If You Aren’t Part of the Solution, You Are Part of the Problem

F.H. Tipton

Editor’s Note: This paper is required reading for all users of our rangeland areas.

The goal of any range management system should be to provide an economical management system for the ranch, while protecting and enhancing its private and public resources. By understanding the physiological needs of the range plants, the potential of the area’s soil types, and the needs of its wildlife, the rancher can better design a complete ranch management system to meet the needs of all range-land uses and be economical for the ranch. To make any system work all users need to work closely together. Both users and management agencies need to educate each other and the public about the intricacies and needs of all uses and management.

Our systems have to evolve one step at a time, to insure economic viability. The money needed to implement a “big change” isn’t available and a “big change” that fails could spell not only economic disaster for a business that works on

a yearly budget with little or no cash reserve, but also disaster to the rangeland.

Because the cattle business has not been very profitable in the last few years, it has become increasingly important to reduce operating costs. This “streamlining” is difficult to do without harming either the public or private natural resources.

The T Quarter Circle’s ranch management plan and goals are continually changing, though very slowly. The current system is now similar to the original system used when the ranch was founded in the 1870’s. By the late 1800’s the “tramp” sheep bands in the area had forced one of the first changes in management. Fenced meadows had to be used for hay production for winter feed, instead of summer and fall pasture.

Only a portion of the cattle herd was wintered on the open range. Sheep could out compete cattle for forage because of their ability to travel further from water. When the sheep trailed north for the summer, the ranch took advantage of the

Windrowed meadow hay pasture, as well as other methods, such as portable electric fencing, continues to help improve utilization of T Quarter Circle Ranch meadows.

(Photo by Nancy Tipton)
new green growth, and spring runoff streams allowed spring
and summer use of rangeland better suited to winter grazing.

After 1934 and the Taylor Grazing Act, the ranch gradually
changed back to a winter range operation. It was a slow
process because of past over-grazing and the severe drought
of the 1930’s. The “Great Depression” as well as World War II
slowed the transition. James Young noted in his book, “Cat-
tle In The Cold Desert”, that it took at least one generation
to change a ranch’s style of operation. Not only does it take
a generation to change a person’s management habits, it also
takes a generation of education and experience to imple-
ment such a change.

In order to learn what possibilities existed on its open
rangeland, the T Quarter Circle Ranch hired a professional
range consulting firm in 1984 and implemented a Range
Monitoring and Trend Study. Our study was established
using Bureau of Land Management guidelines developed by
the Nevada Range Studies Task Group. We are scheduled
for a BLM Monitoring/Trend Study, but government budget
shortages and the fact that our grazing allotments are com-
pletely within the “checker board” land pattern, have forced
the BLM to delay implementing a study. When the BLM does
find the money to start a study, we will provide them the
information from our private study.

As the study was being implemented, I joined the Society
for Range Management. Through its publications as well as
working with our range consultant and local resource agen-
cies, I became more familiar with the basics of range man-
agement. As I learned to scientifically identify plants on the
rangeland I also learned some of their needs and uses, other
than livestock forage, such as their wildlife and watershed
values. Most of this information is actually just a different
approach to what I had been taught by my parents and other
ranchers of their generation. The basic goals and beliefs are
very similar. In some ways it is easier for a rancher to learn
the scientific approach than it is for a scientist to learn the
ranching approach to range management.

Our base property is all on the Humboldt River. It is usually
under water from April to late June. Most of our allotments
are winter areas or areas critical to wildlife or other uses.
High water years of 1983 and 1984 caused our good native
meadow to nearly disappear. In 1985 two large range fires
forced us to change our season of use in 1986 and 1987.

We found that our irrigated meadows provide much better
grazing during the months of July and August than most of
our rangeland. We normally gather our cattle onto these
meadows in August. In 1986 we gathered by early July. Our
average weaning weights jumped nearly 40 pounds. Nothing
accounts for this increase except gathering our cattle onto
still growing irrigated meadows. Thus, it became especially
clear that our flood-damaged meadows needed improve-
ment. With the help of the Soil Conservation Service, we are
in the process of adding a more flood-tolerant pasture mix

1 The Nevada Range Studies Task Group was made up of fourteen professional
range conservationists, managers, and scientists.

Making hay on T Quarter Circle ranch about 1920.
(Photo from Nancy Tipton family)

Cattle grazing T Quarter Circle Ranch meadowlands in 1979 (late
July). (Photo by Frosty Tipton)

Range fire on Winnemucca Mountain part of T Quarter Circle
Ranch rangeland. (Photo by Frosty Tipton)
Rangelands seedlings expensive and we
This should be turned water could well
system mented as monitoring and trend
our one burn, one resource problem,
(Garrisons Creeping Meadow Foxtail and Alsike Clover)
"use-map" each year.
"use-map" each year.
As the basic physiological needs
probably occurring and even when certain water sources
This causes it to become more aware of use levels and
Part of one burn, one of the few bunch grass-big sage range types in
the monitoring and trend study shows a need for a change such
as season-of-use, a spring grazing system could be imple-
mented on that portion of the burn. Though our current
system is the most economical, this would allow plenty of
flexibility to meet all economic and multiple use needs as
well as the basic physiological needs of the plant community.
It would also allow the ranch to continue the "streamlin-
ing" of its management system.
Probably the most important management tool any rancher
could learn, is to become more aware of use levels and
patterns. This knowledge allows a rancher to make a mental
"use-map" each year. It can help determine where additional
water would be advantageous, where conflicts with wildlife
may be occurring and even when certain water sources
should be turned off. It can enable a stockman to better
understand what causes a cow to change areas, whether
cased by climatic, nutritional, or even human disturbances.
Agency range conservationists could help each assigned
permittee set up utilization studies. The program should be
entirely voluntary with very little criticism of current systems.
If ranchers could improve distribution and follow proper use
levels through their own studies the whole allotment would
benefit. As additional money for improvements became
available agency managers and ranchers would have a better
idea of needs, goals, and methods to achieve those goals.
To improve understanding between user groups and man-
agement agencies, projects such as spring developments
and "wildlife guzzlers" could be joined to benefit wildlife and
livestock distribution. A spring could be developed, water
piped to a distant livestock trough, and all excess water
dverted to a "drip-irrigation" system for a riparian area at the
development point. The stockman and management agency
could finance the major portion of the development. Addi-
tional money for the "created" riparian area could come from
State wildlife agencies or local chapters of wildlife groups
such as Bighorns Unlimited, or Ducks Unlimited. Projects
such as this would also foster a feeling of partnership and
understanding among all those involved.
We need to improve our "transfer of information" among
the different management agencies, the education and
research agencies, all user groups, and the general public.
When we don't work together locally, a misinformed public
seeks a solution to minor problems from politicians and the
courts. They are almost always inadequately informed, and
the result of their input is usually more red tape and less
flexibility for the local managers. It is very important that we
Grazing Lands: An Integrative Common Denominator

John F. Vallentine

The effective grazing planner/manager must inventory all sources of available grazing capacity and integrate them into the best animal production system. The use of rangeland is generally co-mingled with the use of other types of grazing lands; and most range livestock and many big game animals use multiple sources of grazing capacity to meet their annual grazing capacity requirements (Vallentine 1978). The management interrelationships of native range with other types of grazing lands have too frequently been overlooked, underestimated, or ignored as inconsequential.

The term grazing lands seems preferable to pasture as the best common denominator of all lands harvested directly by the grazing animal, thereby downgrading the issue of how to differentiate between range land and pasture land (Dyksterhuis 1986). The SRM Range Term Glossary Comm. (1974) has defined pasture both as (1) a fenced grazing area and (2) forage plants consumed by grazing animals, neither definition giving any restrictions as to kind or origin of the forage plants nor as to their cultural enhancement or methods of grazing management. These broad definitions along with the fact that the dictionary definition of the verb pasture literally means "to graze, to eat in grazing" led to the use of the noun pasture as the generic term for all grazing lands, within which the noun range was considered as one category therein (Vallentine 1978).

Wheeler (1981) opted for a narrowed usage of the term pasture to refer to "more or less permanent grass-legume associations utilized by grazing" and not "as in the American usage, simply any area that is grazed by animals." This narrower usage was also advanced by the SRM RISC Comm. (1980) when used in conjunction with "periodic renovation and/or cultural treatments" but, strangely enough, added "not in rotation with crops!"

Barnes (1982) considered pasture as primarily referring "to plant communities predominantly of introduced species, whether sown or volunteer" while suggesting that grazing lands would be a safe haven for both range and pasture. He further suggested the forage family ties (i.e., the super generic) could be achieved in the term grassland agriculture, when described as "the art and science of cultivating forage crops, pasture, and rangelands for food and fiber production." (Note: his definition of forage crops was forage "harvested before being fed to animals," i.e. hay, haylage, fodder, stover, silage green chop, beet pulp, citrus refuse, etc. This restricted meaning is rapidly becoming the standard usage of this two-word term.)

The principles of grazing management remain the same regardless of kind of grazing land, i.e., optimal stocking rate, optimal season(s) of use, optimal grazing system, optimal kind or mix of animal species, and optimal grazing distribution; but their application may vary considerably depending upon kind of grazing land, management objectives, and the economic implications. Common to the management of all grazing lands must be forage plant considerations such as plant growth requirements, providing for plant vigor and reproduction, defoliation and other animal impacts, and seasonality and fluctuations in forage production. But equally high in priority are animal considerations including animal performance, animal behavior, nutrient intake levels, forage...