REGIONAL SOURCES OF VOLCANIC CARBON DIOXIDE AND THEIR INFLUENCE ON ¹⁴C CONTENT OF PRESENT-DAY PLANT MATERIAL

MICHAEL BRUNS*, INGEBORG LEVIN**, K O MÜNNICH**, H W HUBBERTEN†, and S FILLIPAKIS‡

ABSTRACT. ¹⁴C measurements were made on present-day plant material with short integration times (tree leaves and sprouts) in the Eifel area, western Germany, where ancient volcanism produces gaseous emanations of considerable yield. Plants growing near sources emanating ¹⁴C-free CO₂ show a significant depletion in the period of their growth. The same effect is found in the ¹⁴C content of recent samples from the Thera (Santorini) Archipelago/Greece. This mixing of "dead" CO₂ may lead to pseudo ages in archaeologic or geologic samples of up to 1600 years in samples from the vicinity of CO₂ emanating sources.

The influence of volcanic CO₂ on the global ¹⁴C budget is considered to be negligible (Libby, 1972). Several series of radiocarbon measurements from material used in dating the destruction of the Greek site, Akrotiri, on the Mediterranean island, Thera (Santorini), around 1500 BC, indicate remarkable discrepancies, especially in short-lived samples (Weinstein and Betancourt, 1978). These variations are much greater than what natural ¹⁴C changes might produce. Several samples show ages up to 1000 years older. It was therefore suggested (Michael, 1978) that admixture of volcanic CO₂ during photosynthesis could be responsible for these discrepancies.

Investigations (Sulerzhitzky, 1970; Chatters and others, 1969) on the possible influence of volcanic CO₂ on plant material have been reported before. They show that active volcanism as well as volcanic gaseous emanations may lead to considerable pseudo ages in archaeologic or recent material.

Therefore, we started ¹⁴C measurements on a series of present-day plant material from the Eifel area, western Germany, close to Wehr and Maria Laach (50° 25′ N, 7° 17′ E). This region (last active volcanism 10,000 BP) shows several sources with CO₂ gaseous emanations, partly used commercially for production of tank CO₂. These emanations are visible as fields of bubbles in some brooks and lakes. Ten samples, mainly leaves and sprouts, grown at different distances from the emanating sources, were taken from Lake Maria Laach and the basin of Wehr. The ¹⁴C was measured with proportional counters, sample pretreatment, and cleaning procedures (see Levin, Münnich, and Weiss, 1980; Schoch and others, 1980).

The influence of mineral/volcanic CO₂ on the ¹⁴C content of plant material can be seen in the depression of the ¹⁴C values of plant material from the site compared to the "clean air" level at the time of growth, as, eg, monitored continuously in air samples taken at Vermunt/Vorarlberg, Austria (see Levin, Münnich, and Weiss, 1980). The ¹⁴C data of table 1

 $[\]ast$ Forschungsvorhaben "Radiometrische Altersbestimmung von Wasser und Sedimenten der Heidelberger Akademie der Wissenschaften"

^{**} Institut für Umweltphysik der Universität Heidelberg

[†] Institut für Petrographie und Geochemie der Universität Karlsruhe

[‡] Democritos Nuclear Research Center, Agia Paraskavi, Athens, Greece

shows that during daytime, on the average, depending on the distance from the source, up to 16 percent of mineral/volcanic origin "dead" CO₂ is admixed to the "normal" atmospheric CO₂ and assimilated by the plants. It can be seen from table 1 that the dead CO₂ influence decreases rather rapidly with increasing distance from the source due to horizontal and vertical atmospheric mixing. A possible influence of fossil fuel CO₂ in this region from the highly industrialized areas about 80 to 100km north of Maria Laach (Ruhrgebiet) can be estimated (see Levin, Münnich, and Weiss, 1980) as not exceeding two percent of the natural concentration. Therefore, an only anthropogenic origin of the depression can be excluded.

We shall now discuss the Maria Laach data in more detail. Assuming that the total bubbling area (about 50×50 m) observed on the lake is represented by an equivalent point source in the center of the area, we might try to calculate the concentration pattern in the neighborhood of the source with a meteorologic dispersion model (Pasquill, 1974). For this purpose, the curve given by Pasquill (p 371) has been extrapolated down to 50m source distance, and the predicted concentration versus

Table 1
Results of ¹⁴C measurements of recent plant material from Eifel area

	Sample	Description, location, distance to source area	Δ¹⁴C[‰]	V[%] admixed volcanic CO ₂	"Age"	δ ¹³ C _{PDB} [%e]
Basin of Wehr	H-5637. Wehrer Kessel 1	Salix, sprouts, 1978, 1.5-2m above brook showing strong emanations	128 ± 5	15.6	1360	-26
	H-5638. Wehrer Kessel 2	Species unknown, 200m E of center, 1-2m above ground, sprouts, 1977- 78, 200m E of sources	325 ± 5	.1	90	-22.2
	H-5639. Wehrer Kessel 3	Reed, 1978, 2m SE of emanating source	201 ± 5	10.1	860	-25.1
Lake Maria Laach	H-5630. Maria Laach 6	Unknown species, sprouts and twigs, 1976-78, 1-2m above ground, 30m N of emanations	395 ± 5		_	-30.2
	H-5634. Maria Laach 7	Oak, leaves, 1978, 2m above ground, 5m from lake, near strong emanations	205 ± 7	9.8	830	-28.2
	H-5631. Maria Laach 8	Birch, sprouts 1978, 1m above lake, bubbling emanations	219 ± 5	8.8	736	-28.9
	H-5636. Maria Laach 10	Beech, leaves, 1978, 20m from lake, 5-7m above lake level	259 ± 5	5.8	480	-30.5
	H-5632. Maria Laach 9	Alder, sprouts, 1978 directly above emanation	262 ± 7	5.5	460	-29.3
	H-5635. Maria Laach 4	Beech, leaves, 1978, 200m from lake, 1-2m above ground	334 ± 7	_	_	-30.3
	H-5633. Maria Laach 5	Beech, leaves, 1978, 50m from lake, 8m above lake level	329 ± 8			-30.0

source distance relationship has been normalized to the measured concentration at 70m. The result is shown in figure 1. From this curve, then, the total source strength of our equivalent point source can be estimated. According to Pasquill, the emission of one unit admixture per minute leads (under average daytime atmospheric conditions—category B/C—with a mean wind speed at ground level of 4m/sec) to a concentration of 5.5 • 10-6 units/m3 at 70m downwind distance from the source. This is assumed to produce just the observed CO2 admixture of about 6 percent of the normal atmospheric CO₂ concentration (meaning additional 0.039 grams CO₂/m³). The observed concentration of dead CO₂ thus would be caused by an emission of 10.2 tons of CO₂ per day or about 7kg/min. If we divide this by the estimated source area of 2.5 • 103 m² we obtain a CO₂ production flux density of about 4kg CO₂/m² day. This is about 100 times the natural soil CO₂ respiration flux (25 to 50g CO₂/m² day; Lundegardh, 1924; Dörr and Münnich, 1980). It should be noted that our source estimate presumably is a lower limit since it assumes that our sampling points were always downwind of the source. This is not true, although it is, in fact, the main wind direction. This quick calculation indicates that at least a rough idea of the source strength can be deduced, in such cases, from a few simple measurements.

The influence of "dead" CO_2 on the plant material samples causes "pseudo ages" up to 1500 years (column 5, table 1) exceeding the usual uncertainty due to global ¹⁴C variations (\approx 2 percent variation \cong 250 to 300 years dating uncertainty).

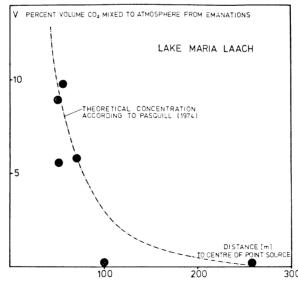


Fig. 1. Percent contribution of volcanic CO_2 to the atmospheric CO_2 assimilated at different distances from the CO_2 source region. Data from table 1 atmospheric dispersion curve, after Pasquill (1974) fitted to the observed data (see text).

TABLE 2 Results of ¹⁴C measurements of recent plant material; Palea Kameni/Thera

Sample	Description, location distance to source area	Δ¹⁴C[%o]	V[%] admixed volcanic CO ₂	"Age"	δ ¹³ C _{PDB} [‰]
H-5742. Palea Kameni 2	SW end of Bay, species unknown, 2m above ground, 25m above NN, 1977-78, 100m from emanations	382 ± 5			-23.2
H-5745. Palea Kameni 5	SW of bay, species un- known, 2m above NN, 5m from source, 70cm above ground, 1977-79	133 ± 4	15.9	1390	-21.8
H-5748. Palea Kameni 8	NW end of bay, species unknown, 5m above NN, 10m from source, 50cm above ground, 1977-1979	185 ± 5	12.0	1030	-22.1

In the Eifel region the 13 C values of the emanating CO_2 (δ^{13} C = -4to -5% (Puchelt and Hubberten, 1979) are too similar to the clean air CO_2 (-8%) to be significantly reflected after photosynthesis in the $\delta^{13}C$ of the plant material. This seems to be different in the case of Thera.

Within the archipelago of Thera (last period of volcanic activity in 1950) several hot CO₂ sources are found, partly submarine, primarily around a little bay with pronounced submarine emanations on the Kameni islands in the caldera (from the burst around 1500 BC). A few measurements made so far on recent samples (see table 2) confirm the results obtained from the Eifel series, showing a locally restricted, but considerable influence of these emanations. Here, an effect on the 13C values of the plant samples seems also to be visible. This is due to the fact that the $\delta^{13}C$ of the Thera emanations is more positive ($\delta^{13}C\approx 0$) than in the Eifel.

This study was suggested by Prof A Boettcher, Jülich. The samples were taken in cooperation with the Demokritos Atomic Center, Attika.

REFERENCES

Chatters, R M, Crosby, J W, III, and Engstrand, L G, 1969, Fumarole gaseous emanations. Their influence on carbon-14 dates: Washington State Univ, Technical extension service, circ 32.

Dörr, Helmut and Münnich, K O, 1980, Carbon-14 and carbon-13 in soil CO2, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon, v 22, no. 3, p 909-918. Levin, Inge, 1977, Ausbreitung von Schadstoffen in der Atmosphäre, regional, Seminar

über neuere Fragen der Physik, Inst Umweltphysik, Univ Heidelberg.

Levin, Inge, Münnich, K O, and Weiss, Wolfgang, 1980, The effect of anthropogenic CO₂ and ¹⁴C sources on the distribution of ¹⁴C in the atmosphere, *in* Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 379-391.

Libby, L M and Libby, W F, 1972, Vulcanism and Radiocarbon dates, in Rafter, T A and Grant-Taylor, T, eds, Internatl radiocarbon conf, 8th, Proc: Wellington,

Royal Soc New Zealand.

Lundegardh, H, 1924, Der Kreislauf der Kohlensäure in der Natur: Jena, Gustav Fischer.

- Michael, H N, 1978, Radiocarbon dates from Akrotiri, Thera, 1967-1977, in Doumas, C, ed, Thera and the Agean world I: Internatl sci cong, 2nd, London, Papers, p 791-795.
- Pasquill, F, 1974, Atmospheric diffusion, 2nd ed: Chichester, England, Ellis Horwood. Puchelt, H and Hubberten, H W, 1979, Vulkanogenes Kohlendioxid: Aussagen und Herkunft aufgrund von Isotopenuntersuchungen, in Proc. 2. Arbeitstagung, Iso-
- tope in der Natur, Leipzig, 1979.

 Schoch, Hildegard, Bruns, Michael, Münnich, K. O, and Münnich, Marianne, 1980,

 A multi-counter system for high precision carbon 14 measurements, in Stuiver,

 Minze and Kra. Renee, eds. International radiocarbon conf. 10th. Proc. Padiocarbon.
- A multi-counter system for high precision carbon 14 measurements, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc. Radiocarbon, v 22, no. 2, p 442-447.

 Sulerzhitzky, C D, 1970, Radiocarbon dating of volcanoes: Bull volcanol, v 35, p 85-94.
- Sulerzhitzky, C D, 1970, Radiocarbon dating of volcanoes: Bull volcanol, v 35, p 85-94. Weinstein, G A and Betancourt, P P, 1978, Problems of interpretation of the Akrotiri radiocarbon dates, in Doumas, C, ed, Thera and the Agean world I: Internatl sci cong, 2nd, London, Papers, p 805-814.