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ABSTRACT. This paper highlights some of the main developments to the radiocarbon calibration program, OxCal. In addi-
tion to many cosmetic changes, the latest version of OxCal uses some different algorithms for the treatment of multiple
phases. The theoretical framework behind these is discussed and some model calculations demonstrated. Significant changes
have also been made to the sampling algorithms used which improve the convergence of the Bayesian analysis. The conver-
gence itself is also reported in a more comprehensive way so that problems can be traced to specific parts of the model. The
use of convergence data, and other techniques for testing the implications of particular models, are described.

INTRODUCTION

When OxCal was first released (1/8/1994, see Bronk Ramsey 1994, 1995) it provided, in addition to
straight-forward calibration, various techniques for the analysis of groups of radiocarbon events in
phases, sequences and (based largely on the work of Buck et al. 1991, 1992, 1994). New techniques
were also provided to test the internal consistency of these Models based on “agreement indices”
(Bronk Ramsey 1995), which are, in effect pseudo Bayes factors (see for example chapter 9 of Gilks
et al. 1996). Also provided was a method of wiggle matching tree rings by factoring together the
shifted probability distributions from each 14C measurement (referred to in Bronk Ramsey 1995,
details in the OxCal manual and Bronk Ramsey et al. (2001). Further development of the command
line “language”, CQL is described in Bronk Ramsey (1998), with the main aims of the program’s
development.

Since the first release of the program much work has been done to widen its applicability, make it
easier to use with large data-sets and, of course, to deal with bugs. Details of all of this are given in
the manual for the program and are not a suitable subject for publication here. This paper will cover
instead the mathematical developments of the program (on which there is also further information
in the program’s manual).

CALIBRATION

Two changes have been made to the calibration algorithms used in OxCal. The first change is a more
precise treatment of the error terms in the calibration. We will define here the calibration curve to be
a function r(t) with a standard error of σ(t), with the measured values for a sample being rm ± σm.
Versions of OxCal up to and including 3.2, like many other first generation Calibration programs,
used the probability calculation for calibration of:

(1) 

The later versions include a term, in line with current versions of CALIB (Stuiver and Reimer 1993),
which takes account of variability in the calibration curve errors in the normalization of the proba-
bility distributions.
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This is only likely to make a significant difference when the calibration curve errors are large and
variable—as they are at the start of the Holocene. This is particularly important with the new
INTCAL98 calibration curve (Stuiver et al. 1998). This modification was suggested by Stephan
Puchegger of Vienna (personal communication). 

The second change allows mixed calibration curves to be defined using the program. The main
application of this is for instances of human bone where there is evidence for a mix of marine and
terrestrial sources of diet. There is also the opportunity to mix geological age carbon, which might
be relevant, for example, in river environments. If the two curves r1 and r2 are to be mixed to give rm

where the proportion of the second curve is p2 ± δ2. The mixed curve is given by: 

(3)

(4)

The user interface should help you through the stages needed to do this but essentially to define a
mixed curve the two curves to be mixed must first be specified along with any ∆R corrections. For
example one might have:

Plot

{

Curve "intcal98" "C:/Program Files/OxCal3/intcal98.14c";

Curve "local_marine" "C:/Program Files/OxCal3/marine98.14c";

Delta_R 100 30;

Mix_Curves "mixed" "intcal98" "local_marine" 20 5; 

R_Date 660 35;

};

This will define the sources for the two curves to mix and the local ∆R correction to be made to the
marine curve; in this case, we have specified a marine component of 20±5%. A file dead.14c is pro-
vided with a 14C age of 100,000 BP so that geological age carbon can be mixed in using the same
technique.

In principle any number of curves can be mixed since a mixed curve can itself be mixed with another
once it has been defined. 

ANALYSIS OF SEQUENCES AND PHASES

Background to Original Implementation

The main Bayesian analysis procedures of OxCal have not altered significantly since its first release,
except in the detailed treatment of boundaries. To understand how these are used it is necessary to
understand the underlying assumptions in any analysis. For an overview of the application of
Markov Chain Monte Carlo to this type of problem see Gilks et al. (1996); this paper will deal with
the aspects of this that are specific to this particular application.
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The main underlying assumptions are that events are independent and are equally likely to occur at
any point on the time scale. These assumptions are identical to those made for the classical Poisson
distribution. These, apparently neutral, assumptions do, however, have important consequences
when applied to a discrete group of events rather than a infinitely long distribution. For such a group
the number of possible combinations of dates is a strong function of the span of the group. If the
span of the dates is given by s and the number of events under consideration is n, the number of pos-
sible combinations is, in fact, proportional to sn−2. This is true whether or not the events are con-
strained to be in a series. This would be fair enough if the events were truly independent, but in prac-
tice events under investigation are usually related in some way and are uniformly distributed only
over a limited time range rather than throughout the whole time scale.

For this reason a method of grouping events into coherent groups, using boundaries was included in
the first version of OxCal. This was based on the mathematical formulations of Buck et al. (1992).
In this method the events in a model can be divided up between boundaries. The events between
these boundaries are assumed to be uniformly distributed (with Poisson distributed intervals), but
only over a limited time span, rather than the infinite time span of the initial model. In order to over-
come the statistical weight of greater boundary separations, the analysis is deliberately biased
towards shorter boundary gaps in order to exactly balance this effect. If we consider two boundaries
in the model, bi and bi+1 between which there are ni events, we apply a bias of:

(5)

The net effect of this is that the effective prior for the span of any group of events is now uniform,
that is any span is treated as equally likely.

These methods have been applied satisfactorily in many archaeological contexts (see for example
Bronk Ramsey and Allen 1995 or Needham et al. 1998). Models without boundaries will tend to
bias to spans which are too long and so, although for small numbers of events it usually makes little
difference, they should really be included in almost any model. Version 3.4 of OxCal will warn if no
boundaries have been used and allows boundaries to be put in automatically. 

Multiple Boundaries

Even with this model, there is still a bias to longer overall spans if the dates are split up into a number of
groups. The more groups the dates are split into, the stronger this bias is. Effectively the phenomenon
seen above still applies to the boundaries themselves. This makes very little difference in most situa-
tions as the number of related groups is usually small. However, to overcome this an additional bias can
be added to the model: if there are m boundaries in a sequence, we can apply a bias of:

(6)

which exactly counteracts this effect. We are now assuming that, not only are the events grouped
between two boundaries uniformly distributed over a limited range of time, but that the boundaries
themselves are also uniformly distributed over a limited range. Where the overall model is uncon-
strained in date this makes the effective prior for the span of all of the dates considered to be uni-
form. Where there is an upper and lower limit on the possible dates, however, this will tend to favour
shorter spans slightly, something which can be overcome with a bias of:

(7)
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These two additional factors were suggested by Goeff Nichols of Aukland University, New Zealand
(private communication) as was the notion of treating the boundaries themselves as uniformly dis-
tributed events. These factors have been incorporated into v3.2 of OxCal and onwards.

To summarize: the underlying prior assumption made is that the span of the whole timescale of the
analysis is equally likely to be any length (the prior for the overall span is uniform); within this, we
assume that the boundaries that separate chronological stages of the archaeological or geological
process are uniformly distributed throughout the overall span (with a Poisson interval distribution);
between the boundaries, we assume that the dated events within any chronological stage are also
themselves uniformly distributed.

Nesting Boundaries

A complicated model might have boundaries at various different hierarchical levels. In a site con-
text, for example the construction and destruction of a building might be classified as such. On a
more general scale the transition from early to middle and middle to late bronze age might likewise
be classified as temporal boundaries. These are clearly different in nature and need to be treated as
such in any analysis. For this reason, in OxCal only boundaries at the same level of nesting within
the model structure are treated as a coherent group. For example part of a model might include: 

Sequence

{

Boundary "Start of EBA";

Phase "EBA" {...events of EBA phase...};

Boundary "EBA-MBA transition";

Phase "MBA"

{

Sequence "House MBA-I"

{

Boundary "House construction";

Phase "House Use" {...events relating to house use...};

Boundary "House destruction";

}

...other events of MBA phase...

}

Boundary "MBA-LBA transition";

Phase "LBA" {...events of LBA phase...}

};
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In such a case, as far as the outer boundaries are concerned, the House Construction and Destruction
are merely two events within the MBA phase. As far as the inner boundaries are concerned, the tran-
sitions to and from the MBA are simply treated as constraints.

MARKOV CHAIN MONTE CARLO

Several improvements have been made to the Markov Chain Monte Carlo (MCMC) sampling used
in this program. For details of this technique see Gilks et al. (1996).

The first improvement has been to go from integer arithmetic (originally used to improve speed and
reduce memory use) to a fully floating point algorithm (all versions after 2.18). This greatly helped
with normalization problems as phase lengths get close to zero. There are still some compromises
which have had to be made in order to provide reasonable convergence. This affects phases which
are less than half the length of the resolution (i.e. 2 years for the default resolution of 4).

The second main change has been to the sampling algorithm itself. The original program used only
the Gibbs sampler. In this, each pass provides a new possible state for the system. It was imple-
mented in such a way that only one event could change at a time. An alternative approach is the
Metropolis-Hastings algorithm. In this, each pass does not necessarily produce a new state, but as
each pass is faster to calculate, the model converges faster. Furthermore, it is easier to implement
state transitions involving several of the modelled events. The newer versions of OxCal (3.3 and
later) use a mixture of Gibbs and Metropolis-Hastings and allow groups of events (defined within
boundaries) to be shifted, expanded and contracted as a whole. The user of the program need not
really be aware of all of this. The key thing is that all of these algorithms are designed to give a rep-
resentative selection of possible states for the model as a whole. These new methods provide much
faster convergence for complex models.

The third development is the provision of extra tools for dealing with convergence. The original pro-
gram reported poor convergence (as defined in Bronk Ramsey 1995). The program now automati-
cally increases the number of iterations until the convergence is reasonable. In some cases, this may
never happen and the program may run almost indefinitely. In such cases the program must be
aborted and it is useful to have some methods for investigating what is happening. A new option in
the program allows convergence data to be included in the plots. This results in the convergence for
each element of the model being displayed on multi-plots (in square brackets) and individual plots
show the details of the MCMC sampling process for a portion of the run. Figure 1 shows one such
plot where the convergence is rapid and Figure 2 a case where the convergence is slower.

TESTING PERFORMANCE

Obviously, analysis software of this sort needs to be tested, both to ensure that it is as free of “bugs”
as possible, and to see if the overall approach is achieving its objectives. Here, I will concentrate on
the latter, since testing of this kind should sometimes be performed by the user of the program too,
where complex models are being used. We will give two example tests here which show possible
approaches. 

Simulated Dating

In this approach we consider events that conform to the designed model, we simulate the 14C dating
of these events and then we see if the analysis can reveal the true characteristics of the event distri-
bution.
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As an example, we consider a simple scenario with four phases: I=1–200 AD, II=201–500 AD,
III=501–600 AD and IV=601–800 AD. We assume that from each phase we have a number of
evenly distributed events which have been 14C dated. To complicate matters the density of dates is
different in each phase (50/century in phase I, 17 in II, 100 in III, and 50 in IV).

The simulated 14C dates are generated using OxCal’s R_Simulate function which generates the kind
of date you would expect for an object given the true age and the precision obtainable. The model is
then constructed with five boundaries and four phases. 

Figure 1 This shows an example of good, rapid convergence.

Figure 2 An example of slower convergence—this model would take more
iterations to achieve reasonable convergence.

20BC BC/AD 20AD 40AD 60AD 80AD 100AD 120AD

Calendar date

Sampled Boundary

20BC BC/AD 20AD 40AD 60AD 80AD 100AD 120AD

Calendar date

Sampled Boundary
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The results of the analysis are shown in Figure 3 (450,000 iterations). This shows that the bound-
aries deduced by the analysis, do fall across the correct dates (confirming that the biases for number
of events in the phase has operated correctly). The Sum function, which provides a frequency mod-
ulated date distribution has yielded a function which is a good approximation to the true frequency
distribution of events. This is generally the case if the dating resolution is good in comparison to the
overall scale of the Sum distribution, although there will be random fluctuations from the true dis-
tribution which do not reflect the original process (as commented by Steier et al. 2001, though these
fluctuations are random and not a reproducible function of the calibration curve).

Effective Priors

Another, slightly more theoretical approach is to look at what result is obtained from a model when
virtually no dating information is given at all. This then shows us what the effective prior for the
model is. This method can be used to see if the results of an analysis are largely artifacts of a partic-
ular model rather than arising from the 14C dates and other chronological information.

Figure 3 This shows how the position of boundaries can be reconstructed by
the simulated radiocarbon dating of events within the phases they divide; the
Sum, which provides a frequency modulated age distribution, provides a
good approximation to the true frequency distribution of the dates.

500CalBC 1000CalBC 500CalBC CalBC/CalAD 500CalAD 1000CalAD 1500CalAD

Calibrated date

Sum _Sum

Sequence 

Boundary  
true value 0AD

Phase with 100 dates (50/century)

Boundary  
true value 200AD

Phase with 50 dates (17/century)

Boundary  
true value 500AD

Phase with 100 dates (100/century)

Boundary  
true value 600AD

Phase with 100 dates (50/century)

Boundary  
true value 800AD

Sum of all modelled distributions 

true frequency distribution 
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As an example of this we will look at a very simple model like: 

Sequence

{

C_Date 0;

Sequence "with six events and three boundaries" 

{

Boundary;

Event; Event; Event;

Boundary;

Event; Event; Event;

Boundary;

Span;

};

C_Date 100;

};

Here we use the Event function to denote an undated event; the span function will calculate the total
span of the sequence. The C_Date terms constrain the whole sequence to within the first century AD. 

Figure 4 shows the generated distributions for the spans of various sequences of this kind. The algo-
rithm is designed to provide a uniform prior for the span and it can be seen that it does this satisfac-
torily, regardless of the number of events. Because of details of the algorithm (see section on MCMC
above), however, there is still a bias against very short overall spans if the sequence is divided up with
a large number of boundaries. This fact should be taken into account when modeling very short dura-
tion events. In such a circumstance a model with fewer boundaries (ideally just two) should be tried

Figure 4 This shows the effective priors for spans of
sequences with different numbers of events and
boundaries; you can see from this that the prior for
the span is essentially uniform but that if the number
of boundaries gets high, the model does still bias
against very short overall spans—this is due to
details of the MCMC sampling algorithm
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to see if this gives radically different results. More generally this kind of sensitivity testing, to see
how model-dependent the results are, is very useful.

CONCLUSIONS

There has been considerable development of the OxCal program over the last six years. The main
developments have been in the user interface (not covered here) and in the operation of the Markov
Chain Monte Carlo algorithm. The fundamental aspects of the mathematics underlying the software
have not changed. However, the notion of boundaries has been further developed to make the mod-
els independent of the number of subdivisions (in practice this is not quite perfect) and external con-
straints. A new treatment of nested sequences and phases has also been developed. Tools are now
provided to help with convergence and to ensure that the program continues to run until convergence
is satisfactory.

For simple calibration, the algorithm has been modified to take better account of variation in the cal-
ibration curve uncertainty and provision has been made for the mixing of calibration curves.
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