Good Medicine for a West Texas Ranch

Jerry R. Cox, Sam Brownlee, and Marilyn Lackey Ratliff

When viewing the vast wastelands and time-worn mountains of Pecos County, in western Texas, it is hard to visualize what Dr. D. J. Sibley saw as a boy 60 years ago at the family ranch 40 miles southwest of Fort Stockton. The view left a lasting impression and now Sibley, the doctor, seeks to recreate and insure the continual existence of a semidesert mountain grassland, the patient, with the use of range improvement techniques such as brush control, reseeding, water distribution, road construction and concepts of natural resource management.

In 1919 the Sibley family moved to Fort Stockton, where the elder Sibley, the only dentist between San Antonio and El Paso, purchased a 20-section ranch in the Glass Mountains. The first successful water well was drilled in 1934, and the ranch annually supported as many as 600 sheep, 200 goats, 10 horses, and 3 milk cows.

After World War II, D.J. Sibley returned to the ranch and found a wasteland. He began a medical practice in Fort Stockton and leased the ranch to a neighbor, George Mills. Sibley stated: "Animal units were reduced to 10 per section, but range condition failed to improve, due to a prolonged drought which began in 1946 and lasted until 1957." In the next 5 years Sibley constantly observed range conditions and trend and determined that natural range restoration was not possible with year-round grazing of sheeps and goats. In 1963 grazing with sheep and goats was discontinued, and substituted with a limited cow-calf operation.

Sibley became a postgraduate student of medicine in 1961 and conducted basic research on cancer at the Texas Medical Center in Houston. At this period in his life, already well developed awareness of ecological and hydrologic problems such as brush invasion and gully erosion intensified. In 1970 he retired from research and the medical profession, moving back to the Glass Mountains, where his time and energy are devoted to range improvement and management.

In 1975 Sibley began a rangeland restoration program to reduce shrub competition and reestablish perennial grasses in once productive mountain valleys. Mesquite were grubbed and rootplowed in strips and the area seeded with Johannsongrass (Sorghum halepense), green sprangletop (Leptochloa dubia), plains bristlegrass, (Leptochloa dubia), plains bristlegrass (Setaria macrostachya), lehmann lovegrass (Erargrostis lehmanniana), blue grama (Bouteloua gracilis), and side-oats grama (B. curtipendula).

There are currently three wells which provide water to eight pastures by gravity flow. Wells are drilled at high elevations, and when needed, booster windmills, pumps, and storage tanks are used to supply water to pastures above well elevations. Rock density in the mountainous area prohibits installation of underground water lines. Pipes are placed on a soft bed of sotol (Dasylirion leiosyllum). Rock is placed over the pipe to a width of 2 ft. (Photo 2). Water lines run along ridge tops with water troughs and mineral blocks selectively placed on rocky points overlooking alluvial valleys. The development of a permanent water supply has increased livestock distribution and utilization on steep slopes while reducing trampling and overgrazing on lower, more productive sites.

Before Sibley's return in 1970, roads on the ranch followed the path of least resistance, occupying valuable pastureland in the valleys. Roads have been reconstructed on the contour along the tops and sides of hills. Roads are graded on a 5% downhill slope and water is channeled across roads, reduc-
Pipelines for Grass Management

Oryl Fischer

"Ranchers looking for better distribution of livestock should consider pipelines to get cattle to use more of the grasses in a pasture," said Hugh Clarke, Jr., of Berwyn, in central Nebraska. Clarke knows the benefits for he has installed nearly 19,000 feet of underground pipelines on his 1,700 acre ranch located in the Nebraska Sandhills. They were installed under a Great Plains Conservation Program contract administered by the Soil Conservation Service.

"I needed more water places because on the rough terrain the cattle weren't grazing too far from water," he said. He chose pipeline because, "They cost less than wells and there's also less maintenance than with wells and windmills."

"We did have to put in one new well to reach the outlying areas on some of the pastures", says Clarke. "The new well is 300 feet deep and will yield 13 gallons per minute. A 1 1/2 horsepower motor on the pump supplies water to the tanks in eight pastures and small lots from this well."

Hugh dug a 6-inch wide trench to place the polyvinyl chloride (PVC) plastic pipe 5½ feet deep. Roughly 15,670

The author is with the Soil Conservation Service, Broken Bow, Nebraska.