wolves. Also discusses the potential use of spiked collars to increase survival of livestock protection dogs.

Can sheep and cattle rumen microorganisms be conditioned to invasive weeds? T. R. Whitney and B. E. Olson. 2010. Sheep and Goat Research Journal 25:26–31. (B. Olson, Dept of Animal and Range Sciences, Montana State Univ, Bozeman, MT 59717, USA). Sheep might eat more common tansy if they are conditioned to it first; however, authors concluded that conditioning is unlikely to increase tansy consumption by cattle or to increase consumption of spotted knapweed by either cattle or sheep.
Effect of long-term cattle grazing on seasonal nitrogen and phosphorus concentrations in range forage species in the fescue grassland of southwestern Alberta. C. L. Li, X. Y. Hao, W. D. Willms, M. L. Zhao, and G. D. Han. 2010. *Journal of Plant Nutrition and Soil Science* 173:946–951. (X. Hao, Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 First Ave South, Lethbridge, AB T1J 4B1, Canada). Fifty-eight years of cattle grazing at either moderate or heavy intensities did not affect the total N and P content of most forage species. Grazing did, however, increase the N and P content of Kentucky bluegrass because grazing delayed the maturity of this species, and grazing did accelerate nitrogen cycling through dung and urine deposition.

Hydrology/Riparian

Measurements

Plant Ecology

Effects of plant competition, seed predation, and nutrient limitation on seedling survivorship of spotted knapweed (*Centaurea stoebe*). D. G. Knochel, C. Flagg, and T. R. Seastedt. 2010. *Biological Invasions* 12:3771–3784. (Dept of Ecology and Evolutionary Biology, Univ of Colorado, Boulder, CO 80309, USA). “… a combination of seed limitation and shortage of ‘safe sites’ within undisturbed vegetation can limit densities of *C. stoebe*.”

Rehabilitation/Restoration

Socioeconomics

Factors impacting agricultural landowners’ willingness to enter into conservation easements: a case study. A. D. Miller, C. T. Bastian, D. M. McLeod, C. M. Keske, and D. L. Hoag. 2011. *Society and Natural Resources* 24:65–74. (C. Bastian, Dept of Agricultural and Applied Economics, Univ of Wyoming, Laramie, WY 82071, USA). “Results from the focus groups reveal that landowners have concerns about providing easements in perpetuity. They also considered public access to and loss of managerial control of their property as obstacles.”

Soils

Soil microbial communities resistant to changes in plant functional group composition. C. B. Marshall, J. R. McLaren, and R. Turkington. 2011. *Soil Biology and Biochemistry* 43:78–85. (J. McLaren, Dept of Biology, Univ of Texas at Arlington, Arlington, TX 76019, USA). In a dry meadow surrounded by spruce forest in the southwestern Yukon, the soil microbial community was largely unaffected by changes in the plant community composition.

Jeff Mosley is Professor of Range Science and Extension Range Management Specialist, Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA.

ERRATUM

The article “Grazing Systems: More Thoughts and Observations” in the February 2011 issue of *Rangelands*, 33(1) p. 35-40, contained three subtitles under Figures 3, 5, and 6 that were incorrect. The correct wording for the subtitles under these three figures are as follows:

Figure 3: Inside the South Exclosure, with no grazing since 1950, the Pace Frequency data above are shown from the four transects run for the years shown.

Figure 5: This photo from 2005 shows the browse and other plants inside the exclosure as numerated in Figure 3.

Figure 6: This photo from 2005 shows the browse and other plants outside the exclosure under the Best Pasture rotation grazing system. The plant occurrence and density is about the same as inside the exclosure as numerated in Figure 4.