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CHARACTERIZING THE ERROR IN THE ESTIMATED AGE-DEPTH RELATIONSHIP

Andrew R Solow 
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA. Email: asolow@whoi.edu.

ABSTRACT. It is common practice to estimate the age of undated material extracted from a sediment core from radiocarbon
or other radiometric dates of samples taken above and below the extracted material. This paper presents a simple expression
for the variance of this estimated age. This variance accounts for both 14C dating error and error due to bioturbation.

INTRODUCTION

It is common practice to estimate the continuous age-depth relationship along a sediment core from
radiocarbon or other radiometric dates of samples taken at discrete depths in the core. Such a rela-
tionship can then be used to estimate the age of undated material extracted at a known depth in the
core. In doing so, it may be useful to have an idea of the magnitude of the error in the estimated age
of the extracted material. For example, this would be important in assessing the significance of dif-
ferences in the estimated timing of climatic events reconstructed by a geochemical analysis of mate-
rial extracted from different cores. The purpose of this paper is to describe a simple model of this
estimation error. The model, which appears to be the first of its kind, includes both 14C dating error
and error due to vertical sediment mixing.

The remainder of the paper is organized in the following way. The basic model is developed in the
next section. In the third section, this model is applied to a small data set. The final section contains
some concluding remarks.

AN ERROR MODEL

The basic problem considered here is the estimation of the calendar age Y0 of material extracted at
nominal depth d0 within a core. This paper focuses on the simple, but common, case where estima-
tion is by linear interpolation between 2 control points at nominal depths d1 and d2 with d1 ≤ d0 ≤ d2.
In this case, the estimate of Y0 is:

Ÿ0 = wŸ1 + (1 – w)Ÿ2  (1)

where ̈Y1 and Ÿ2 are the estimated calendar ages of material extracted at the control points and:

w = (d2 – d0) / (d2 – d1)  (2)

Linear interpolation is based on the assumption that, between control points, calendar age increases
approximately linearly with depth.  

The goal of this paper is to provide an expression for the variance of the estimation error Y0 – Ÿ0.
Two sources of error contribute to this variance. First, as a result of bioturbation or other reworking
of sediment, the true depositional depth of material extracted at the control and estimation points
may differ from their nominal depths. This will be referred to as depth error. Second, the estimated
calendar ages of the material extracted at the control points are subject to the usual dating errors. To
proceed further, it is necessary to specify a statistical model of these errors and the way in which
they interact.

Let the random variable Z(d) be the true depth of material collected at nominal depth d. Assume that:

Z(d) = d + ε (3)
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where ε is a depth error with mean 0 and variance . A model of this variance is given below. Sup-
pose that, as at the control points, the calendar age of this material is estimated by calibrating an esti-
mate of its 14C age. Let:

(4)

be the estimated 14C age of this material where, in general, r(z) is the true 14C age of material at true
depth z, and η is the 14C dating error with mean 0 and known variance . Provided ε is small in
relation to the scale of curvature of r(z):

(5)

where r' is the derivative of r(z) with respect to z. This derivative is essentially the reciprocal of the
sedimentation rate. The combined error e has mean 0 and variance:

(6)

The estimated calendar age is given by:

Ÿ = c(R̈) (7)

where c(r) is a fixed calibration curve.  Provided that e is small in relation to the curvature of c(r):

(8)

where c' is the derivative of c(r) with respect to r and f is the calendar age error with mean 0 and
variance:

(9)

The quantity c[r(d)] in (8) is the calibrated value of the true 14C age of material, of which the true
depositional depth is equal to the nominal depth d. Thus, under this model, the estimated calendar
age Ÿ is unbiased with variance given in (9). The mean of the true calendar age Y of material
extracted at nominal depth d is also c[r(d)], but its variance is:

(10)

The difference between (9) and (10) is due to the fact that Y (which is unobservable) involves no dat-
ing and, therefore, no dating error, while ̈Y (which is observable) does.  

Returning to the main goal of this paper, it follows from these results that ̈Y0 is an unbiased estimate
of Y0. Under the assumption that the depth errors at the control and estimation points, and the dating
errors at the control points, are independent, the variance of the estimation error Y0 ñ Ÿ0 is:

 Var(Y0 ñ Ÿ0) = Var(Y0) + w2 Var(Ÿ1) + (1 – w)2 Var(Ÿ2) (11)

Finally, it follows from (9) and (10) that this variance is given by:
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(12)

where , and  are the variances of the depth errors at the estimation and control points and
 and  are the variances of the 14C dates at the control points.

Before turning to a simple model of depth error, it is worth noting that the estimation variance in (11)
depends through w on the relative location of the estimation point between the 2 control points. For
example, if Var(Ÿ1) = Var(̈Y2), then Var(Y0 ñ Ÿ0) is maximized when d0 = d1 or d0 = d2  (so that w =
1 or 0), and minimized when d0 = (d1 + d2) / 2 (so that w = 1/2). Briefly, estimating Y0 by averaging
Ÿ1 and Ÿ2 reduces variance by averaging the errors in these estimated ages. When the estimation
point is close to one of the control points, the estimate of Y0 is dominated by the estimated age at that
control point with little averaging of errors. In contrast, when the estimation point is midway
between the control points, the estimated ages at the control points receive equal weight in ¨Y0 with
maximal averaging of errors.

The estimation error variance in (12) depends on the variance of the depth errors at the control and
estimation points. A simple model of these depth errors is the following. The basic assumption is
that the material collected at nominal depth d consists of n particles distributed at random within a
sample volume of uniform height h centered at d. As a result of sediment reworking, between the
time of deposition and the time of collection, each particle has undergone a random vertical move-
ment of magnitude ∆ with mean 0 and variance . The variance of the true depth of a single such
particle is the sum of the variance h2 / 12 due to its random location within the sample volume and
the variance σ2

∆ due to sediment reworking. The true depth Z(d) of the sample material can be
approximated by the average of the true depths of n of these particles. This average has mean d and
variance:

(13)

In many cases, h <<σ∆, so that .

AN APPLICATION

Table 1 reports the depth, 14C age and error (ση), and calibrated calendar age of 12 samples of the
planktonic foraminifer Globigerinoides sacculifer in a core taken near the Bahamas at 26°04′Ν,
78°03′W, in approximately 1000 m of water. These data and subsidiary information about them
were kindly provided by William Curry. The continuous age-depth relationship for this core esti-
mated by linear interpolation is shown in Figure 1. For these data, the calibration curve is essen-
tially linear, with slope c'(r) = 1.128 for all values of r. The 14C age at each control point was based
on n ≅ 100 specimens, extracted from a sediment wedge of height h = 0.02 m. The bioturbation
error σ∆ is around 0.05 m. Thus, from (13), the standard deviation σε of the depth error at each con-
trol point is approximately 0.005 m.

To illustrate the calculation of the variance in (12), consider estimating the age of a single particle
extracted from a sediment wedge of height 0.02 m centered at depth d0 = 2.1 m, based on the esti-
mated calendar ages at the control points at d1 = 2.0 m and d2 = 2.2 m. It follows from (13) that the
standard deviation of the depth error at the estimation point is around 0.05 m. That this is an
order of magnitude larger than σε at each control point reflects the effect of averaging 100 particles
at each control point. From (1) and (2), the estimated age ̈Y0 is 38.7 kyr. To complete the calculation
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in (12), it is necessary to estimate r'(d) at d0, d1, and d2. Under the assumption that the sedimentation
rate is approximately constant between control points, a simple estimate is [r(d2) – r(d1)] / (d2 –d1)
or 29.5 kyr m–1. Combining terms according to (12) yields Var(Y0 – Ÿ0)1/2 = 1.69 kyr.

Table 1 Depth, radiometric age and error, and calibrated calendar age for 12 samples of G. sacculifer
picked from a sediment core.

Depth (m) Radiometric age ± ση (yr) Calendar age (yr)
0.10 920 ± 35 510
0.62 5290 ± 45 5640
0.88 7630 ± 45 7930
1.13 11,000 ± 50 12,500
1.21 12,200 ± 55 13,800
1.34 17,100 ± 100 19,700
1.51 20,200 ± 85 23,400
1.71 25,900 ± 120 29,800
2.00 31,500 ± 170 35,800
2.20 37,400 ± 360 41,600
2.40 39,600 ± 390 43,300
2.67 45,700 ± 500 49,300

Figure 1  Age-depth curve estimated by simple linear interpolation between control points.
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In Figure 2, Var(Y0 – Ÿ0)1/2 is plotted against d0 the entire core. Although the standard deviation σn
of the 14C dating error varies by a factor of nearly 15, the dominant source of variability in this figure
is variability in r'(d). The reason is that the low sedimentation in relation to the level of bioturbation,
combined with the absence of particle averaging at the estimation point, make c'[r(d0)] r'(d0)  the
dominant contributor to estimation error. The only part of this term that varies over the core is r'(d0). 

DISCUSSION

The purpose of this paper has been to describe and illustrate a way to characterize error in the age-
depth relationship. This characterization appears to be the first of its kind. It is based on 2 assump-
tions of approximate local linearity: specifically, that the 14C age-depth relationship r(z) is approxi-
mately locally linear in depth z at the scale of the depth error ε and that the calibration curve c(r) is
approximately locally linear in 14C age r at the scale of the total 14C age error e. Another key
assumption is that, at each control point, the deviations of the true depths of the particles contained
within the sampling volume from their common nominal depth are independent. This assumption
would be violated if this material had been subjected to a large-scale disturbance that affected all of
the particles in the same way. In a specific application, the reasonableness of these assumptions
should be established before proceeding.

Beyond its use as a quantitative measure of estimation error, the error characterization presented
here can provide useful qualitative information about the sources of this error. For example, in the
application described in the previous section, it is clear that improving the 14C dating at the control
points would have little benefit in estimating the age of undated material.  

Figure 2  Approximate standard deviation of estimation errors.

σε0
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Finally, it is possible to extend the error model described in this paper in at least 2 directions. First,
this paper has focused on the simple (but common) case in which estimation is based on linear inter-
polation between 2 control points. It is straightforward to apply the error model to any other estima-
tor that is a linear function of the calibrated ages of the control points. Such estimators include those
based on regression and splines. Some details are provided in an appendix. Second, the model treats
the calibration curve as fixed. It would also be possible to extend the model to include the effect of
error in the calibration curve. 
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APPENDIX

This appendix gives an expression for the error variance for a general linear estimate of the age-
depth relationship. Let ̈Y = (̈Y1̈Y2... ¨Yn)t be the vector of estimated calendar ages of material extracted
at n control points. Here and below, the superscript t denotes the vector or matrix transpose. A gen-
eral linear estimate of the calendar age Y0 of undated material extracted at nominal depth d0 has the
form:

Ÿ0 = wtŸ (A.1)

where w = (w1w2...wn)t is a vector of weights. The variance of the error Y0 – Ÿ0 is:

Var(Y0 – Ÿ0) = Var(Y0) + Var(Ÿ0) (A.2)

The first term on the righthand-side of (A.2) is given in Equation (10) in the paper. The second term
is:

Var(Ÿ0) = wt Σw (A.3)

where Σ is the n-by-n diagonal matrix, with elements Var(Y1), Var(Y2),...,Var(Yn) along the diagonal.
These variances are given in Equation (9) in the paper. 

As a simple example, suppose that the age-depth model is estimated by fitting the line:

Yj = β0 + β1dj (A.4)

by ordinary least squares, where dj is the depth of control point j. The ordinary least squares estimate
of β = (β0 β1)t is: 

 (A.5)

where X is the n-by-2 matrix whose first column has elements all equal to 1 and second column has
elements d1,d2,...,dn.  The estimate of Y0 is given by:

(A.6)

where x0 = (1 d0)t.  From (A.5), this estimate can be written in the form (A.1) with:

w = (XtX)–1 Xt (A.7).

β̂ XtX( )
1–
XtY=

Y0
ˆ x0

t β̂=

x0
t


