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ABSTRACT. The wide availability of precise radiocarbon dates has allowed researchers in a number of disciplines to
address chronological questions at a resolution which was not possible 10 or 20 years ago. The use of Bayesian statistics for
the analysis of groups of dates is becoming a common way to integrate all of the 14C evidence together. However, the models
most often used make a number of assumptions that may not always be appropriate. In particular, there is an assumption that
all of the 14C measurements are correct in their context and that the original 14C concentration of the sample is properly rep-
resented by the calibration curve.

In practice, in any analysis of dates some are usually rejected as obvious outliers. However, there are Bayesian statistical
methods which can be used to perform this rejection in a more objective way (Christen 1994b), but these are not often used.
This paper discusses the underlying statistics and application of these methods, and extensions of them, as they are imple-
mented in OxCal v 4.1. New methods are presented for the treatment of outliers, where the problems lie principally with the
context rather than the 14C measurement. There is also a full treatment of outlier analysis for samples that are all of the same
age, which takes account of the uncertainty in the calibration curve. All of these Bayesian approaches can be used either for
outlier detection and rejection or in a model averaging approach where dates most likely to be outliers are downweighted.

Another important subject is the consistent treatment of correlated uncertainties between a set of measurements and the cal-
ibration curve. This has already been discussed by Jones and Nicholls (2001) in the case of marine reservoir offsets. In this
paper, the use of a similar approach for other kinds of correlated offset (such as overall measurement bias or regional offsets
in the calibration curve) is discussed and the implementation of these methods in OxCal v 4.0 is presented.

INTRODUCTION

Before considering statistical methods for the treatment of outliers and offsets, it is important to
understand the underlying mechanisms and issues. There are essentially 4 main reasons why in any
context radiocarbon dates might not give the “right” result: 

• The 14C measurement of a particular sample might not be correct (s).
• The 14C ratio of a sample might be different from that of the associated reservoir (r).
• A whole set of 14C measurements might be biased in some way relative to the calibration

curve—either because the measurements themselves are biased or because the reservoir from
which the sample draws its carbon might not have the expected 14C isotope ratio (d).

• The sample measured might not relate to the timing of the event being dated (t).

Ideally, the uncertainty quoted in the 14C measurement covers the first possibility (s), though in
some instances it may be that the errors in the measurements are not normally distributed. For this
reason, it might be that in 14C calibration, rather than adopting a Normal distribution, for a more
robust model we should be using a longer-tailed distribution (such as a Student’s t distribution).
Another approach has been suggested where we assume that in a small proportion of cases the mea-
surement effectively has an uncertainty, which is larger by some factor (Christen 1994b, 2003).

In the second case (r), the measurement is correct, but the 14C isotope ratio might be different from
that of the calibration curve at the associated age for some reason. This might be due to short-term
fluctuations in 14C concentrations in particular reservoirs or due to an admixture of carbon from dif-
ferent sources. Such offsets are analogous to the first category but will not be related in any way to
the measurement uncertainty or be improved by multiple measurement.

The 2 categories given for the third reason (d) are very different in their cause, but essentially the
same in their effect. The situation here is that the measurements made for the calibration curve and
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those for the sample have a systematic offset relative to one another. Where such offsets are recog-
nized, they can be taken into account using a ΔR correction (Stuiver and Braziunas 1993). In princi-
ple, unknown offsets can be treated in similar way using a ΔR with a mean of zero and an uncer-
tainty that reflects the possible scale of offsets between the measurement sets. The correct statistical
treatment of such systematic offsets has been described by Jones and Nicholls (2001).

Finally, we come to what is probably the most common form of outlier, where the sample does not
for some reason relate to the dated event in the intended way (t). Here, the 14C measurements are
correct and the values relate correctly to the calibration curve data sets, but there is some sort of cal-
endar offset between the measurement and the event of interest. In some instances, such outliers are
due to aspects of the deposition process that are hard to understand. In other cases, we know why
samples might be (or are) outliers: for example, in the case of charcoal we usually expect the sam-
ples to be older than their context. This type of outlier is not restricted specifically to 14C dating or
contamination at the sampling stage.

All of these types of outlier can be treated statistically using essentially similar methods but in
slightly different ways. The purpose of this paper is to summarize these approaches and describe the
implementation of their algorithms in v 4.1 of the analysis program OxCal (Bronk Ramsey 1995,
2001, 2008).

TREATMENT OF OUTLIERS

In general, there are two main ways of dealing with outliers. The first is to try to identify all outliers
and then eliminate them manually from the analysis. If this is possible, then it is probably the best
approach since it is then entirely clear what data are being used to support the analysis. The other
approach is to assume that we can never really be sure whether any particular measurement is an
outlier, but to weight samples according to how likely they are to be correct in a model averaging
approach. This outlier analysis approach requires us to provide a prior probability for how likely any
individual measurement is to be wrong and then some model to determine how we should revise this
in the context of all of the other information available.

Manual Rejection

How you identify outliers for rejection is a complex topic. The most important considerations are
the sample context and details of the measurement process itself. These should allow us to identify
which samples might have give anomalous 14C measurements or have a complex depositional his-
tory. It is also possible to use statistical methods to indicate which samples seem anomalous within
their context to support these decisions. You can either use the outlier analysis methods outlined by
Christen (1994b) and in this paper or use the agreement index (Bronk Ramsey 1995) calculated by
OxCal. In practice, for identification purposes both methods work well—indeed, in almost all
instances the same samples will be identified by either. In both cases, the level at which we start to
reject samples is somewhat arbitrary. If you use the agreement index method, unless a sample has
been rejected, all measurements are given equal weight. With outlier analysis samples are progres-
sively down-weighted as they are more likely to be outliers and so the results from the analysis are
essentially an average between a model in which the measurement is accepted and one in which it is
rejected. If you do not wish to have model averaging, but do wish to use outlier analysis solely for
outlier detection, you should first run a model with outlier analysis, see which measurements are
likely to be spurious and then run it again, without outlier analysis but with some of the spurious
results removed entirely.
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In OxCal v 4.1, there are 3 tools that can be used to help with the manual elimination of outliers. The
first is the calculation of the agreement index for each sample; if this falls below 60%, rejection
should be considered. However, it should be remembered that approximately 1 in 20 samples are
likely to fall below this level and such rejection should also be based on other criteria. Secondly, an
overall agreement index is calculated Amodel and if this is above 60% it probably indicates that there
is no problem with the model as a whole (and therefore no samples need be rejected). Finally, there
is a command Outlier(), which can be used to flag a measurement as a definite outlier and
remove it from the model (note in earlier versions of OxCal this command was Question() but
otherwise worked in the same way).

Outlier Analysis

In order to deal with outliers statistically, we need to have some sort of a model for how we expect
them to be distributed. We also ought to define, in the case of 14C, whether we think it is the 14C mea-
surement that is incorrect for some reason or if it is the context that is uncertain. Usually in 14C dat-
ing, we assume that a specific 14C measurement ri will differ from the prevailing 14C concentration
r(ti), given to us by the calibration curve, by an amount εi such that:

ri = r(ti) + εi (1)

εi ~ N(0,  + (s(ti))2) (2)

So that the difference is entirely accounted for by the uncertainties quoted for the measurement (si)
and the calibration curve (s(ti)). In outlier analysis, we need to be able to deal with other kinds of off-
set. We introduce another parameter φi, which is 1 if the sample is an outlier and 0 if it is not.

OxCal v 4.1 provides the tools to set up such models. The tools are generic and allow a wide variety
of models to be employed. However, it should be stressed that it is usually best to keep things fairly
simple and in most cases one model should be all that is required. The two commands that have been
introduced to provide outlier analysis are:

Outlier_Model([name,] distribution [,scale [,type]]});
Outlier([name,] [prior]);

The Outlier_Model() command defines the model and the Outlier() command allows it to be
applied to specific 14C dates or other likelihood information in the model. The parameters of the
model are: 

• name - this is the name of the model; this can be used to allow the specification of more than
one outlier model; if the name is not specified, the last model defined will be used for any out-
lier analysis. If for example you wish to use a special model for all charcoal samples, the name
“charcoal” can be given to both the Outlier_Model() and the associated Outlier() com-
mands.

• distribution - this defines how the outliers are to be distributed (distribution D1); examples of
useful distributions are T(5), a Student’s t distribution with 5 degrees of freedom; N(0,1), a
simple normal distribution; or Exp(1,–10,0), an exponential distribution with an exponential
constant τ of 1 taken over the range –10 to 0.

• scale - this defines the scaling of the outliers, expressed in powers of 10. This can be a single
number such as 0 for no scaling or 2 for a scale of 100 yr; it can also be a distribution (distribu-
tion D2) such as U(0,4) for a scale of anywhere between 1–10,000 yr. In this case, the analysis
will determine the appropriate scale. 

si
2
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• type - this defines the kind of outlier you have; the options are “t” for outliers in the time vari-
able, “r” for those in the 14C isotope ratio, and “s” for those that scale with the uncertainty in
the 14C concentration. 

• prior - for any specific measurement this defines the prior probability that the sample is an out-
lier; a typical value for this would be 0.05 for a 1 in 20 chance that the measurement needs to be
shifted in some way. The posterior probability for the measurement being an outlier will be
determined by the analysis.

The distribution and scale parameter can be defined in a number of ways in OxCal. They can either
be constant numbers (this only makes sense for the scale) or they can be distributions. The relevant
distributions defined in OxCal are shown in Table 1.

To see how these commands are to be used in practice, we will look at some specific applications.
You can also see the examples in the following section.

First of all, we will consider the situation where the 14C measurement itself might be at fault. We will
further assume that any offsets are in proportion to the uncertainty quoted in the date. In this situa-
tion, the model outlined by Christen (2003) is most appropriate. In this model (s-type), any shift in
the measurement is drawn from a normal distribution, which has double the uncertainty of the mea-
surement:

ri = r(ti) + εi + φiδisi (3)

εi ~ N(0,  + (s(ti))2) (4)

φi ~ Bernoulli(qi) (5)

δi ~ N(0,22) (6)

where qi is the prior probability that the sample is an outlier. In OxCal, this can be specified by:

Outlier_Model("SSimple",N(0,2),0,"s");

Effectively, this model draws the shifts from a normal distribution with a mean of zero and a stan-
dard deviation of 2 and they are then multiplied by the uncertainty in the date and applied to the 14C
measurement. So, if for example the uncertainties in all the measurements are 50, the possible shifts
are drawn from a normal distribution with a mean of zero and a standard deviation of 100. This is
the default model for 14C dates if no other is specified.

Supposing instead we have some other reason why the 14C dates and those in the calibration curve
may not be the same—perhaps there is possible contamination, or addition of 14C from other reser-

Table 1 Distribution definitions in OxCal; the optional resolution parameter defines the bin
size during the MCMC analysis; if not specified, a suitable default is chosen.

Definition Example Meaning

Exp([name,] tau, from, to [,resolution]); Exp(1,–10,0) Exponential distribution range
–10 – 0 with τ = 1

N([name,] mu, sigma [,resolution]]); N(0,2) Normal distribution μ = 0, σ = 2
T([name, freedom, [scale [,resolution]]); T(5) Student’s t distribution 5 degrees

of freedom
U([name,] from, to [,resolution]); U(0,1) Uniform distribution range 0–1

si
2



Dealing with Outliers and Offsets in 14C Dating 1027

voirs. In such cases (r-type), the offsets will not be related to the uncertainty in the measurement. In
these cases, our outlier model is modified:

ri = r(ti) + εi + φi10uδi (7)

εi ~ N(0,  +(s(ti))2) (8)

φi ~ Bernoulli(qi) (9)

δi ~ D1 (10)

 u ~ D2 (11)

where u is a scaling parameter common to the model as a whole and where D1 and D2 are distribu-
tions we can choose, according to modeling preference, from those given in Table 1. We might know
the scale of such offsets, in which case we can fix u. If we know that they are likely to be of the order
of a hundred years, we can let them be drawn from a normal distribution with a mean of zero and a
standard deviation of 100, by setting u = 0 and D1 to N(0,1002):

Outlier_Model("RSimple",N(0,100),0,"r");

If we do not know what sort of offset we are expecting, we can allow the model to find the scale
(anywhere between 100 and 104) and so use U(0,4) for D2 and let the possible shifts be drawn from
a longer-tailed Student t distribution by using T(5) for the distribution D2 instead:

Outlier_Model("RScaled",T(5),U(0,4),"r"); 

The case where there might be a systematic offset between the measurements and the calibration
curve (d-type) is a special case and is discussed in the section “Systematic Offsets Relative to the
Calibration Curve.”

In many cases, though, the possible offsets are not in the 14C scale but in the time scale (t-type). This
type of outlier is applicable to other dating methods as well as 14C. In the 14C case, we would then
define:

ri = r(ti + φi10uδi) + εi (12)

εi ~ N(0,  +(s(ti + φi10uδi))2) (13)

φi ~ Bernoulli(qi) (14)

δi ~ D1 (15)

u ~ D2 (16)

Again, we might know the timescale. For example, if we have bioturbation in a sediment it might
add a temporal offset between primary deposition and final location, which is of the order of a hun-
dred years. We could express this as:

Outlier_Model("TSimple",N(0,100),0,"t");

This is the default outlier model applied for non-14C measurements if no other is specified. In most
cases, however, we do not know the scale of any such offsets and so a more general model is more
appropriate:

si
2

si
2
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Outlier_Model("General",T(5),U(0,4),"t");

This is the model the author would recommend for most purposes. It draws from a long-tailed dis-
tribution (D1 is T(5)) and so will not be too affected by the odd extreme outlier and the scale (deter-
mined by the analysis) can be anywhere between 100 and 104 yr (D2 is U(0,4)).

In some instances, we might wish to use a more specific model. For example, consider the case of
charcoal samples. These are often discounted or used only as a terminus post quem. However, in
reality we know rather more than this. In particular, many charcoal dates are likely to be only very
slightly earlier than the date of deposition with a long tail of older dates from old wood or redepos-
ited charcoal. Such a distribution is likely to be approximately exponential (as suggested by Nicholls
and Jones 2001) but with an unknown time constant (longer than a year but shorter than a thousand
years). This can all be put into an outlier model suitable for charcoal:

Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t");

Here we only allow outliers to be older, so the exponential distribution is taken to run from –10 to 0
with a time constant of 1. The shifts are then scaled by a common scaling factor that can lie any-
where between 100 and 103 yr. In the case of charcoal samples, we know that all samples are
expected to be outliers (that is, all earlier than context) and so they should be given a prior outlier
probability of 1.

EXAMPLES

Combination of Dates for Samples of the Same Age

One situation where outlier detection can be useful is when you have a large number of 14C dates all
pertaining to 1 context but measured by different laboratories using different techniques. The con-
gruity of such a set can be tested using the non-Bayesian χ2 test of Ward and Wilson (1978). How-
ever, what do you do if the test fails? Using outlier detection, you can downweight those measure-
ments that disagree most with the others and also identify which these are. As an example, we will
take 14C dates from the important context X in Tell Qasile as reported in Boaretto et al. (2005) and
Sharon et al. (2007). The measurement history is complicated and will not be discussed here. We
will take 11 of the measurements reported for this context, all of which are supposed to be the same
age (Table 2).

Table 2 Dates from Tell Qasile X; the prior probability for each measurement being an
outlier has been set to 0.05 (or 5%); the analysis output provides posterior probabilities
for each measurement being an outlier.

Ref. Lab ref. Date ± Prior Posterior

QS1 T18161a, aa 2818 26 0.05 0.08
QS2 RTT3932.3-6 2692 24 0.05 1.00
QS3 RTT3931.3-5 2911 26 0.05 0.62
QS4 LSC3931.1 2853 25 0.05 0.03
QS5 GrN27719 2895 25 0.05 0.33
QS6 RTT3853.1,3,4 2753 22 0.05 1.00
QS7 T3930 2800 25 0.05 0.33
QS8 T3933a, aa 2882 28 0.05 0.10
QS9 GrA25535 2864 40 0.05 0.02
QS10 GrA25710 2818 38 0.05 0.04
QS11 GrA25768 2897 44 0.05 0.06
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The dates are all entered with a prior probability of being an outlier of 0.05. The model outlined by
Christen (2003) has been applied, but the treatment of the errors in the calibration curve is slightly
different (see section “Statistical Details” below). This set of dates fails the χ2 test (df = 10, T = 70
cf. 18.3), but the advantage of this kind of analysis is that in a controversial case like this you do not
need to make a qualitative assessment of which dates are most likely to be wrong. You can see from
Table 2 that two of the dates are identified as being definite outliers (QS2 and QS6). One other date
(QS3) is also more likely to be an outlier than not (Figures 1 and 2).

Figure 1 Model specification for outlier analysis of Tel Qasile dates

Figure 2 Combination of dates from tel Qasile X using the outlier analysis. The results of sim-
ple combination can be seen as an outline distribution in light gray; the results of the analysis
are shown in darker gray and provide a significantly different age estimation.

Outlier_Model(N(0,2),0,"s");
R_Combine("")
{
R_Date("QS1", 2818,26){Outlier(0.05);};
R_Date("QS2", 2692,24){Outlier(0.05);};
R_Date("QS3", 2911,26){Outlier(0.05);};
R_Date("QS4", 2853,25){Outlier(0.05);};
R_Date("QS5", 2895,25){Outlier(0.05);};
R_Date("QS6", 2753,22){Outlier(0.05);};
R_Date("QS7", 2800,25){Outlier(0.05);};
R_Date("QS8", 2882,28){Outlier(0.05);};
R_Date("QS9", 2864,40){Outlier(0.05);};
R_Date("QS10",2818,38){Outlier(0.05);};
R_Date("QS11",2897,44){Outlier(0.05);};
};

R_Combine(2825,9)
68.2% probability

(68.2%) 1041-981BC
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Of course, what any statistical analysis cannot do is identify the reasons why there are outliers. It
could be that some of the samples really are of a different age, that there are contaminants present in
some of the samples, or that there is a measurement problem of some kind. Outlier analysis is useful,
however, in identifying which samples are most likely to be significantly wrong and providing an
objective estimate of the true age of the sample set.

Temporal Outliers in a Sedimentary Sequence

The next example we will turn to is the situation where you have a sedimentary sequence where
some of the samples are out of context and therefore give the wrong age for their depth. Such a sit-
uation might arise where there is significant bioturbation. To illustrate this example, we can look at
the simulation data set 4 shown in Figure 6 of Blockley et al. (2007). In this case, some of the data
points had been deliberately offset from their expected values to simulate the effect of outliers.
Without the use of outlier analysis, it is necessary to work through the sequence eliminating those
samples that have very low agreement indices in order to get a consistent model. In particular, 1 or
2 of the points are so far out that the model will not run with them included.

However, it is possible to use the general temporal outlier model described above instead of such a
laborious and subjective procedure. Figure 3 shows how such a model is specified and Figure 4 the
results of such an analysis, using a model averaging approach.

Treatment of Charcoal Samples

Here, we give a hypothetical example to show how this might work in practice. We have a single
phase of occupation that is dated by some bone dates and a series of charcoal dates. The charcoal is
not short-lived and so we assume that it must always be older than its context. Figure 5 shows how
such a model is specified and Figure 6 shows the results of the analysis.

In this particular case, it can be deduced that the time-constant for residence of charcoal on the site
lies in the range 10–100 yr (see Figure 6c). In this instance, the charcoal dates do add significantly
to the model—many of the samples are no older than the bone dates and therefore provide important
information on the date of the end of the phase and on its duration.

Figure 3 Model specification for outlier analysis of the sedimentary sequence for data
set 4 from Blockley et al. (2007).

Outlier_Model("General", T(5), U(0,4),"t");
P_Sequence("Simulation 4",1)
{
Boundary(){z=480;};
R_Date("4T47",11000,50){z=470; Outlier(0.05);};
R_Date("4T46",11023,50){z=460; Outlier(0.05);};
...
R_Date("4T2", 6901, 50){z=20; Outlier(0.05);};
R_Date("4T1", 6377, 50){z=10; Outlier(0.05);};
Boundary(){z=0;};
};
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Figure 4 Age-depth model for data set 4
from Blockley et al. (2007) using outlier
analysis. The results of simple calibra-
tion can be seen as an outline distribu-
tion with white fill; the results of the
analysis are shown in black; you can see
that some dates that are clearly outliers
(such as the 7th from the top) are
ignored in the analysis; this approach
removes the need to weed out outliers
manually before conducting such an
analysis.

Figure 5 Model specification for a phase with bone and charcoal
dates. Note that the Outlier command links to the last speci-
fied Outlier_Model (in this case "Charcoal" if no name
is specified. The command Outlier("Charcoal",1)
could be used in each case instead.

Outlier_Model("Charcoal",Exp(1,-10,0),U(0,3),"t");
Sequence()
{
Boundary("Start 1");
Phase("1")
{
Label("Bone samples");
R_Date(1000, 20);
R_Date(1060, 20);
R_Date(1020, 20);
R_Date(1070, 20);
Label("Charcoal samples");
R_Date(1200, 20){Outlier(1);};
R_Date(1000, 20){Outlier(1);};
R_Date(1030, 20){Outlier(1);};
R_Date(1010, 20){Outlier(1);};
R_Date(1070, 20){Outlier(1);};
R_Date(1050, 20){Outlier(1);};
R_Date(1130, 20){Outlier(1);};
R_Date(1070, 20){Outlier(1);};
R_Date(1100, 20){Outlier(1);};
};
Boundary("End 1");
};
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Systematic Offsets Relative to the Calibration Curve

As an example of such an application we can consider the data set of Imamura et al. (2007). They
give data for 2 tree-ring sequences from Japan, one of which is a reference data set of known age
(outer ring AD 350) and another sample data set from a short 43-ring sequence that has been den-
drochronologically dated (outer ring AD 389). The standard D_Sequence analysis can be carried out

Figure 6 The results of the analysis of the model with charcoal dates. The charcoal dates act as a terminus ante quem for
the end of the phase, but some are clearly much earlier than the start as you can see in the upper plot (a). The outline distri-
butions show the simple calibrations and the black distributions show the estimate of the deposition dates of the samples (ti).
In the lower left plot (b), you can see both the effective prior (from Equation 88) and the posterior distribution of the outlier
offsets (10uδi), which give an estimate for the charcoal ages on the site. In the lower right plot (c), the estimated timescale
(in powers of 10) for charcoal residuality on the site (the posterior distribution for u with the uniform prior shown in outline).
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for both series, but, although the reference series correctly dates to AD 335–357 (95.4% probability),
the other sample has a bimodal distribution with ranges AD 295–309 (86%) or AD 373–387 (9%)
just missing the true value. If we now reanalyze the same 2 series together with a systematic ΔR value
of 0 ± 10, the first still dates to a range AD 334–361 (95.4%), consistent with the correct value. The
other still has a bimodal distribution, but the ranges are AD 295–317 (47.5%) and AD 370–395
(47.9%), which is now in good agreement with the true value. The comparison between the 2 anal-
yses can be seen in Figure 7. The reason that this works is that the analysis is able to make use of the
fact that both series fit to the calibration curve better with a small systematic offset relative to the cal-
ibration curve. We can also get information on the nature of this shift. Figure 7 shows the prior and
posterior for the ΔR, showing, in the posterior, a bimodal distribution. The shift to positive ΔR gives
the “correct” fit whereas that to the left gives an equally good but “wrong” fit for the data.

The analysis works well in this case because the reference data set is effectively able to inform the
model about the offset—even though we have not used the calendar age in the analysis. If we use the

Figure 7 The results of the reanalysis of
the data sets of Imamura et al. (2007).
The upper figure shows the modeled end
date for the sequences using the models
described in the text (in dark gray) com-
pared to those with no allowance for off-
sets (in light gray). The lower figure
shows the posterior density estimates of
the true reservoir offset (in dark gray)
together with the priors (in light gray).
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same ΔR value of 0 ± 10 and analyze the problematic sample series on its own, we still do better than
with no allowance for ΔR with a bimodal range of AD 294–325 (83.3%) or AD 374–391 (12.1%),
which is just in agreement with the true value. There is still a substantially higher earlier peak since,
even allowing for offsets, this series does match the earlier part of the curve slightly better (see Fig-
ure 7). What is clear from this analysis is that even a small allowance for systematic offsets can have
a significant effect on the accuracy of the result. What the statistical analysis cannot tell us is
whether the offset is due to differences in measurement or a true regional offset.

This kind of robustness test is very important even in cases where we do not expect outliers.

STATISTICAL DETAILS

In general, the treatment of outliers described here is embedded in more general Bayesian analysis.
Bayes’ theorem tells us that:

p(t |y)  p(y | t)p(t) (17)

where t are the set of parameters and y the observations or measurements made. In this equation, p(t)
gives our prior knowledge about the parameters (this can include phase models, sequences, or dep-
osition models as required). The part of the equation most important for this paper is the likelihood
p(y|t), which is used to work out our posterior p(t|y). In many cases (when the data are conditionally
independent), it is possible to factorize the likelihood into individual elements:

p(y | t) = (18)

We use the approach of Abraham and Box (1978) as used by Christen (1994b) to deal with observa-
tions that are spurious in some way. In order to formalize this, we consider the form of the likelihood
function p(yi | ti). This will in general be some function of the observed variable(s) yi and the param-
eter(s) ti involved, where the age determination are indexed i = 1, 2, ...,n:

p(yi | ti) = li(yi, ti) (19)

In the case of 14C dating, the observation consists of both the 14C measurement ri and its uncertainty
si. To use this for calibration, we also need to have a calibration curve that gives the expected 14C
concentration, r(t) and the uncertainty s(t) both as a function of calendar time. Using the usual error
model, with an error of εi for each measurement:

ri = r(ti) + εi (20)

εi ~ N(0,  + (s(ti))2) (21)

the 14C likelihood function then becomes:

(22)

In order to model the possibility of outliers, we introduce 2 more parameters for each observation.
These parameters are φi, which can take values 1 (if the observation is spurious and an outlier) or 0
(if the observation is correct), and δi, which defines the offset in the observation if it is spurious. We
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define the priors for φi to be some predetermined value qi if it is 1 (an outlier) and (1 – qi) if it is 0
(not an outlier):

φi ~ Bernoulli(qi) (23)

where the Bernoulli distribution is

X ~ Bernoulli(q)  Pr(X = x) = qx (1 – q)1–x (24)

the prior for δi also needs to be specified and normalized. We now need to consider the different
forms of outliers.

Outliers with Respect to the Time Parameter (t-type)}

In this case, what we are essentially modeling for is not a wrong measurement of a variable but a
wrong interpretation in terms of the parameters of the model. In this case, we define the offset in
terms of ti, so that in the simplest case:

p(yi | ti,φi,δi) = li(yi, ti + φiδi) (25)

Such a model can be specified in OxCal by specifying the prior distribution for δi and the outlier
probability qi. For example:

Outlier_Model("TSimple",N(0,100),0,"t");
R_Date("OxA-12345",1423,23){Outlier(0.1,"TSimple");};

sets up the following priors and likelihood:

ri = r(ti + φiδi) + εi (26)

εi ~ N(0,  + (s(ti + φiδi))2) (27)

δi ~ N(0,1002) (28)

φi ~ Bernoulli(0.1) (29)

p(ri | ti,φi, δi) = li(ri, si, ti + φiδi) (30)

(31)

This is the default outlier model in OxCal for everything other than 14C dates. However, in many
cases we would rather not specify the functional form of the prior for δ so definitely. For this reason,
we introduce a further model parameter, u, which provides the scale for all of the outliers associated
with the model. In this model, the likelihood becomes:

p(yi | ti,φi,δi, u) = li(yi, ti + 10u φiδi) (32)

We now need to provide a prior for u as well and this is given as another parameter in the OxCal
model definition. In addition, it is better to use a longer-tailed distribution than a normal distribution,
and the Student’s t distribution with about 5 degrees of freedom is probably most useful for this
(Venables and Ripley 2002:121). The reason for using such a long-tailed distribution in this type of
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model is that under the processes leading to temporal outliers there are sometimes a few very
extreme outliers and we do not wish the modeled outlier distribution to be too heavily dependent on
these. Putting all of this together, the following is a reasonable general outlier model for chronolog-
ical applications:

Outlier_Model("TScaled",T(5),U(0,4),"t");
R_Date("OxA-12345",1423,23){Outlier("TScaled",0.1);};

This sets up the following priors and likelihood: 

ri = r(ti + 10u φiδi) + εi (33)

εi ~ N(0,  + (s(ti + 10u φiδi))2) (34)

δi ~ T(5) (35)

u ~ U(0,4) (36)

φi ~ Bernoulli(0.1) (37)

p(ri | ti,φi,δi,u) = li(ri, si, ti + 10u φiδi) (38)

where the T(ν) is the Student’s t distribution with ν degrees of freedom:

X ~ T(ν)  Pr(X = x) (39)

The reason for choosing a log-uniform distribution for the scale of offsets is that many complex sys-
tems exhibit power-law dependency over a range of scales and the log-uniform distribution gives
scale invariance. In practice, the outlier scale posterior is often approximately log-normally distrib-
uted and this is easily seen as a normal distribution in u (as in Figure 6c). The effective prior for the
scaled offset 10uδi integrated over the range of values 0 < u < 4 and with δi ~ T(5) is shown in Figure
8: this is a very long-tailed distribution. In most models, u becomes fairly well constrained and the
distribution becomes closer to the T(5) distribution with an appropriate scale.

Figure 8 This shows the effective prior for the offsets in the General model with
the full range of scales possible. The distributions is sharply peaked at zero (similar
to the T(5) distribution) but with very long shallow sloped tails.
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There are some dangers in having too many parameters in a model of this kind. In particular, if there
are very few measurements, there may be confounding effects between the single u parameter and
the δi parameters. For this reason, with very small models it may be better to specify a fixed u. If you
use the above model, you should look at the distribution for u and check that the marginal posterior
is somewhat constrained (see “Diagnosis” section below).

Outliers with Underestimated Uncertainties (s-type)

The construction of outliers with respect to the uncertainty quoted in the 14C essentially follows the
same pattern except that in this case the offset implied is in the 14C measurement and not relative to
the time parameter. This type of outlier obviously only makes sense in relation to 14C measurements.
For a simple implementation, we define the likelihood function to be:

p(ri | ti,φi,δi) = li(ri – φiδisi, si, ti) (40)

This is essentially identical to the method proposed for generalized models in Christen (1994b) with
the prior for the offset as defined in Christen (2003). The following model definition should repro-
duce the case where the assumed prior for δi ~ N(0,22) or for the offset in the 14C date δisi ~
N(0,(2si)2):

Outlier_Model("SSimple",N(0,2),0,"s");
R_Date("OxA-12345",1423,23){Outlier("SSimple",0.1);};

and sets up the following priors and likelihood: 

ri = r(ti) + εi + φiδisi (41)

εi ~ N(0,  + (s(ti))2) (42)

δi ~ N(0,22) (43)

φi ~ Bernoulli(0.1) (44)

p(ri | ti,φi,δi) = li(ri – φiδisi, si, ti) (45)

(46)

This is the default outlier model applied by OxCal for 14C dates if no other model is specified. It is
equivalent to an increased variance si when a measurement is identified as an outlier. The program
is set up to use an optional scaling parameter for this type of offset too in which case the likelihood
is given by:

ri = r(ti) + εi + 10u φiδisi (47)

u ~ D2 (48)

p(ri | ti,φi,δi,u) = li(ri – 10u φiδisi, si, ti) (49)

where D2 is specified as for the t-type model. However, the model as defined by Christen (1994b) is
reasonable for most minor measurement problems and should probably be adopted as a standard

si
2

ri φiδisi
r ti( )––( )2

2 si
2

s ti( )( )2+( )
----------------------------------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

si
2 s ti( )( )2+

-----------------------------------------------------------------∝



1038 C Bronk Ramsey

model as it is for outlier detection of this sort. This model is implemented in BCal (Buck et al. 1999),
Bwigg (Christen 2003), and Bpeat (Blaauw et al. 2003).

Outliers in Radiocarbon Concentration (r-type)}

This implementation of the outlier model is essentially identical to that of the previous section,
except that in this case we break the link with the original uncertainty in the measurement. The like-
lihood function is defined to be:

p(ri | ti,φi, δi,u) = li(ri – 10u φiδi, si, ti) (50)

The definition of the model is then made in exactly the same way as for the t-type outliers: 

Outlier_Model("RScaled",T(5),U(0,4),"r");
R_Date("OxA-12345",1423,23){Outlier("RScaled",0.1);};

This sets up the following priors and likelihood:

ri = r(ti) + εi + 10u φiδi (51)

εi ~ N(0,  +(s(ti))2) (52)

δi ~ T(5) (53)

u ~ U(0,4) (54)

φi ~ Bernoulli(0.1) (55)

p(ri | ti,φi,δi, u) = li(ri – 10u φiδi, si, ti) (56)

(57)

Offsets Relative to the Calibration Curve (d-type)

This type of offset is essentially the same as the r-type outlier except in this case we assume that the
offset is definite (the offset probability is 1) and the same offset applies to all (or a whole set of) 14C
measurements. Again, we introduce a new model parameter d, which defines the modeled offset
between the calibration curve and the set of measurements. This is a single parameter that applies to
all the dates (Jones and Nicholls 2001; Nicholls and Jones 2001). The likelihood for each 14C mea-
surement then becomes:

(58)

In this equation, you can see why mathematically a bias can be treated in the same way as a reservoir
offset. This kind of common offset is defined as a ΔR offset. In its more usual use, we have specific
prior information for ΔR. However, it can be used more generally and if, for example, there is a pos-
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sible small but unknown offset between a set of measurements and the calibration curve, we might
set up a model with:

Delta_R(0,10);
R_Date("OxA-12345",1423,23);

This will set up the following priors and likelihood: 

ri = r(ti) + εi + d (59)

εi ~ N(0,  + (s(ti))2) (60)

d ~ N(0,102) (61)

p(ri | ti, d) = li(ri – d, si, ti) (62)

(63)

Several Delta_R statements can be used in the same model, but the implementation in OxCal does
not allow more than 1 such offset to apply to the same date.

Sampling and Conditional Probabilities

In all cases, OxCal uses a straightforward Metropolis-Hastings MCMC algorithm, so only relative
probabilities are important. Each parameter of the outlier model is updated individually by sampling
from the full conditionals. For all of the models outlined here, these are given by:

p(ti | t–i,yi,φi,δi,u, d)  p(t)p(yi | ti, φi, δi,u,d) (64)

p(φi | ti, yi,δi, u, d)  p(yi | ti, φi,δi,u,d) (65)

p(δi | ti,yi,φi, u, d)  p(δi)p(yi | ti,φi,δi,u,d) (66)

p(u | t, y,o,d,d) (67)

p(d | t, y,o,d,u) (68)

Radiocarbon Dates All Pertaining to One Event (s-type or r-type)

As identified by Christen (1994b), the special case of combinations of 14C dates all pertaining to one
event needs to be treated slightly differently. The treatment presented there does not account for
errors in the calibration curve and so a full treatment including these will be presented here.

Combination of 14C dates is a 2-stage process. The assumption is that all of the measurements relate
to 1 calendar time and therefore all should correspond to the same original 14C concentration, which
we introduce as a parameter of the model ρc. Each measurement (ri ± si) provides a likelihood func-
tion for this parameter:
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(69)

and thus for all of the measurements:

(70)

Now for convenience we define:

(71)

(72)

(73)

(74)

where rc ± sc is just the usual error-weighted combination of the 14C dates (Ward and Wilson 1978).
This allows us to factorize the likelihood as:

p(r | ρc)  S exp(–T/2)exp(–(rc – ρc)2/(2 )) (75)

This is just like the normally distributed likelihood for the 14C ratio ρc you would get for a single
measurement but with a mean of rc and a standard deviation of sc. The uncertainty in the calibration
curve does not come in to the equation yet. 

Now we need to consider the prior for the parameter ρc in the model. As for a single calibration, this
is given by:

p(ρc, tc) (76)

since if we integrate over ρc we get a constant value, independent of t. So given this, we can now
integrate out the parameter ρc, which we do not need:
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For the case where outliers are not considered, T is a constant, and in any case S is a constant.

There are a number of useful elements that emerge from this. First of all, T as defined in Equation 73
is the test statistic described in Ward and Wilson (1978), which has a χ2 distribution with n–1
degrees of freedom (where n is the number of combined 14C dates). You can see that this is directly
related (cf. Bronk Ramsey et al. 2001) to the probability of a particular set of 14C determinations for
any ρc:

(80)

We can also now expand this treatment to deal with outliers. We offset ri to .

 ri – φiδisi for un-scaled s-type

=  ri – φiδi for un-scaled r-type (81)

ri – 10uφiδisi for scaled r-type

We repeat the same calculations to obtain (this must be repeated for each iteration of the model).

(82)

(83)

(84)

(85)

(86)

Charcoal Model

It is worth looking in a little more detail at the outlier model for charcoal samples outlined above.
This model covers a range of scales u from 0 to 3 and so effective prior for a single δ would be: 

(87)

(88)

where δ is only allowed to be negative. In the suggested implementation, this is truncated at –10,000
yr and can therefore be normalized. It is a vague prior that is well behaved near δ = 0 and is plotted
in Figure 6b. In practice, in any model the timescale u is considerably constrained and so the distri-
bution of outliers will be closer to a simple exponential. As above, it is important not to introduce
too many different parameters into a model and in this case the model suggested is only suitable if
there are many charcoal samples—if you only have 1 or 2 there will be confounding effects between
the u parameter and the δi parameters.
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DIAGNOSIS AND ROBUSTNESS TESTING

When using the models outlined here it is worth testing how robust the posteriors are to changes in
the underlying models. This is one reason why it is important that all of the parameters of the models
in OxCal are specified by the user and so can be altered to see if they affect the results. Robustness
testing can easily be applied by trying different outlier models and prior outlier probabilities.

Using the scaling factor 10u will allow the model averaging to cover a range of different scales and
should achieve more robust results. This is not necessary when using the outlier methods only for
outlier detection, but it can be important when the method is used for obtaining realistic posterior
densities from the model average. One simple example demonstrates this fairly well: we consider
the case of a simple sequence of dates, with one obvious outlier, analyzed under a number of differ-
ent outlier models. The results of this are shown in Figure 9. Here you can see that in particular, use
of the SSimple model (Figure 9a) actually puts quite strong constraints on measurements even if
they are identified as outliers; this model is not very good for model averaging when the outliers are
more extreme than the model intended. Using a longer-tailed Student’s t distribution (Figure 9b)
helps with this, but allowing the scale to adapt to the data (Figure 9c) provides a better overall aver-
age result if the scale of outliers is not known in advance.

Figure 9 This show a simple sequence under a number of different outlier models: (a) uses the SSimple model as in
Christen (2003); (b) uses a t-type outlier model with the offsets distributed as 100T(5) using
Outlier_Model("TFixed",T(5),2,"t"); (c) uses the General model as defined above with variable scaling;
(d) manually removes the obvious outlier and replaces it with an undated event. All outlier models identify the fifth 14C date
as a definite outlier and can be used for outlier detection. However, given that the sample is an outlier, we would expect
the modeled output to be similar to that shown in (d) where the date has been excluded: (a) shows that the very prescribed
SSimple model pulls the outlier date strongly towards the measurement, even though it is an outlier; (b) which uses a
longer-tailed T(5) distribution is more realistic; but (c) gives a better overall model average for this situation since the dated
event posteriors are very close to those shown in (d).
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The more complex scaled models do, however, come with the risk of confounding effects, where 1
parameter is played off against another and this is particularly true if for small models. It is possible
for the user to check for model misbehavior by looking at 3 aspects of the model output: the conver-
gence (see Bronk Ramsey 1995), the posterior distribution for the scaling parameter u, and the pos-
terior outlier probabilities for φi. A number of situations can arise: 

• The convergence can be very slow. This is often associated with the scale of the offsets being
hard to determine; in OxCal the model may never finish running at all if a satisfactory conver-
gence is not achieved. In such circumstances, it may be necessary to use a simpler model.

• The distribution for u may be poorly constrained and extend right up to the upper limit. This is
normally the consequence of using the scaled model for a data set that is too small to support it;
the results will still provide a model average over the specified scales, but it would usually be
better to use a simpler model in such circumstances.

• The distribution for u is well constrained at the upper limit but extends down to the lower limit.
This is normally the consequence of having a data set where there may actually be no outliers
at all and you will find that the outlier posterior probabilities for φi are very close to the priors
qi. In such a situation, there may be very small outliers that are undetectable and the model is
reflecting this. This is not in itself a problem, but it does mean that the posteriors will be at least
marginally affected by the lower limit set for the scale parameter u and so a sensitivity test for
this would be useful.

Ideally, the scaling parameter is well defined as in Figure 6c and the convergence is reasonably rapid
(though it will always be slower than for a model without outliers).

There is one other consideration that has been taken into account in the implementation of these
models and this is the special case where all of the measurements are outliers. In cases where this is
the intention (as in the charcoal example above), this is not a problem. However, in most cases with
the longer-tailed distributions suggested here there is such a range of possible solutions in such cases
that this can lead to extremely slow convergence. For this reason, in cases where qi 1, and where
there is more than 1 parameter tied to a particular outlier model, OxCal gives zero probability to the
case where all measurements are outliers.

CONCLUSIONS

The approaches to dealing with outliers and offsets presented here are not only intended to provide
detection of such offsets but also to provide good overall model averages that take into account a
large range of different scenarios. For this reason, it is important, as in all Bayesian analysis, that the
models used reflect the underlying mechanisms. This is why a number of different models are con-
sidered in this paper:

• s-type - where the 14C measurement of a particular sample is wrong for some reason: these
cases can be treated with shift outliers in the 14C concentration as discussed in Christen (1994b,
2003).

• r-type - where there are shifts between the 14C concentration of the sample and its presumed res-
ervoir, but where the measurement itself is accurate: in these cases a similar approach can be
used but independent of the uncertainty in the measurement itself.

• d-type - where the 14C measurements are biased relative to the calibration curve—either
because of problems in the measurements or because of shifts in the 14C ratio of the reservoir:
these cases can be effectively treated in the same way as ΔR offsets in marine 14C calibration
(Stuiver and Braziunas 1993; Jones and Nicholls 2001; Nicholls and Jones 2001).

≠
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• t-type - where the sample measured might not relate to event being dated (t): in these cases out-
lier analysis using shifts in the calendar timescale can be used.

In the case of 14C samples all relating to the same event, Ward and Wilson (1978) provide a useful
test of whether measurements are all compatible. However, outlier analysis (s-type or r-type,
depending on whether the problems are likely to relate to the measurement of the 14C content of the
sample) can be very useful in identifying which measurements are likely to be the outliers and giv-
ing a more objective assessment of the true age than manual rejection.

More generally where samples might or might not be outliers (as is usually the case), the methods
outlined here allow an average of all of the possible combinations of rejection and acceptance of
measurements to be averaged over, taking into account the posterior probabilities for such outliers.
This model averaging approach is much more practical with large data sets than trying many differ-
ent models each with different dates rejected. It is also more robust than selection of the outliers
individually on the basis of agreement indices or outlier posterior probabilities and then just analyz-
ing 1 model.

The implementation of all of these techniques in OxCal v 4.1 has been presented so that researchers
can apply them to their own projects. The tools provided are very flexible, but it should be stressed
that it is probably best not to make any one model more complicated than it needs to be. For simple
situations, with minor offsets, the original approach taken in Christen (2003) is likely to be sufficient
for outlier detection. In larger models where displacement from context is often the main issue, the
general t-type model should provide a good solution. In other cases, charcoal dates may need a more
specific model. It is unlikely, however, that much will be gained by applying several different outlier
models together, unless there are very good reasons for doing so.

The methods outlined here, if used in the right way, should start to address some of the problems
associated with analyzing large numbers of 14C dates and help to deal with issues of over-precision,
which can arise if outliers and offsets are not considered at all.
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