VOLUME 22 / NUMBER 4 / 1980

Radiocarbon

Published by THE AMERICAN JOURNAL OF SCIENCE

Editor MINZE STUIVER

Associate Editors

To serve until January 1, 1982 J GORDON OGDEN, III Halifax, Canada IRVING ROUSE New Haven, Connecticut

To serve until January 1, 1984 STEPHEN C PORTER Seattle, Washington

To serve until January 1, 1985 W G MOOK Groningen, The Netherlands HANS OESCHGER Bern, Switzerland

Managing Editor RENEE S KRA

Kline Geology Laboratory Yale University New Haven, Connecticut 06511

ISSN: 0033-8222

EDITORIAL STATEMENT TO CONTRIBUTORS

Since its inception, the basic purpose of Radiocarbon has been the publication of compilations of ¹⁴C dates produced by various laboratories. These lists are extremely useful for the dissemination of basic ¹⁴C information.

In recent years, Radiocarbon has also been publishing technical and interpretative articles on all aspects of ¹⁴C. The editors and readers agree that this expansion is broadening the scope of the Journal. This year, the editors have published the Proceedings of the Tenth International Radiocarbon Conference that was held at Bern and Heidelberg, August 19-26,1979. Volume 22. Nos. 2 and 3, 1980 contained these proceedings. Subscribers receive these issues and the two regular numbers of Volume 22 at the regular subscription price, \$60.00 for institutions and \$40.00 for individuals. Non-subscribers may order the special publications separately at \$60.00. Volume 23, 1981 will return to its usual format of three numbers per volume.

As a result of publishing the proceedings, another section will be added to our regular issues, "Notes and Comments". Authors are invited to extend discussions or raise pertinent questions to the results of scientific investigations that have appeared on our pages. The section will include short, technical notes to relay information concerning innovative sample preparation procedures. Laboratories may also seek assistance in technical aspects of radiocarbon dating.

All correspondence, manuscripts and orders for the special issues should be sent to the Managing Editor, Radiocarbon, Kline Geology Laboratory, Yale University, 210 Whitney Ave, PO Box 6666, New Haven, Connecticut 06511.

The Editors

Published by THE AMERICAN JOURNAL OF SCIENCE

Editor MINZE STUIVER

Associate Editors

To serve until January 1, 1982 J GORDON OGDEN, III Halifax, Canada IRVING ROUSE New Haven, Connecticut

To serve until January 1, 1984 STEPHEN C PORTER Seattle, Washington

To serve until January 1, 1985 W G MOOK Groningen, The Netherlands HANS OESCHGER Bern, Switzerland

Managing Editor

RENEE S KRA

RADIOCARBON

Editor: MINZE STUIVER Managing Editor: RENEE S KRA Published by

THE AMERICAN JOURNAL OF SCIENCE

Editors: JOHN RODGERS, JOHN H OSTROM, PHILIP M ORVILLE, ROBERT A BERNER Managing Editor: MARIE C CASEY

Published three times a year, in Winter, Spring, and Summer, at Yale University, New Haven, Connecticut 06511.

Subscription rate \$60.00 (for institutions), \$40.00 (for individuals), available only in whole volumes. The Proceedings of the Tenth International Radiocarbon Conference, vol 22, nos. 2 and 3, are available for \$35.00.

All correspondence and manuscripts should be addressed to the Managing Editor, RADIOCARBON, Kline Geology Laboratory, Yale University, 210 Whitney Ave, PO Box 6666, New Haven, Connecticut 06511.

INSTRUCTIONS TO CONTRIBUTORS

Manuscripts of radiocarbon papers should follow the recommendations in Suggestions to Authors, 5th ed.* All copy (including the bibliography) must be typewritten in double space. Manuscripts for vol 23, no. 2 must be submitted in duplicate before January 1, 1981.

General or technical articles should follow the recommendations above and the editorial style of the *American Journal of Science*. Date lists should follow the format described in detail in the literature mailed to all laboratories each year.

Illustrations should include explanation of symbols used. Copy that cannot be reproduced cannot be accepted; it should be capable of reduction to not more than 10 by 17.5, all lettering being at least 1/16 inch high after reduction. When necessary, one large map or table can be accepted, if it will not exceed 17.5 inches in width after reduction. Line drawings should be in black India ink on white drawing board, tracing cloth, or coordinate paper printed in blue and should be accompanied by clear ozalids or reduced photographs for use by the reviewers. Photographs should be positive prints. Photostatic and typewritten material cannot be accepted as copy for illustrations. Plates (photographs) and figures (line drawings) should each be numbered consecutively through each article, using arabic numerals. If two photographs form one plate, they are figures A and B of that plate. All measurements should be given in SI (metric units).

Reprints. Thirty separate copies of each article will be furnished to the author free of cost and without previous notice from him; these will be without a cover. The cost of additional copies will, of course, be greater if the article is accompanied by plates involving unusual expense. Copies will be furnished with a printed cover giving the title, author, volume, page, and year, when specially ordered.

Page charges. Each institution sponsoring research reported in a technical paper, not a date list, will be asked to pay a charge of 50.00 per printed page, due when galley proof is returned. Institutions or authors paying such charges will be entitled to 100 free reprints without covers (over and above the 30 free reprints furnished the author.) No charge will be made if the author indicates that his institution is unable to pay them, and payment of page charges on an article will *not* in any case be a condition for its acceptance.

Back issues. Back issues (vols 1-9) are available at a reduced rate to subscribers at \$52.00 a set, including postage; vols 10-14 are \$20.00 cach for individual subscribers and \$30.00 for institutions; vols 15-22 are \$40.00 each for individuals and \$60.00 for institutions; single back issues \$20.00 each; comprehensive index \$10.00 each. Proceedings, vol 22, nos. 2 and 3 are \$35.00.

* Suggestions to authors of the reports of the United States Geological Survey, 5th ed, Washington, DC, 1958 (Government Printing Office, \$1.75).

Radiocarbon

CONTENTS

Archaeology and radiocarbon dating Willard F Libby	1017
Age reporting of very old samples Adam Walanus and M F Pazdur	1021

DATE LISTS

D	P Q Dresser Dublin Radiocarbon Dates III	1028
FZ	Marlucia Santiago, J R Torquato, and Heinz St Rade Fortaleza Radiocarbon Measurements I	
LJ	T W Linick La Jolla Natural Radiocarbon Measurements IX	
Lu	Sören Håkansson University of Lund Radiocarbon Dates XIII	
Ny	René Coppens, Bernhard Guillet, Robert Jaegy, and Pierre Richard Nancy Natural Radiocarbon Measurements VI	
QC	Richard Pardi and E R Newman Queens College Radiocarbon Measurements III	1073
ТА	Evald Ilves Tartu Radiocarbon Dates X	1084
Тх	S Valastro, Jr, E Mott Davis, Alejandra G Varela, and Carolyn Ekland-Olson	
UM	University of Texas at Austin Radiocarbon Dates XIV <i>R A Johnson and J J Stipp</i> University of Miami Radiocarbon Dates XVIII	1090
UM	R A Johnson and J J Stipp University of Miami Radiocarbon Dates XIX	1116
	List of Laboratories	1125
	Index to Volume 22	

WILLARD F LIBBY (1908-1980)

"... chance favors the mind that is prepared." (Pasteur)

Carbon-14, or radiocarbon, was invented before it was known in nature -it was initially produced in a University of California cyclotron as part of a biochemical research project. An abundant source of a long-lived isotope of carbon paved the way to develop the path of carbon in photosynthesis, which led to a 1950 Nobel Prize for Melvin Calvin. Meanwhile, at the University of Chicago, Willard Libby read of the synthesis of the isotope and was able to add two significant observations: a) thermal neutrons in the appropriate energy range existed in the upper atmosphere as the result of cosmic-ray interactions; and b) the atmosphere is 78 percent nitrogen.

A session with his slide-rule indicated an equilibrium concentration of

¹⁴C in living material within the detection range of counting equipment then available and an experiment with methane from a Baltimore sewage plant provided the initial material. Here again preparation was the key, for Libby was experimenting with a "screen-wall" counter that increased counter sensitivity for weakly emitting radioisotopes. A few grams of carbon deposited in the counter established the theory and a visit to the University of Chicago Museum of Egyptology provided the test.

Visualize the distress of the Museum Director, guardian of priceless antiquities, being asked to relinquish several grams of irreplaceable wood, so that some crazy chemist could burn it! Needless to say, tens of thousands of radiocarbon dates later, the method confirmed the theory and even the discrepancies continue to stimulate research by physicists, geologists, and archaeologists.

For his seminal role in radiocarbon dating, Willard Libby received the Nobel Prize in Chemistry in 1960. At least seven honorary degrees and numerous awards, prizes, and medals, as well as participation in developmental and advisory committees of the United States Atomic Energy Commission, plus more than 300 published journal articles, reviews, chapters, and books attest to his pre-eminence in the field of nuclear chemistry. More than 100 radiocarbon dating laboratories, thousands of Quaternary investigators, and tens of thousands of radiocarbon dates confirm Willard Libby's legacy.

The editors of RADIOCARBON, together with students of the Quaternary from around the world, join in tribute to the father of radiocarbon dating. [RADIOCARBON, VOL 22, No. 4, 1980, P 1017-1020]

Radiocarbon

1980

ARCHAEOLOGY AND RADIOCARBON DATING

WILLARD FRANK LIBBY[†]

University of California at Los Angeles

Paper delivered at the one hundredth anniversary meeting of the Archaeological Institute of America, December, 1979 Boston, Massachusetts

INTRODUCTION

Tonight I have the opportunity to thank my many archaeological collaborators in the early days of radiocarbon dating. The development would not have been possible without their wonderful cooperation. We began, Dr James Arnold and I, with the help of Dr Ernest C Anderson, with the bright hope that we could obtain priceless samples of early dynastic Egypt for checking merely by the asking. Dr Arnold's father was an amateur archaeologist, and he gave us some early hints. Through him we obtained some valuable material from the Metropolitan Museum.

Our very first date was Acacia wood from the tomb of Zoser at Sakkara through the kindness of Ambrose Lansing of the Metropolitan Museum. Dr John Wilson of the Oriental Institute of the University of Chicago, where this research was done, estimated the age to be 4650, whereas we obtained 3979. Correcting for the half-life, 3 percent, we obtain 4100 years, relative to the time of 1950 (BP). So, we see that in the very first sample, had we taken it more seriously, our date was younger than the historical date. This later turned out to be an important matter, for we find that all dates in that span of time must be corrected for an increased cosmic ray intensity presumably due to a weakening of the earth's magnetic field. Mr Arnold put us on to Mr Lansing, and we obtained some material. But we also learned rather quickly that this was not going to be an easy process. We must, in any case, have someone to introduce us. We asked for help from the Archaeological Institute and the American Geological Society who kindly appointed us a most helpful Committee: Frederick Johnson, Chairman, Don Collier, Richard Foster Flint, and Froelich Rainey. Fred, as you know, is an archaeologist along with Froelich Rainey and Don Collier. Dick Flint was a geologist. We rapidly came to the policy of asking this Committee to advise us and to help us procure pertinent samples.

THE COLLABORATION

After the first sample was measured (C-1), Froelich Rainey obtained a Cyprus beam from the tomb of Sneferu at Maydum (C-12), and Don

[†] Deceased September 1980

Willard Frank Libby

Collier got us wood from the deck of the funerary ship from the tomb of Sesostris III. This was an interesting episode, for the Committee had not been appointed. We had to deal with the Director, and there was no room for doubt about his position. Namely, he did not see why we should be given a part of the ship to burn. But Don Collier, who was on the staff of the Natural History Museum where the funerary ship was on exhibit, managed for us. From then on, through the good auspices of the Committee, we were blessed with a series of some 800 samples. By the way, I speak tonight only of the work which was done at the University of Chicago by Arnold, Anderson, and myself.

In the following years many other laboratories joined and many tens of thousands of dates now are available. But these dates were measured by us in our Chicago laboratory working with our archaeologist collaborators. That was 30 years ago.

The next sample beyond Sesostris (C-12) on our Chicago Date List is called Ptolemy (C-62). It consisted of wood from a coffin from the Egyptian Ptolemaic Period dated by John Wilson of the Oriental Institute at about 2280 years. We obtained agreement within our rather substantial error which in those days was running about 2 or 3 centuries. This sample was given us by John Wilson and his colleague, Watson Boyes, of the Oriental Institute.

The next sample on our list called Hemaka was submitted by W B Emery of the British Embassy in Cairo through the auspices of our friends in the Oriental Institute. It consists of a slab of wood from the roof beam of the tomb of the Vizier Hemaka who was contemporaneous with the First Dynasty of Sakkara with an expected age according to R J Breakwood of the Oriental Institute of between 4700 and 5100 years. Our average was 4883 ± 200 .

Our next sample was middle pre-Dynastic charcoal from El Omari near Cairo, Egypt. This was dated at 5256 ± 230 years, in general agreement with expectations. This material was furnished by Ferand de Bono of the Service of Antiquities of Egypt in Cairo.

The next sample was very exciting — wheat and barley grain from the Upper K level of the Fayum A material submitted by Gertrude Cayton-Thompson and Mrs Elise Baumgartel of the University of Manchester. The date was 6300 years.

Well, you see how after only half a dozen dates we were being blessed by contributions from world distinguished archaeologists. I think that I must turn now to the beginning and fill in some of the gaps.

We had a period of 2 or 3 years of secret research when we believed that the notion of radiocarbon dating was beyond reasonable credence, and therefore, we would not disclose our plans and purposes until we had results. This meant that the funding of our research rested entirely on the University of Chicago and my own meager resources. Fortunately, these were adequate. We chose to break the problem into parts, each part being of interest to some other group who would help finance it. For example, our measurement of the half-life of radiocarbon was financed by the Argonne National Laboratory and, of course, ultimately, by the Atomic Energy Commission.

However, the costs of the counters and electronic equipment and the first crude anticoincidence shield were entirely borne by a \$2500 grant by the University through Dean Walter Bartky. I arrived at the University of Chicago in October, 1945, having been appointed Professor in the Institute of Nuclear Studies and the Department of Chemistry. But I had a number of researches in mind. After four years of intensive work on war-time problems, we had a tendency to lean towards problems of no particular application and to try to get away from the intensive concentration characteristic of military research. Sam Allison, our Institute director at that time, said he was going to study the color of butterfly wings. Well, I never said anything of that sort, but we were, however, considering the idea of how to use the cosmic rays to measure human history and time for geological events. The principles are well known to you, but they are: the bombardment of the high atmosphere by cosmic rays produces radiocarbon, mass, 14, half-life 5730 years. This oxidizes and enters the biosphere and renders things radioactive at a constant level because of the long time allowed for mixing. So we predicted from the intensity of cosmic rays measured by our colleague and friend, Serge Korff of New York University, the rate at which ¹⁴C atoms were being produced, and assuming that the rate had been true for all of the preceding 50,000 years, we calculated what the general level of 14C should be in living matter. It was the confirmation of this calculation by measurement of the 14C of methane gas derived from Baltimore sewage that gave us the courage to move forward to radiocarbon dating. So at the time that we obtained our very first confirmation, through our friend, Harold Urey, Dr Paul Fejos of the Viking Fund (now the Axel Wenner-Gren Foundation) learned of our work. We had given a seminar at the University of Chicago explaining and giving evidence that we could actually do dates by using it. At that time, Dr Fejos came to the University of Chicago to look into our researches and presented us with a substantial check from the Viking Fund. From this time onward we had enough money to do our dating and we were able to build a new anticoincidence shield and to generally upgrade our equipment. We received several hundred samples.

Though it is very difficult in a few minutes to give proper credit to the dozens and dozens of archaeologists who helped us by giving us samples and advising us in our work, I would like to say that it has been the happiest experience of my long life-time to see how people so different in backgrounds as archaeologists and physical chemists could collaborate on fundamentally interdisciplinary research. They did learn the principles of radiocarbon dating, and we learned something about the field methods of archaeologists. Between us we worked out some guide rules as to how to select and preserve them for dating.

Willard Frank Libby

Some results were outstanding. First, although the dates we found were younger, within experimental error, we confirmed the dates of the early dynasties in Egypt. We also showed that the heartwood of the redwood tree with 3000 rings that could be counted directly, showed the proper radiocarbon concentration. We showed that the abundant material from the Greco-Roman Period checked beautifully. However, as time went on and our measurement technique became more accurate, it became clear that our dates at about 5000 years were falling short of the mark by a deviation of about 500 to 800 years. We were able to calibrate this deviation due to the fortunate circumstance that there is rapid worldwide mixing of any 14C introduced into the atmosphere. This knowledge is largely due to Hans Suess at La Jolla, Paul Damon of Arizona, and Elizabeth Ralph of the University of Pennsylvania Museum. The dating of wood from the Bristlecone Pine forest in the Schulman Grove in the White Mountains of the Sierra Nevada in California allowed us to go back to the early dynasties of Egypt and to make an absolute measurement. This curve of correction is now used and applies back to 8000 years. With this in hand, it is possible to recalculate the earlier measurements, and, in fact, to re-measure many of the samples. Through the kindness of Dr Edwards of the British Museum we were able to obtain a second set of samples from the early dynasties of Egypt to remeasure with modern techniques. The use of the Bristlecone Pine correction showed that the agreement with the historical values was excellent.

Thus, it seems that, at the moment, we have a method of worldwide, absolute dating back to 8000 years.

If we go further back in time we have no choice but to record our dates as radiocarbon dates and hope for a future development of other methods of dating which can be used to calibrate. It is just conceivable that an adequate understanding of the earth's magnetic field will help us. Thus, we see that geophysics enters into the problem. It is largely accepted that the general increase in cosmic ray intensity 5000 years ago was due to a weakening of the earth's magnetic field which, at the present time, deflects about half the primary cosmic rays that otherwise would hit the earth.

I want to thank the Archaeological Institute of America for inviting me tonight, but more particularly to thank all of you for the collaboration and help you have given to radiocarbon dating.

AGE REPORTING OF VERY OLD SAMPLES

ADAM WALANUS and MIECZYSŁAW F PAZDUR

Institute of Physics, Silesian Technical University, ul Krzywoustego 2, PL-44-100 Gliwice, Poland

ABSTRACT. Problems of the statistical interpretation of radiocarbon age measurements of old samples are discussed, based on the notion of fiducial probability distribution. A probability density function of age has been given. A detailed discussion of different facets of the probability distribution of age has led us to the confirmation of the use of 2σ as the best limiting value between the regions of finite and infinite dates. It has been proposed to make use of the principle of constant probability $\mathbf{P} = 0.68$ in the regions of both finite and infinite ages instead of the criterion N+k σ .

INTRODUCTION

If the measurement of ¹⁴C concentration in a sample yields several counts that differ from the number of background counts by the value that is comparable with the measuring error, we can say that the sample is too old to be dated by the ¹⁴C method. The result of the measurement is consequently reported as: age = $T > T_0$. In a more general context, we address the problem of the detection of a weak signal in the presence of noise, caused by a counter background (Currie, 1968). Some implications in the case of radiocarbon dating have been discussed recently by Polach (1976), who tried to evaluate the inadequacy of information when results of age measurements of old samples are reported according to the procedure proposed by Callow and Hassal (1970). A statistical approach to the problem of very old samples has been presented by Gough (in press), who, using the Bayesian approach, developed a probability distribution of age. This treatment seems to be incorrect because it implies that there exists a probability distribution of ages of the samples, while, indeed, there is one real age (14C concentration) which must be regarded as the unknown number we wish to estimate.

It is the purpose of this article to present an exact probability description of the results of age measurements of old samples, based on the notion of fiducial probability distribution. We hope our results will clarify some points of the probabilistic interpretation of "infinite" dates and support the use of 2σ limit proposed by Stuiver (1969), and advocated recently by Stuiver and Polach (1977).

Definitions of the limiting value T_0 differ in various laboratories, similar to the criteria of reporting age in the form ">". It is frequently required that the number of counts of the sample must exceed the background by at least twice the measurement error σ in order to quote the result of dating as $T = T' \pm \Delta T$. In some laboratories the criteria of 3σ and even 4σ are in use. In the case of too small counting rates the quantity T_0 is computed in the usual way, as T', but the value $k\sigma$ is added to the obtained net number of counts. When the sample counting rate is smaller than that of the background, its value may be ignored and $k\sigma$ forms the basis of the computations of T_0 . The quantity k may be equal to 2, 1.5, 3, or 4.

1022 Adam Walanus and Mieczysław F Pazdur

The main component of errors in radiocarbon measurements is usually connected with counting statistics. Then, the value of the measurement error σ can be calculated with good accuracy, and the probability distribution of the age of the sample may be given. If the result of the measurement is reported as $T = T' \pm \Delta T$ the reader knows that the real age, or rather the age fit to the real concentration of ¹⁴C, for example, lies in the interval $(T' - \Delta T, T' + \Delta T)$ with the probability 0.68. In many applications, knowledge of the correct value of ΔT , which has the sense of a standard deviation, 1σ , is very important. It is inadmissible to overestimate it "for security". Similarly, for old samples, the correct interpretation of the result of dating $T > T_0$ may be needed, the probability of the verity of this inequality.

STATISTICAL APPROACH

A correct statistical interpretation of age measurements should be based on the probability distribution of the measured age T. It is noteworthy that for both finite and infinite ages T should be characterized by the fiducial probability distribution (Hacking, 1965; Kendall and Stuart, 1966), which is the measure of confidence of any statement concerning T. Since the sample that has been dated has only one given concentration of ¹⁴C, the fiducial probability distribution usually has no frequency interpretation.

The main quantities constituting the result of the measurement of any sample are: the sample counting rate N_s , background counting rate B, counting rate of the standard of modern ¹⁴C activity M, and the mean standard errors σ_N and σ_B of N_s and B, respectively. It has been assumed here that σ_N , σ_B and M are known without errors.

The net sample counting rate is given by

$$N' = \gamma (N_s - B), \tag{1}$$

where γ symbolizes all the normalization constants and experimentally derived correction factors, whose errors are negligible. The value of N' is known with the error

$$\boldsymbol{\sigma} = (\boldsymbol{\sigma}_{\mathrm{N}^2} + \boldsymbol{\sigma}_{\mathrm{B}^2})^{1/2}. \tag{2}$$

The probability distribution of the counting rate N' is

$$d\mathbf{P} = \frac{1}{\sqrt{2\pi} \ \boldsymbol{\sigma}} \ \exp\left[-\frac{(\mathbf{N} - \mathbf{N}')^2}{2\boldsymbol{\sigma}^2}\right] d\mathbf{N}', \tag{3}$$

where N denotes the expected value of N'; then the fiducial probability distribution of N for experimentally determined N' and σ , is given by

$$d\mathbf{P} = \frac{1}{\sqrt{2\pi} \ \sigma} \exp\left[-\frac{(\mathbf{N} - \mathbf{N}')^2}{2\sigma^2}\right] d\mathbf{N}.$$
 (4)

An obvious confinement arising from the fact that $N \ge 0$ can be accounted for by calculating the conditional probability

Age Reporting of Very Old Samples 1023

$$P(N < \hat{N} < N + dN | \hat{N} \ge 0) =$$

$$= \frac{P(N < \hat{N} < N + dN \text{ and } \hat{N} \ge 0)}{P(\hat{N} \ge 0)} = (5)$$

$$= \frac{g(N) dN}{\frac{1}{\sqrt{2\pi} \sigma} \int_{0}^{\infty} \exp\left[-\frac{(x - N')^{2}}{2\sigma^{2}}\right] dx}$$

where \hat{N} is a random variable (while N is a number) and

$$g(N) = \begin{cases} \frac{1}{\sqrt{2\pi} \sigma} \exp\left[-\frac{(N-N')^2}{2\sigma^2}\right] & \text{for } N \ge 0\\ 0 & \text{for } N < 0 \end{cases}$$
(6)

is the cut-off normal probability distribution. After substituting to (5)

$$N = M e^{-T/\tau},$$
(7)

,

where τ is the mean lifetime of radiocarbon, we obtain the probability density function of age

$$f(T) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left[-T/\tau - \frac{(M e^{-T/\tau} - N')^2}{2\sigma^2}\right] / P(N'/\sigma), \quad (8)$$

where

$$P(x) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt.$$
 (9)

The mode of this probability distribution, the most probable value is given by the equation

$$T_{M} = -\tau \ln \left[\frac{N' + (N'^{2} + 4\sigma^{2})^{1/2}}{2M} \right],$$
 (10)

which in the case of N' > 0 can be written as

$$T_{M} = T' - \tau \ln \left[\frac{1}{2} + \frac{1}{4} + \frac{\sigma^{2}}{N^{2}} \right], \qquad (11)$$

where

$$\mathbf{T}' = -\tau \ln \mathbf{N}' / \mathbf{M}. \tag{12}$$

The logarithmic term appearing in eq (11) has the meaning of a correction to the value T', which in the case of finite dates is quoted as the measured age. The value of this correction is negligible for N' $>> \sigma$, for N' $\approx 3\sigma$ its value constitutes ca 1/3 of the age error ΔT . The expected value, or mean, of the probability distribution (8) is based on the frequency interpretation and is not very important in this case.

PRACTICAL INFERENCES

Except for the complicated form of the probability distribution (8) it is easy to calculate the probability of the relation $T > T_{\alpha}$, based on the tables of normal probability distribution. Denoting the probability that the relation $T < T_{\alpha}$ is true by α , we have

$$\operatorname{Prob} (T > T_{\alpha}) = 1 - \alpha =$$

$$= \frac{P\left(\frac{\operatorname{M} \exp\left(-T_{\alpha}/\tau\right) - \operatorname{N}'}{\sigma}\right) - P\left(-\operatorname{N}'/\sigma\right)}{1 - P\left(-\operatorname{N}'/\sigma\right)} \quad . \tag{13}$$

This equation is valid irrespective of the sign of N'. Figure 1 presents the plots of the function $\alpha = \alpha$ (T_{α}) for some values of the parameters N'/M and σ/M . The curves A and B correspond to the case of finite age, quoted as " \pm ". The greater slope of curve A is caused by a smaller value of the measurement error σ . The curves D and E correspond to N' = 0, the limiting value T_0 of age in this case obviously depends on the measurement error σ . A comparison of curve D with F, for which N' < O, indicates an increase of the limiting age T₀ related only by obtaining a counting rate below the background level (both D and F have been plotted for the same value of the measurement error σ). It looks like a paradox, but even at a low value of the factor of merit, for a high value of the measurement error, the limiting value of age can be arbitrarily high, due to chance (by incidental detection of, for example, $N' = -3\sigma$). Assuming correct performance of the measuring apparatus, which means that the estimated value of σ is equal to the real error of measurement, such a conclusion is justified. It is for the experimenter to decide whether he has observed a rare random event, which may occur, on the average, once in a series of 740 measurements (the 3σ level) of an inactive sample, or if the instability of the background counting rate is greater, σ has been underestimated. If the sample does not contain ¹⁴C, the probability of obtaining N' < 0 is equal to 0.5. Consequently, if the estimated value of σ is accepted, it is unfounded to discriminate half the results.



Fig 1. Probability α of the verity of the relation $T < T_{\alpha}$ as a function of T_{α} for some values of N'/M and σ/M M: modern counting rate, N' and σ : measured sample counting rate and measuring error. N'/M and σ/M are equal, respectively, for the curves A: 0.01, 0.001; B: 0.01, 0.003; C: 0.003, 0.003; D: 0, 0.003; E: 0, 0.001; F: -0.003, 0.003.

Using eq (13), we may express T_{α} as a function of α

$$\mathbf{T}_{\alpha} = -\tau \ln \frac{\mathbf{N}'}{\mathbf{M}} \left[+ \frac{\sigma}{\mathbf{M}} \mathbf{P}^{-1} \left(1 - \alpha \mathbf{P} \left(\frac{\mathbf{N}'}{\sigma} \right) \right) \right], \quad (14)$$

and assuming a certain value of α , we are able to calculate the limiting age T_{α} of a sample.

For finite dates, quoted as $T = T' \pm \Delta T$, the probability that the inequality $T' - \Delta T < T < T' + \Delta T$ is true, is equal to 0.68. If we want to minimize the differences in the interpretation of dates reported as " \pm " or ">" we should retain the value of the probability, Prob ($T > T_0$) = 0.68, choose $\alpha = 0.32$.

For N' > 0, formula (14) can be written as $T_{\alpha} = T' + \Delta T_{\alpha}$, where

$$\Delta T_{\alpha} = -\tau \ln \left[1 + \frac{\sigma}{N'} P^{-1} \left(1 - \alpha P \left(\frac{N'}{\sigma} \right) \right) \right].$$
(15)

The value of correction ΔT_{α} depends only on the quotient N'/ σ and it has been plotted in figure 2 for some values of α . $\Delta T_{0.5}$ denotes the difference of T' and the median of the probability distribution of age, its value is significant only for N' < 2σ . The quantities $\Delta T_{0.84}$ and $\Delta T_{0.16}$ correspond to the errors ΔT_1 and ΔT_2 defined by

$$\Delta T_{1,2} = \mp \tau \ln (1 \mp \sigma/N'). \tag{16}$$

The differences between ΔT_1 and $\Delta T_{0.84}$ and between ΔT_2 and $\Delta T_{0.16}$ caused by neglecting the inequality $N \ge 0$ became significant for low values of N'/ σ . The curve ΔT_M in figure 2 shows a difference between the value of T' and the mode of distribution, defined by eq (10). For

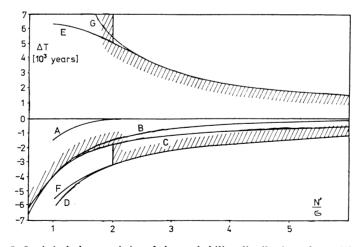


Fig 2. Statistical characteristics of the probability distribution of age. The dashed area denotes age intervals corresponding to the probability 0.68 (for more detailed explanations of the text). G and F: age errors ΔT_1 and ΔT_2 , respectively, according to the eq (16); E, A, C, and D: age differences between $T' = -\tau \ln N'/M$ and T_{α} defined by eq (14) for the value of probability α equal to 0.84, 0.5 (median), 0.32, and 0.16, respectively; B: difference ΔT_M of the value T' and the mode (eq 10) of the probability distribution of age.

 $N' \approx \sigma$, owing to the high asymmetry of the probability distribution (8), we have $\Delta T_M = \Delta T_{0.32}$, while for $-\sigma < N' < 2\sigma$, the difference of these quantities is small in comparison with ΔT_1 or ΔT_2 . This property may be used as an additional argument for the acceptance of $T_0 = T_{0.32}$; the reported limiting age would be, at the same time, the most probable age of the sample.

The choice of the value of probability α , at which the statement $T > T_0 = T_\alpha$ is not true, is in fact a question of agreement, as well as the choice of the limiting value of the quotient N'/ σ , which marks the boundaries between the regions of "finite" and "infinite" ages. It should be noted that even in the case of N' < 0 the age might be quoted as $T' + \Delta T_{0.16} < T < T' + \Delta T_{0.84}$ since $\Delta T_{0.84}$ always has a finite value. From a purely statistical point of view, the procedure of quoting finite age intervals at low values of N'/ σ is not justified, since the probability distribution of age is highly asymmetrical. As shown in figure 1, the curves C, D, E, and F have a very low slope in their upper parts, which means that in order to be sure that $T < T' + \Delta T_1$ not at the level 0.84 but at 0.9987, much more than $3 \Delta T_1$ should be added to T', as may be expected from a normal probability distribution.

It is difficult to find such a value of the quotient N'/ σ , which might be used as a natural boundary between "±" and ">". The curve $\Delta T_{0.84}$ has an inflection at N'/ $\sigma = 1.72$ (see fig 2), which means that starting from this point, the value of the upper age limit, T' + $\Delta T_{0.84}$, reveals a slower increase with an increasing measurement error α . Intuition, however, should predict $\Delta T_{0.84}$ to be faster and faster, increasing to infinity. As the value 1.72 does not differ significantly from 2.0, those accepted in most radiocarbon laboratories, and recommended by Stuiver and Polach (1977), and the argument based on the point that inflection is somewhat arbitrary, it seems that 2 should be the best limiting value for the quotient N'/ σ . The assumption of greater values is inherently related to a significant loss of information which has been obtained in the measurement. The probability that an inactive sample will produce a counting rate N' > 2 σ is equal to 0.023.

DISCUSSION AND CONCLUSION

The procedure of treating and reporting results of dating old samples, described above and deduced from rigorous statistical analysis, seems to confirm and supplement the recommendations of Stuiver and Polach (1977). This may be summarized as follows: when the net sample counting rate is greater than twice the standard deviation σ , the age should be reported as $T = T' + \Delta T_1 - \Delta T_2$ or $T = T' \pm \Delta T$. Otherwise, the result should be reported as $T > T_0$, where T_0 is given by eq (14) for $\alpha = 0.31731$.

The choice of such a value of α is equivalent to accepting the principle of constant probability Prob = 0.68, for the regions of both finite and infinite radiocarbon ages.

1026

The values of ΔT_1 and ΔT_2 should be, in principle, calculated from eq (14) for $\alpha = 0.84$ and $\alpha = 0.16$, respectively, in order to keep constant the probability that $T' - \Delta T_2 < T < T' + \Delta T_1$. Since the difference between the value of $\Delta T_{1,2}$, calculated from eq (16), and $\Delta T_{0.84,0.16}$ does not exceed 10 percent (*cf* fig 2), the simpler equation (16) can be used. In calculations of T_0 eq (14) can be approximated by eq (10); in the interval $-\sigma < N' < 2\sigma$ the error of this approximation does not exceed 300 years (see fig 2).

The use of any value of α is a question of choice, which should be made in agreement with some commonly accepted recommendations. The proposed value of $\alpha = 0.32$ warrants a uniform interpretation of both finite and infinite radiocarbon dates. The procedure of calculating the limiting value of age by assuming $N'' = N' + k\sigma$, where k = 2, 3 or 4 is highly asymmetrical and inherently associated with a significant loss of information. If, for example, the 4σ criterion is used, according to the recommendation of Callow and Hassal (1970), and the measured sample counting rate is close to the limiting value N' $\approx 4\sigma$, only the minimum age should be quoted, which in fact corresponds to the 8σ level! There is no reason for using such high values of the significance level. This has been clearly recognized by Stuiver and Polach (1977) who recommend that when the measured sample activity is between 1σ and 2σ , an "apparent age" can be added. As we see it, the procedure of calculating the limiting age by assuming $N'' = N' + k\sigma$ is connected with a risk of the contamination of the sample material with recent carbon. This, however, is quite a different problem which must be solved by means of careful laboratory and field work. As has been indicated by Polach (1976), dating chemical and/or physical fractions of a sample seems to be best for evaluating the possibility and degree of contamination. It should be noted that the problem of sample contamination occurs also for finite radiocarbon ages, where the use of 1σ limits of age, corresponding to a probability of 0.68, has been commonly accepted.

References

- Callow, W J and Hassal, G I, 1970, National Physical Laboratory radiocarbon measurements VII: Radiocarbon, v 12, p 181-186.
- Currie, Lloyd A, 1968, Limits for qualitative detection and quantitative determination: Analytical Chemistry, v. 40, p 586-592.
- Gough, K J, in press, The reporting of very old radiocarbon dates: Lower Hutt, New Zealand Inst Nucl Sci Contr No. 485, in press.
- Hacking, Ian, 1965, Logic of statistical inference: Cambridge, Cambridge Univ Press,
- Kendall, M G and Stuart, Alan, 1963, The advanced theory of statistics, vol 2, Inference and relationship: London, Griffin, 433 p.
- Polach, H A, 1976, Radiocarbon dating as a research tool in archaeology—hopes and limitations, *in* Barnard, Noel, ed, Symposium on scientific methods of research in the study of ancient Chinese Bronzes and Southeast Asian metal and other archaeological artifacts: Proc Australian Natl Univ, Dept Far Eastern History Pub.
 Stuiver, Minze, 1969, Yale natural radiocarbon measurements IX: Radiocarbon, v 11, p 545-658.
- Stuiver, Minze and Polach, H A, 1977, Discussion: Reporting of ¹⁴C data: Radiocarbon, v 19, p 355-363.

DUBLIN RADIOCARBON DATES III

P Q DRESSER*

Physical Laboratory, University of Dublin, Dublin 2, Ireland

INTRODUCTION

The dating equipment and operating procedures in the Physical laboratory remained as described previously (R, 1974, v 16, no. 1, p 6-9).

Dates were calculated using the 5568-year half-life with 1950 as the reference year, the modern standard being 0.95 of the activity of the NBS oxalic acid standard. When done, δ^{13} C was measured on CO₂ produced in the combustion of samples, and results are given relative to the PDB standard. All samples were from Ireland.

ACKNOWLEDGMENTS

I am very grateful to R L Otlet of the Harwell laboratory, who measured the ¹⁴C activity and δ^{13} C ratios of some of the samples and accepted samples of benzene prepared in this laboratory. He kindly allowed me to publish the results in this list; the relevant samples are indicated in the text. Thanks are also due to T J Fitzgerald for making the remaining δ^{13} C measurements. Financial support from the National Science Council of Ireland is gratefully acknowledged.

I. ARCHAEOLOGIC SAMPLES

Rathgall series, Co Wicklow

Charcoal samples are from a multivallate hillfort with extensive Early Bronze Age settlement and later occupations (Orpen, 1911; Raftery, 1970; 1971) at Rathgall, Rath East townland, 5km E of Tullow, Co Carlow (52° 48' N, 7° 40' W, NGR: S 902731) alt 122m. Coll and subm 1969 and 1970 by B Raftery, Dept Archaeol, Univ College, Dublin.

D-133. S151

2810 ± 110

Charcoal from pit at SW corner of Hearth 2, Square 32. Comment (BR): late Bronze Age provenience.

D-134. S113

2860 ± 110

Charcoal from Hearth 1, Square 25. Comment (BR): sample from initial late Bronze Age occupation.

D-135. S140

2490 ± 120

Charcoal. Wood and cereal grain from upper levels of ditch surrounding circular house, Square 31.

D-132. S400

2960 ± 110

 $\delta^{13}C = -25.8\%$

Charcoal from upper levels of large basket-lined storage pit outside circular house, Square 18.

* Present address: Radiocarbon Dating Laboratory, Department of Plant Science, University College, Cardiff, CF1 1XL, Wales

II. GEOLOGIC SAMPLES

D-119. Fethard-on-sea, Co Wexford 4030 ± 120

 $\delta^{13}C = -26.7\%$

Tree roots in gray wedges in glacial deposit lying between high and low water marks on beach at Wood Village, Fethard-on-sea, 10.5km ESE of Waterford (52° 12' N, 6° 50' W, NGR: S 803035). Coll and subm 1972 by G F Mitchell, Dept Geol, Univ Dublin. Comment (GFM): possible explanation for date is that roots are last vestige of eroded submerged forest that grew at time indicated. Tree roots could not have penetrated to present location if sea stood at present level or higher.

D-136F. Old Head, Co Mayo

 $10,010 \pm 170$ $\delta^{13}C = -25.8\%$

Fine insoluble material $<300\mu$ m, from organic deposit 3cm thick under 2m glacial till exposed on beach at Old Head, 17km W of Westport, Co Mayo (53° 47' N, 9° 47' W, NGR: L 834823). Coll and subm 1972 by G F Mitchell. Comment: humic acid fraction dated; D-136H, $10,530 \pm 120$. Both samples pretreated and converted to benzene in Dublin lab, and counted in Harwell lab as HAR-627 (D-136F) and HAR-628 (D-136H).

Dunmore Cave series, Co Kilkenny

Samples coll during geologic and archaeologic investigations of cave system at Dunmore Cave, 9km N of Kilkenny, Co Kilkenny (52° 44' N, 7° 15' W, NGR: S 508658). Coll and subm 1973 by D Huddart and D Drew, Dept Geog, Dublin Univ. Comment: all results expresed as % of modern and are uncorrected for isotopic fractionation.

 $40.2 \pm 0.9\%$ $\delta^{13}C = -6.5\%$

Carbonate from upper 1cm layer of flow-stone floor deposit, 10cm thick, 3m from excavated trench in rabbit burrow area.

D-139. Sample 2

$85.8 \pm 1.2\%$ Charcoal from immediately above flow-stone floor deposit in excavated trench in rabbit burrow area. Comment: sample assoc with archaeologic deposit. Conventional age, 1230 ± 110 BP.

D-141.	Sample 4A	$53.5 \pm 0.9\%$
		$\delta^{13}C = -6.0\%_{00}$

Carbonate from central 2cm core of pendant concretion, 12cm diam, at cave entrance.

D-142.	Sample 4B	$72.8 \pm 1.1\%$
		$\delta^{IS}C = -0.5\%$ o

Carbonate from outer 2cm layer of same concretion as Sample 4A, D-141.

P Q Dresser

D-144. Sample 5

 $0.7 \pm 0.2\%$ $\delta^{_{13}}C = -10.8\%$

Carbonate from bottom 1cm layer of flow-stone floor deposit, 5cm thick, in Market Cross chamber. *Comment*: sample activity and δ^{13} C measured at Harwell lab; HAR-634. Infinite age.

 $44.9 \pm 0.4\% \\ \delta^{13}C = -3.1\%$

Carbonate from flow-stone floor deposit in Market Cross chamber. Comment: sample activity and δ^{13} C measured in Harwell lab; HAR-637. Sample measured to determine relationship with Sample 5, D-144.

D-147.	Sample 7	$114.1 \pm 2.6\%$
		$\delta^{IJ}C = -14.5\%$

Drip-water sample coll Nov 1973 from Market Cross chamber. Comment: sample activity and δ^{13} C measured in Harwell lab; HAR-635. Bicarbonate in drip-water precipitated as barium carbonate.

D-148. Sample 8

 $142.6 \pm 1.4\%$ $\delta^{13}C = -26.4\%$

Twigs grown summer 1973 from tree growing near cave entrance. Coll Nov 1973. *Comment*: sample activity $\delta^{I3}C$ measured at Harwell lab; HAR-636.

References

Orpen, G H, 1911, Rathgall, County Wicklow: Royal Soc Antiquaries Ireland Jour, v 41, p 138-150.

Raftery, B, 1970, The Rathgall Hillfort, County Wicklow: Antiquity, v 44, p 51-54.

––––– 1971, Rathgall, County Wicklow; 1970 excavations: Antiquity, v 45, p 296-298.

1030

FORTALEZA RADIOCARBON MEASUREMENTS I

M MARLUCIA F SANTIAGO, JOAQUIM RAUL TORQUATO,

Department of Physics, UFCe Fortaleza, Brazil

and

HEINZ ST RÄDE

Nuclear Research Center (KFA) Jülich, West Germany

INTRODUCTION

This date list covers a selection of ¹⁴C results of hydrologic samples investigated from January 1978 until August 1979. According to convention, the ages were calculated with a ¹⁴C half-life of 5568 yr and 0.95% of the activity of NBS oxalic acid standard and are quoted in years before 1950. The recent activity of water is assumed to be 90% modern (Geyh and Kreysing, 1973) and corrections for ¹²C/¹³C isotopic fractionation have not been made.

The chemical procedure of the sample preparation is to precipitate the carbon already in the field as barium carbonate and then to convert this in the lab to carbon dioxide by treatment with phosphoric acid. The CO_2 is converted to lithium carbide in a reaction with lithium metal (Barker, 1953) and, in a subsequent hydrolysis step, the carbide is transformed to acetylene (Crathorn, 1953).

Acetylene is counted at a pressure of 760 Torr using a copper proportional counter (Geyh, 1967) of an active volume of 690ml, yielding background and standard counting rates of 1.10cpm, respectively, 5.03 cpm.

SAMPLE DESCRIPTIONS

WATER SAMPLES

Picos area series, Piaui, Brazil

Samples described in this section were coll in deep wells in sandstones of Serra Grande aquifer which belongs to basal part of Parnaíba Basin. Exact depth of wells is not known in all cases.

Fixed and free carbonic acid was precipitated by $Ba(OH)_2$. Coll 1978.

 FZ-14.
 Angico Torto
 37.1 ± 0.7 % modern

 Well water from 130m depth (07° 06' 55" S, 41° 09' 26" W); apparent
 age: 7100 yr.

FZ-34. Barroca 23.1 ± 0.7 % modern Well water from (07° 00′ 36″ S, 41° 13′ 50″ W); apparent age: 11,000 yr.

 FZ-35.
 Santo Antonio de Russas
 $23.9 \pm 0.7 \%$ modern

 Well water from 164m depth (06° 59' 00″ S, 41° 13' 50″ W);
 apparent age: 10,650 yr.

M M F Santiago, J R Torquato, and H St Räde

37.8 ± 0.8 % modern FZ-36. Jaicos Well water from 89.5m depth (07° 21' 09" S, 41° 11' 01" W):

apparent age: 7000 yr.

FZ-37. Picos-Junco

4.9 ± 0.3 % modern

Well water from 210m depth (07° 24' 36" S, 41° 28' 06" W); apparent age: 23,400 yr.

9.7 ± 0.4 % modern FZ-38. Campestre

Well water from 77m depth (07° 08' 36" S. 41° 27' 26" W); apparent age: 18,000 yr.

27.1 ± 0.7 % modern FZ-40. Itainópolis

Well water from 120m depth (07° 26' 54" S, 41° 28' 51" W); apparent age: 9650 yr.

10.6 ± 0.8 % modern FZ-41. Varzea Grande

Well water from 141m depth (07° 09' 00" S, 41° 29' 44" W); apparent age: 17,200 yr.

FZ-43. Pajeu

FZ-44. Gameleira

Well water from 240m depth (07° 11′ 24″ S, 41° 39′ 12″ W); apparent age: 24,800 yr.

0.7 ± 0.5 % modern

4.1 ± 0.5 % modern

Well water from 277m depth (07° 09' 05" S, 41° 40' 20" W); apparent age: 39,000 yr.

5.7 ± 1.1 % modern FZ-45. Gentil

Water from artesian well (07° 11' 52" S, 41° 41' 38" W); apparent age: 22,200 yr.

2.5 ± 0.8 % modern FZ-53. Curralinho

Water from artesian well (07° 11' 18" S, 41° 45' 06" W); apparent age: 28,800 yr.

Iguatú area series, Ceará, Brazil

FZ-65. Quixelô

Samples described in this section were coll in deep wells in metamorphic rock of the Iguatú Basin.

Fixed and free carbonic acid was precipitated by Ba(OH)₂. Coll Jan 1978.

FZ-64. Iguatú 11.7 ± 0.3 % modern Well water (06° 21' 05" S, 39° 17' 20" W); apparent age: 16,400 yr.

88.0 ± 0.9 % modern

Sample from 1st aquifer below surface (06° 15' 13" S, 39° 12' 39" W); apparent age: 180 yr.

1032

FZ-66. Ouixelô

32.8 ± 0.6 % modern

Sample from 2nd aquifer below surface (06° 15' 13" S, 39° 12' 39" W); apparent age 9000 yr.

19.1 ± 0.7 % modern FZ-67. Vila Penha

Well water from 32m depth (06° 24′ 34″ S, 39° 17° 53″ W); apparent age: 12,450 yr.

FZ-68. Barro Alto 79.9 ± 0.8 % modern

Well water from 68m depth (06° 26' 44" S, 39° 22' 43" W); apparent age: 950 yr.

FZ-77. Varzinha 25.6 ± 0.7 % modern Well water from 36m depth (06° 19' 27" S, 39° 23' 52" W); apparent age: 10,100 yr.

FZ-78. Estrada 40.0 ± 0.6 % modern Well water from 142m depth (06° 21' 51" S, 39° 19' 14" W); apparent age: 6500 yr.

FZ-79. Cajazeiras 77.2 ± 1.1 % modern Well water from 110m depth (06° 22′ 57″ S, 39° 16′ 15″ W); apparent age: 1230 yr.

Frecheirinha area series, Ceará, Brazil

Samples described in this section were coll in deep wells in metasedimentary rocks of Bambui and Jaibaras Basins.

Fixed and free carbonic acid was precipitated by Ba(OH)₂. Coll Feb 1978.

FZ-69. Cipauba 55.4 ± 0.6 % modern Well water (03° 47' 12" S, 40° 33' 10" W); apparent age: 3900 yr.

FZ-70. Coreau 83.6 ± 1.4 % modern Well water (03° 33' 06" S, 40° 39' 21" W); apparent age: 590 yr.

 $53.9 \pm 0.7 \%$ modern FZ-71. Aprazível Well water from 60m depth (03° 45' 02" S, 40° 33' 57" W);

apparent age: 4120 yr.

71.5 ± 0.9 % modern

Well water (03° 45' 06" S, 40° 49' 17" W); apparent age: 1650 yr.

FZ-73. Ibiapina

FZ-72. Posto F Anastácio

72.1 ± 1.0 % modern

Well water (03° 54' 10" S, 40° 53' 36" W); apparent age: 1780 yr.

REFERENCES

Geyh, M A, 1967, Experience gathered in the construction of low-level counters, in IAEA symposium, Proc: Monaco, 2-10 March 1967, p 575-591. Geyh, M A and Kreysing, K, 1973, Sobre a idade das águas subterrâneas no polígono

das secas do nordeste brasileiro: Rev Brasileira Geociências, v 3, p 53.

Barker, Harold, 1953, Radiocarbon dating: large-scale preparation of acetylene from organic material: Nature, v 172, p 631-632.

Crathorn, A R, 1953, Use of an acetylene-filled counter for natural radiocarbon: Nature, v 172, p 632-633.

LA JOLLA NATURAL RADIOCARBON MEASUREMENTS IX

T W LINICK

Mt Soledad Radiocarbon Laboratory, Department of Chemistry University of California, San Diego, La Jolla, California 92093

INTRODUCTION

The following date list covers samples dated by the La Jolla Radiocarbon Laboratory during calendar year 1978. All archaeologic, all geologic, and some geochemical and botanical samples measured during that period are included here. Recent measurements of ¹⁴C in tree rings and in annual coral rings will be published elsewhere. Plots and discussion of data for corals from Belize and Florida have been published already by Druffel (1980).

Sample preparation technique has remained the same as described by Linick (1977). Results reported here are based on 95% of NBS oxalic acid activity normalized to a $\delta^{13}C$ of -19% (PDB). All sample activities have been normalized to a δ^{13} C of -25% (PDB). Mass spectrometric δ^{13} C measurements were made on all samples and standards using, as previously, CO₂ prepared by recombusting an aliquot of the acetylene counting gas sample. Seven gas proportional counters described by Linick (1977; 1979) were used. Ages listed here are conventional radiocarbon ages BP based on the 5568-year Libby ¹⁴C half-life. Uncertainties are given as one sigma statistical standard errors. Where applicable, dates corresponding to the probable true time of origin for terrestrial plant or animal material are given at the end of the sample descriptions. These dates, based on the La Jolla calibration table (Suess, 1979), are presented as possible centuries of growth, with the most probable centuries italicized. The conventional ages for shells and carbonate sediments must be considered to be "apparent ages" only (Linick, 1979).

ACKNOWLEDGMENTS

Measurements by the La Jolla Radiocarbon Laboratory were financed by the US National Science Foundation, Geochemistry Program, Grants EAR76-22623 and EAR78-15183, with H E Suess as Principal Investigator. Samples were prepared by C S Hutto. E M Druffel and S M Griffin assisted in measuring the samples. D K Sullivan maintained the electronic equipment.

I. ARCHAEOLOGIC SAMPLES

A. North America

LJ-4218. Camus, Washington

Charcoal from small limb of Oregon maple tree (Acer macrophyllum) from Site 45CL48, Lady I., Camus, Washington (45° 35' N, 122° 25' W). Depth 76cm. Assoc with Prehistoric living floor containing nuts of Quercus in Unit S7E5. Sample measured to reconstruct paleoenvironment of Lady I. in Columbia R, and to determine rate of midden accumula-

2500 ± 70

tion at site. Coll June 1977 and subm by J A Woodward, Mt Hood Comm Coll, Gresham, Oregon 97030. Previous ¹⁴C dates from site are from other levels: 2370 ± 60 , 2320 ± 60 , 2420 ± 50 (LJ-3296, -3395, -3398; R, 1977, v 19, p 34); 1970 \pm 60 (LJ-3749; R, 1979, v 21). LJ calibration: 7th, 8th, 9th BC.

LJ-4254. San Joaquin Hills

 230 ± 70

Charcoal from hearth in open shell scatter site in San Joaquin Hills, 6.5km N of Pacific Ocean, 5km E of Upper Newport Bay, Orange Co, California (33° 37' 22" N, 117° 49' 50" W). Alt 110m. Retrieved from loose, sandy loam from Unit 2, 10 to 20cm sub-surface. Dated to enhance knowledge of aboriginal exploitation/habitation of Upper Newport Bay region of Orange Co. Coll Oct 1977 and subm by William McCawley and John Murray, Archaeol Assoc, 1022-B Victoria St, Costa Mesa, California 92627.

LJ-4255. San Joaquin Hills

 330 ± 70

Charcoal from same site and unit as LJ-4254, above; 30 to 40cm subsurface.

Villa La Cumbre series

Three shell samples from Site SDM-W-147, Villa La Cumbre, N of Alga Rd, La Costa, San Diego Co, California (33° 06' N, 118° 24' W). Coll June-July 1977 and subm by C S Bull and M J Hatley, Regional Environmental Consultants, 1094 Cudahy Place, Suite 204, San Diego, California 92110.

LJ-4133. Villa La Cumbre-A

 7120 ± 150

Shells (Aquipectin) from Unit E360-N660, 30 to 40cm depth.

LJ-4134. Villa La Cumbre-A 7440 ± 1	54. Villa La Cumbre-A 7	′440 ±	: 110
-------------------------------------	-------------------------	--------	-------

Shells (Aquipectin) from Unit E340-N620, 30 to 40cm depth.

LJ-4135. Villa La Cumbre-B 7060 ± 110

Shells (Chione sp) from Unit E354-N327, 30 to 40cm depth.

LJ-4216. Indian Hill, 91 to 107cm

 3810 ± 70

<250

Charcoal from Indian Hill Site 5, a rock shelter in Anza Borrego State Park, San Diego Co, California. Pit D-8, depth 91 to 107cm. Coll April 1961; subm by J L Bada, Scripps Inst Oceanog, La Jolla, California 92093. LJ calibration: 23rd, 24th, 25th вс.

LJ-4217. Indian Hill, 76 to 91cm

Charcoal from same site as LJ-4216, above. Pit D-8, depth 76 to 91cm. Coll April 1961; subm by J L Bada.

San Clemente Island series

Twelve samples from San Clemente I., a Southern California coastal island. Samples were measured to date human habitation on the island and to contribute to S coastal chronology. Series started in Linick (1979).

1035

LJ-4130. SCLI/RC-6

Shells (2 wavy turban shell fragments, 8 abalone shell fragments, and 1 mussel shell fragment) from NE slope of Eel Point dune site SCLI-539 (32° 55' 07.086" N, 118° 32' 38.541" W). Sample taken from SW side of existing pit at depth of 51 to 66cm. Coll Sept 1977 and subm by L M Axford and R M Carlson, both of Mesa Coll, 7250 Mesa Coll Dr, San Diego, California.

5810 ± 90 LJ-4131. SCLI/RC-7(A)

Shells (1 wavy turban shell fragment, 7 mussel shell fragments, 1 limpet shell, 11 abalone shell fragments, and 3 sea snail shells) from same location as LI-4130, above. Sample taken from SW side of existing pit at depth of 38 to 43cm. Coll Sept 1977 and subm by L M Axford and R M Carlson.

LJ-4132. SCLI/RC-7(B)

Single abalone shell from same provenience as LJ-4131, above. Coll Sept 1977 and subm by L M Axford and R M Carlson.

LJ-4170. SCLI/RC-8, charcoal

Charcoal from Site SCLI-1088 (33° 01' 30.80" N, 118° 34' 52.09" W). Sample taken 41cm below surface in E wall of ravine. Coll Oct 1977 and subm by L M Axford and R M Carlson. LJ calibration: 14th, 15th, 16th BC.

LJ-4173. SCLI/RC-8, shell

Shell from same provenience as LJ-4170, above. Coll Oct 1977 and subm by L M Axford and R M Carlson. Comment: agreement of LJ-4170 and LJ-4173 is very good.

LJ-4168. SCLI/RC-9

Shells from inside rockshelter, Site SCLI-1093 (33° 01" 59.80" N, 118° 35' 51.35" W). Taken from depth of 70cm from nominal floor, 140cm down from ceiling. Coll Oct 1977 and subm by L M Axford and R M Carlson.

LJ-4169. SCLI/RC-10

Shells from same site as LJ-4168, above. Taken at depth of 38 to 43cm from nominal floor, 116cm down from ceiling. Coll Oct 1977 and subm by L M Axford and R M Carlson. Charcoal sample (LJ-4172) from same provenience will be dated in future.

LJ-4219. SCLI/RC-11

Charcoal from Site SCLI-1167, at S end of earth dam in valley NW of national forest on main island rd (32° 58' 01.453" N, 118° 32' 27.240" W). Taken at depth of 10 to 23cm. Coll Dec 1977 and subm by L M Axford and R M Carlson. Abalone shell sample (LJ-4220) from same provenience will be dated in future.

3300 ± 360

6300 ± 90

 4950 ± 90

 430 ± 70

 8180 ± 110

3110 ± 120

 5650 ± 90

LJ-4224. SCLI/RC-12

Charcoal from Site SCLI-379, area designation Red/Harding (32° 56' 09.61" N, 118° 32' 55.22" W). Coll May 1977 and subm by L M Axford. Probable late historic site.

LJ-4532. SCLI/RC-13

Charcoal fragments from fire lens at China Point area site SCLI-1295 (32° 48' 14.8" N, 118° 25' 43" W). Taken from area 46cm below nominal surface of Unit B. Site is eroding into sea, accelerated by frequent high winds. Coll July 1978 and subm by L M Axford. LJ calibration: AD 12th, 11th, 10th.

LJ-4533. SCLI/RC-14

Charcoal fragments from fire lens at same site as LJ-4532, above. Taken 10cm from nominal surface of Unit C. Coll July 1978 and subm by L M Axford. LJ calibration: AD 7th, 6th, 5th.

LJ-4536. SCLI/RC-15

Abalone shell encrusted with lime deposit from site SCLI-1295, NW of China Point (32° 48' 14.8" N, 118° 25' 32" W). Other shells in area were also under caliche. Dated to add to SCLI chronology and to study time scale of deposition of caliche over shell.

LJ-4534. Bancroft Ranch, #1

Charcoal from Bancroft Ranch, Site W-389 (32° 44' 44.15" N, 117° 00' 02.81" W). Unit N15/E160, 46 to 61cm depth. Measured to study chronology of a Kumeyaay Indian village site. Coll June 1975 and subm by L M Axford and D Barbolla.

LJ-4535. Bancroft Ranch, #2

230 ± 60

 3040 ± 140

Charcoal from same site as LJ-4534, above. Unit CC-2, 71cm depth. Coll June 1975 and subm by L M Axford and D Barbolla.

B. Europe

Szákmar series

Grain and charcoal samples from Szákmar, a Neolithic Körös site in SE Hungary (46° N, 20° E). Excavated 1975-1976 by Makkay; subm by Marija Gimbutas, Inst Archaeol, Univ California, Los Angeles, California 90024.

LJ-4376. Szákmar, alpha 3260 ± 140

Caryopsis of cereal grain. Tr (Sj 15) II/neues foed. LJ calibration: 15th, 16th, 17th, 18th BC.

LJ-4377. Szákmar, beta

Caryopsis of cereal grain. Qr Qs (Sj 16) II/neues foed. LJ calibration: 12th, 13th, 14th, 15th, 16th BC.

General Comment: LJ-4376 and -4377 were combined for measurement in a larger detector. The measurement of the combined samples gave an

1007

 350 ± 70

 910 ± 50

 1400 ± 100

 $36,000 \pm 4000$

 410 ± 70

age of 3220 ± 100 , resulting in an average for the 3 measurements of 3180 ± 70 . LJ calibration for single measurement of combined sample: 15th, 16th, 17th BC. LJ calibration for average: 15th, 16th, 17th BC. Comment (MG): dates are not for a Neolithic settlement.

LJ-4378. Szákmar, gamma

1980 ± 100

Charcoal. Po Sb (Sj 23) VI/b fakén alsó. LJ calibration: AD 1st; 1st, 2nd, 3rd, 4th BC.

LJ-4379. Szákmar, delta 3030 ± 110

Charcoal. Qr Qs (Sj 25) VI/a, b gōdōr-83. LJ calibration: 12th, 13th, 14th, 15th, 16th BC.

LJ-4380. Szákmar, epsilon 840 ± 130

Charcoal. Sx (Sj 1) IX/c-gōdōr-85 vèkony cackbar. LJ calibration: AD 13th, 12th, 11th, 10th.

LJ-4381. Szákmar, zeta

700 ± 130

Charcoal. Sr (Sj 1) IX/c-gōdōr-85 vèkony cackbar. LJ calibration: AD 15th, 14th, 13th, 12th, 11th.

General Comment: LJ-4380 and -4381 were combined for measurement in a larger detector. The measurement of the combined samples gave an age of 640 ± 70 , resulting in an average for the three measurements of 690 ± 60 . LJ calibration for single measurement of combined sample: AD 15th, 14th, 13th. L] calibration for average: AD 14th, 13th, 12th.

LJ-4382. Szákmar, eta

3030 ± 110

Charcoal. Qr (Sj 5) XIV/b. LJ calibration: 12th, 13th, 14th, 15th, 16th BC.

Arene Candide series

Charcoal samples from middle to earliest Neolithic levels in cave of Arene Candide, Liguria, Italy (44° 30' N, 8° 30' E). Excavated Aug 1977 by Santo Tinè (Univ Genova, Italy); subm by Marija Gimbutas. All depths were measured relative to point 160cm down, and they are given as depth plus 160cm.

LJ-4136. Arene Candide #1 5940 ± 80

Charcoal from mid-Neolithic Level 12, Sq R1, depth 176 to 200cm plus 160cm. LJ calibration: 48th, 49th, 50th, 51st, 52nd BC.

LJ-4137. Arene Candide #2

5700 ± 90

 5940 ± 100

Charcoal from mid-Neolithic Level 12, Sq Q1, depth 220 to 225cm plus 160cm. Purpose of dating was to confirm the chronology established by stratigraphy and ceramic typology. LJ calibration: 45th, 46th, 47th, 48th BC.

LJ-4138. Arene Candide #3

Charcoal from early Neolithic (or transition between mid and early Neolithic) Level 13A; Sq N3, depth 221 to 228cm plus 160cm; Sq N2,

1038

depth 187 to 198cm plus 160cm; and Sq 03, depth 239 to 246cm plus 160cm. Found underlying sherds of painted Rippoli pottery. The 3 squares were coll together as representative of a floor or contemporary horizon due to the find of 3 separate sherds of painted Rippoli fine ceramic (imported ware) in each square. LJ calibration: 48th, 49th, 50th, 51st, 52nd BC.

LJ-4139. Arene Candide #4 6230 ± 90

Charcoal from early Neolithic (or transition between mid and early Neolithic) Level 13B, Sqs M2 and N2, depth 198 to 199cm plus 160cm. Dated to confirm observed stratigraphy and ceramic typology. LJ calibration: *late to mid-6th millennium* BC.

LJ-4140. Arene Candide #5 6090 ± 90

Charcoal from early Neolithic Level 13B, Sq N2, depth ca 220cm plus 160cm. From concentration of charcoal found in the "carbonaia," fire pit. LJ calibration: 50th, 51st, 52nd, 53rd, 54th BC.

LJ-4141. Arene Candide #6 6220 ± 100

Charcoal from early Neolithic Level 13C, Sqs M2 and N2, depth 198 to 209cm plus 160cm. LJ calibration: *late to mid-6th millennium* BC.

LJ-4142. Arene Candide #7 6070 ± 90

Charcoal from early Neolithic Level 13C, Sq P3, depth ca 268 to 276cm plus 160cm. From the floor around the collapsed domed oven, or "fourno." LJ calibration: 50th, 51st, 52nd, 53rd, 54th BC.

LJ-4143. Arene Candide #8

6870 ± 100

Charcoal from earliest Neolithic floor, immediately above Mesolithic Level 15; from Level 14, Sq N2, depth ca 262 to 273cm plus 160cm. Sample is important for dating the first occurrence of the Neolithic in N Italy. LJ calibration: *early 6th millennium to late 7th millennium* BC.

LJ-4144. Arene Candide #9

6490 ± 100

Charcoal from earliest Neolithic Level 14, Sq O3, depth ca 279 to 283cm plus 160cm. LJ calibration: *mid-6th millennium* BC.

Toppo Daguzzo series

Four charcoal samples from Toppo Daguzzo, a Bronze age site in Italy. Excavated 1978 by Mirella Cipolloni, Ist Paletnol, Univ Rome; subm by Marija Gimbutas.

LJ-4544. Toppo Daguzzo, 3a 4680 ± 60

Charcoal from Trench 12—ditch, Level 3-4. LJ calibration: 34th, 35th, 36th, 37th BC.

LJ-4545. Toppo Daguzzo, 3b 4710 ± 80

Charcoal from Trench 12-ditch, Level 3-4. LJ calibration: 34th, 35th, 36th, 37th BC.

Toppo Daguzzo, 4 LJ-4546.

Charcoal from Trench 12-ditch, Level L. LJ calibration: 34th, 35th, 36th BC.

LJ-4547. Toppo Daguzzo, 4

Charcoal from Trench 12-ditch, Level L. LJ calibration: 31st, 32nd, 33rd, 34th вс.

Rendina series

Four charcoal samples from Rendina, a Neolithic site in S Italy (41° N, 16° E). Excavated 1975 by Mirella Cipolloni; subm by Marija Gimbutas.

 7110 ± 140 LJ-4548. Rendina, la Charcoal from C-shaped Ditch No. 4. LJ calibration: late 7th millennium BC.

LJ-4549. Rendina, 1b + 1c

Charcoal from C-shaped Ditch No. 4. LJ calibration: early 6th millennium BC.

 6530 ± 150 LJ-4550. Rendina, 2a Charcoal from last level of ditch, No. 14. LJ calibration: mid-6th millennium вс.

LJ-4551. Rendina, 2b

Charcoal from last level of ditch, No. 14. LJ calibration: early 6th to late 7th millennium BC.

LJ-4449. Achilleion

Charcoal from Achilleion, on edge of Karditsa Plain, near Farsala, Thessaly, Greece (ca 39.3° N, 22.4° E). Settlement is stratified Neolithic site of the Sesklo culture. Includes four periods starting with earliest ceramic period, partially contemporaneous with Anza site in Central Macedonia, Yugoslavia. This sample from Sq A, Quad 1, Level 32; from one of earliest levels at site. Coll and subm by Marija Gimbutas.

Many other samples from site previously measured; see Linick (1977). For detailed discussion of archaeology in area, see Gimbutas (1974) and Ferguson et al (1976). LJ calibration: 7th millennium BC.

II. GEOLOGIC SAMPLES

A. Terrestrial

Baja California series

The following wood and charcoal samples were measured to study geologic fault activity in Baja California in the vicinity of 30° 39' N, 115° 09' W. All samples from terraces were ironwood (Olneya tesota) and were expected to give oldest date for each terrace. Expectations given are those of submitter. Coll and subm by L G Brown, Dept Geol, San Diego State Univ, San Diego, California.

1040

4440 ± 70

 4580 ± 80

 6900 ± 150

 7490 ± 150

6780 ± 100

LJ-4365. PSC-1

Wood from Loc 12 (30° 38' 50" N, 115° 09' 15" W). Coll Nov 1977 to establish upper limit for date of fault's motion. Sample could be older than fault scarp.

LJ-4366. PSC-2

Charcoal from Excavation 2 (30° 38' 00" N, 115° 08' 36" W). Coll April 1978 to establish lower limit for date of fault's age. LJ calibration: 18th, 19th, 20th, 21st BC.

LJ-4383. IA

Ironwood from Terrace I (30° 38' 45" N, 115° 09' 10" W). Coll May 1978. LJ calibration: AD 14th, 13th, 12th.

LJ-4384. IB

Ironwood from Terrace I, Site 14 (30° 38' 45" N, 115° 09' 10" W).

LJ-4385. IIA

Ironwood from Terrace II (30° 38′ 45″ N, 115° 09′ 10″ W). Terrace II expected to be younger than Terrace I. Coll May 1978.

LJ-4386. IIB

Ironwood from Terrace II (30° 38' 45" N, 115° 09' 10" W). Coll May 1978.

LJ-4387. IIIA

Ironwood from Terrace III (30° 38' 45" N, 115° 09' 10"W). Terrace III expected to be younger than Terrace II. Coll May 1978.

LJ-4388. IIIB

Ironwood from Terrace III (30° 38' 45" N, 115° 09' 10" W). Coll May 1978.

LJ-4389. IVA

Ironwood from Terrace IV (30° 38' 45" N, 115° 09' 10" W). Terrace IV expected to be younger than Terrace III. Coll May 1978.

LJ-4390. VA

Ironwood from Terrace V (30° 38′ 45″ N, 115° 09′ 10″ W). Terrace V expected to be younger than Terrace IV. Coll May 1978.

LJ-4391. VB

Ironwood from Terrace V (30° 38' 45" N, 115° 09' 10" W). Coll May 1978. LJ calibration: AD 13th, 12th, 11th, 10th.

LJ-4392. VIA

Ironwood from Terrace VI (30° 38' 54" N, 115° 09' 18" W). Was expected to be possibly older than Terrace I, but may be correlative with younger fault movements. Coll May 1978.

110 ± 30

 850 ± 90

 390 ± 60

 240 ± 60

560 ± 50

 330 ± 60

 340 ± 60

670 ± 70

410 ± 70

1011

 360 ± 50

 3530 ± 80

 700 ± 50

T W Linick

B. Marine

LJ-4175. Pacific sediment

Coarse fraction of sediment, ca 70% forams, from piston core (32° 09.1' N, 118° W). M-4-70, 6P, 190 to 210cm depth in core. Sediment had been ultrasonically cleaned to remove fines and then sieved, resulting in fraction $>62\mu$. Ca 10,000 yr BP is date of deglacial meltwater spike. Coll March 1970 and subm by R B Dunbar, Scripps Inst Oceanog.

Indopac-15 sediment series

Organic fraction of deep-sea sediment samples coll on Indopac-15 Expedition of Scripps Inst Oceanog. Box Core 638, coll June 1977 (28° 34.4′ N, 155° 30.3′ W), water depth 5780m. Area is extensive abyssal plain located below low-productivity surface waters. Subm by P M Williams, Scripps Inst Oceanog. Results given in order of increasing depth in core. For interpretation of data, see Williams *et al* (1978).

LJ-4223. 0 to 3cm

$10,700 \pm 600$

Box Core 2, Sample B, 0 to 3cm depth in core. Comment: LJ-4055, previously pub in Linick (1979), from Box Core 2, Sample B, 5 to 7cm depth in core, gave age of $16,000 \pm 900$.

LJ-4221. 7 to 9cm 18,500 ± 1900

Box Core 2, Sample A, 7 to 9cm depth in core.

LJ-4222. 11 to 13cm

$20,300 \pm 2200$

Box Core 2, Sample A, 11 to 13cm depth in core.

LJ-4301. 13 to 15cm

>23,700

Box Core 2, 13 to 15cm depth in core. *Comment:* LJ-4054, previously pub in Linick (1979), from Box Core 2, Sample B, 19 to 21cm depth in core, gave age of >22,000; date revised to >24,300 in Williams *et al* (1978).

Pleiades sediment series

Four sediment samples from the deep Pacific Ocean (1° 08' N, 109° 15' 06" W), sub-core from box core coll on Pleiades-72 Expedition of Scripps Inst Oceanog. Water depth 3626m. Coll May to Sept 1976 for W H Berger; subm by R C Finkel, both of Scripps Inst Oceanog.

LJ-4518. 0 to 3cm

3980 ± 70

Sediment from 0 to 3cm depth in core; inorganic fraction.

LJ-4519. 3 to 5cm 4200 ± 100

Sediment from 3 to 5cm depth in core; inorganic fraction.

LJ-4520. 18 to 20cm 6810 ± 70

Sediment from 18 to 20cm depth in core; inorganic fraction.

LJ-4521. 35 to 36cm $12,600 \pm 180$

Sediment from 34 to 36cm depth in core; inorganic fraction.

$14,000 \pm 1000$

III. GEOCHEMICAL SAMPLES

A. Marine organisms

Marine organism series

Three specimens of rat-tail fish (*Coryphaenoides armatus*) caught in gill nets in the deep central Pacific Ocean. Measurements made on muscle sampled from frozen specimens. Coll Dec 1977 on the BMET Cruise. Obtained from K Smith; subm by P M Williams.

LJ-4737.	BMET-1-PW	$\Delta = +45 \pm 12\%$
		$\delta^{13}C = -18.4\%$

Fish from Sta C-48 (32° 33.6' N, 120° 26.3' W). Caught 400m above bottom; bottom depth ca 3800m. Dry weight 3.8g.

LJ-4338.	BMET-2-PW	$\Delta = +27 \pm 7\%$
		$\delta^{_{13}}C = -18.3\%_{o}$

Fish from Sta C-48 (32° 33.6' N, 120° 26.3' W). Caught 300m above bottom; bottom depth ca 3800m. Dry weight 4.2g.

	-	-	-	
LJ-4339.	BMET-3-PW			$\Delta = +37 \pm 8\%$
				$\delta^{_{13}}C = -19.7\%$

Fish from Sta C-69 (32° 34.3' N, 120° 28.9' W). Caught 50m above bottom; bottom depth ca 3800m. *Comment*: ¹⁴C was previously measured in rat-tail fish coll June 1977 at 28° 30' N, 155° 30' W; coll 800m above bottom; bottom depth 5800m. $\Delta = +37 \pm 10\%$, $\delta^{13}C = -18.7\%$ (LJ-4057; Linick, 1979).

B. Seawater sample

LJ-4256. Ross Ice Shelf Project

 $\Delta = -73 \pm 7\% \\ \delta^{13}C = -2.4\%$

Dissolved inorganic carbon from 20m below bottom of ice; coll at hole J-9 drilled in Ross Ice Shelf, Antarctica, on 29 Dec 1977 by S Jacobs for author's use. Site is 400km S of edge of Ross Ice Shelf ($82^{\circ} 22.5'$ S, $168^{\circ} 37.5'$ W). For interpretation of ¹⁴C and tritium data for samples coll at site, see Michel *et al* (1979).

IV. BOTANICAL SAMPLES

Palm tree series

Samples from a palm tree (*Cocos nucifera*) grown near Aracaju, Sergipe state, NE Brazil (ca 11° 00' S, 37° 01' W); alt near sea level. Tree had grown for ca 110 to 120 yr. Slices were taken at 1m intervals up the tree. Highest samples, from 17.4m above bottom, were taken just below oldest leaves. At each level, one sample was obtained from the outside of the cross-section (ca 0.5 through 2cm from the bark), and one was obtained from the inside of the cross-section (0 through 3 to 4cm from the center). Palm trees do not form annual rings, but rather grow in a more cylindrical, vertical manner than ring-forming trees. Samples were measured to study growth pattern, using bomb-produced carbon-14 as a tracer. Wood was pretreated with acetone, alkali, and acid; cellulose was not extracted for use in this project. Because annual rings are not

T W Linick

formed and the wood analyzed is not of a known age, no decay correction could be made in the Δ values given below. Subm by LHG Wiesberg, Chemistry Dept, Pontifícia Univ Católica Rio de Janeiro, Brazil. Com*ment* (LHGW): palm trees, which are monocotyledons, grow primarily cylindrically and vertically with no significant thickening of diam with age, unlike non-monocotyledenous trees. There is a question of whether palms thicken slightly with age, a phenomenon that may be designated "diffuse secondary growth." Vascular bundles are dispersed throughout the stem with widely scattered bundles in the center and more densely concentrated bundles on the outside. A single vascular bundle enters the tree stem at a leaf base and rapidly crosses the cortex to the center of the stem; however, as a tree grows, the bundle will travel gradually toward the periphery.

The high ¹⁴C value of the inside sample at 9.4m may indicate that the sample contained an active vascular bundle, allowing late growth to give the stem added strength. At the 16.4m level, the higher bomb ¹⁴C level of the inside sample compared to that of the outside sample indicates that cells in the center remain active longer than those near the cortex.

		Inside/outside	
LJ no.	Height above bottom (m)	(I)/(O)	Δ (‰)
-4305	17.4	0	$+416 \pm 10$
-4308	17.4	I	$+409 \pm 10$
-4306	16.4	0	$+184 \pm 7$
-4307	16.4	I	$+240 \pm 7$
-4100	15.4	0	$+16 \pm 8$
-4099	15.4	Ι	$+30\pm8$
-4450	12.4	0	-20 ± 8
-4451	12.4	I	-4 ± 8
-4303	9.4	0	-17 ± 6
-4304	9.4	I	$+87 \pm 8$
-4452	8.4	0	-3 ± 8
-4453	8.4	Ι	$+8 \pm 8$
-4454	5.4	0	-1 ± 6
-4455	5.4	I	-12 ± 7
-4102	2.4	0	-9 ± 8
-4101	2.4	I	-7 ± 7

References

Druffel, E M, 1980, Radiocarbon in annual coral rings of Belize and Florida, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 363-371.

Ferguson, C W, Gimbutas, Marija, and Suess, H E, 1976, Historical dates for Neolithic sites of southeast Europe: Science, v 191, p 1170-1172

Gimbutas, Marija, 1974, The gods and goddesses of old Europe: 7000 to 3500 BC: myths, legends, and cult images: Berkeley/Los Angeles, Univ California Press, 303 p. Linick, T W, 1977, La Jolla natural radiocarbon measurements VII: Radiocarbon,

v 19, p 19-48.

- 1979, La Jolla natural radiocarbon measurements VIII: Radiocarbon, v 21, p 186-202.

Michel, R L, Linick, T W, and Williams, P M, 1979, Tritium and carbon-14 distributions in seawater from under the Ross Ice Shelf Project ice hole: Science, v 203, p 445-446

Suess, H E, 1979, A calibration table for conventional radiocarbon dates, in Berger, Rainer and Suess, H E, eds, Radiocarbon dating, Internatl conf on radiocarbon dating, 9th, Proc: Berkeley/Los Angeles, Univ California Press, p 777-784.

Williams, P M, Stenhouse, M C, Druffel, E M, and Koide, M, 1978, Organic ¹⁴C activity in an abyssal marine sediment: Nature, v 276, p 698-701.

1044

UNIVERSITY OF LUND RADIOCARBON DATES XIII

SÖREN HÅKANSSON

Radiocarbon Dating Laboratory, Department of Quaternary Geology University of Lund, Sweden

INTRODUCTION

Most of the ¹⁴C measurements reported here were made between October 1978 and October 1979. Equipment, measurement, and treatment of samples are as reported previously (R, 1968, v 10, p 36-37; 1976, v 18, p 290) except for some minor improvements of the electronic equipment. Sediment samples too small to allow pretreatment, are now burned at <650°C in order to avoid pyrolysis of carbonates that may be present in the samples. Same max combustion temperature is used for samples with suspected graphite contamination. A movable thermocouple (Philips TERMOCOAX TCI 30/50/3) in the combustion zone is used for checking the temperature.

Age calculations are based on a contemporary value equal to 95% of the activity of NBS oxalic acid standard and on the conventional half-life for ¹⁴C of 5568 yr. Results are reported in years before 1950 (years BP). Errors quoted $(\pm 1\sigma)$ include standard deviations of count rates for the unknown sample, contemporary standard, and background.

Corrections for deviations from $\delta^{13}C = -25.0\%$ in the PDB scale are applied for all samples; also for marine shells. The apparent age for marine material due to the reservoir effect must be subtracted from our dates on such samples.

The remark "undersized; diluted", in *Comments* means the sample did not produce enough CO_2 to fill the counter to normal pressure and "dead" CO_2 from anthracite was introduced to make up the pressure. "% sample" indicates amount of CO_2 derived from the sample present in the diluted counting gas; the rest is "dead" CO_2 . Organic carbon content reported for bone samples is calculated from yield of CO_2 by combustion of gelatine remaining after treatment. Organic carbon lost during treatment is not included in calculated percentage.

The description of each sample is based on information provided by the submitter.

ACKNOWLEDGMENTS

The author thanks Kerstin Lundahl for sample preparation and routine operation of the dating equipment, and R Ryhage and his staff at the mass-spectrometric laboratory of Karolinska Inst, Stockholm, for the ¹³C analyses.

SAMPLE DESCRIPTIONS

I. GEOLOGIC SAMPLES

A. Sweden

Abisko series (I)

Sediment from Lake Vuolep Njakajaure (68° 20' N, 18° 45' E) and Lake Vuoskojare (68° 21' N, 19° 03' E) in Abisko valley, N Sweden. Coll

1977-78 by M Hjelmroos, J Mikaelsson, and G Digerfeldt; subm by M Hjelmroos, Dept Quaternary Geol, Univ Lund. Dating is part of palaeoecologic study, belonging to IGCP Subproject 158B (Berglund, 1979), of postglacial vegetational history in area. Depths refer to sediment surface. All samples consisted of fine detritus gyttja or clayey gyttja (Vuoskojaure), and were pretreated with HCl. Six samples undersized; diluted. Amount of CO_2 from sample is given in *Comments* below as "% sample".

Vuolep Njakajaure, Profile 1

Coll 1977. Water depth at sampling point 13.9m.

Lu-1517.	Vuolep Njakajaure 1, 228 to 230cm	$7280 \pm 75 \\ \delta^{13}C = -30.3\%$				
Lu-1518.	Vuolep Njakajaure 1, 218 to 220cm	$\frac{6640 \pm 75}{\delta^{13}C = -30.1\%}$				
Lu-1587.	Vuolep Njakajaure 1, 208 to 210cm	3810 ± 60 $\delta^{I3}C = -28.0\%$				
Lu-1519.	Vuolep Njakajaure 1, 194 to 196cm	3470 ± 60 $\delta^{I3}C = -28.5\%$				
Lu-1520.	Vuolep Njakajaure 1, 168 to 170cm	3180 ± 70 $\delta^{_{13}}C = -28.4\%$				
Comment:	66% sample.					
Lu-1521.	Vuolep Njakajaure 1, 130 to 134cm	2300 ± 50 $\delta^{I3}C = -28.0\%$				
Lu-1522.	Vuolep Njakajaure 1, 122 to 126cm	1850 ± 50 $\delta^{13}C = -27.9\%$				
Lu-1523.	Vuolep Njakajaure 1, 100 to 104cm	1540 ± 55 $\delta^{I3}C = -27.5\%$				
Comment:	91% sample.					
Vuolep Njakajaure, Profile 2						
	Coll 1978. Water depth at sampling point 13.75m.					
Lu-1672.	Vuolep Njakajaure 2, 100 to 105cm	2570 ± 55 $\delta^{13}C = -27.6\%$				
Lu-1671.	Vuolep Njakajaure 2, 75 to 80cm	2050 ± 50 $\delta^{I3}C = -28.2\%$				
Lu-1670.	Vuolep Njakajaure 2, 50 to 55cm	1580 ± 50 $\delta^{I3}C = -27.7\%$				
Lu-1669.	Vuolep Njakajaure 2, 32.5 to 37.5cm	900 ± 50 $\delta^{13}C = -27.5\%$				

1046

Vuoskojaure

Coll 1978. Water depth at sampling point 12.8m.

Lu-1653. Vuoskojaure, 125 to 130cm	6830 ± 90 $\delta^{13}C = -26.4\%$
Comment: 72% sample.	$0^{-6}C = -20.4\%$
Lu-1654. Vuoskojaure, 94 to 98cm	4490 ± 75 $\delta^{_{13}}C = -26.5\%$
Comment: 73% sample.	$0^{-10}C = -20.9/00$
Lu-1655. Vuoskojaure, 72 to 76cm	3480 ± 70
Comment: 73% sample.	$\delta^{I3}C = -26.3\%$
Lu-1656. Vuoskojaure, 23 to 27cm	1970 ± 70
	$\delta^{{}_{1}{}_{s}}C = -26.4\%$

Comment: 65% sample.

Bjärsjön series

Sediment from Lake Bjärsjön, Billingen, S Sweden (58° 20' N, 13° 40' E). Alt 255m; area 15ha; max depth 8m. Coll 1976 and subm by G Digerfeldt, Dept Quaternary Geol, Univ Lund. Dating is part of study of Late Weichselian development of lake and surrounding region. Samples come from profile in E part of lake (Livingstone corer, diam 10cm). Water depth 4m at sampling point. Depths given are below sediment surface. All samples pretreated with HCl.

Lu-1589.	Bjärsjön, 613 to 615cm	$11,260 \pm 100$ $\delta^{13}C = -24.7\%$
Clay gyttja.		$0 \ 0 = -21.7 / 00$
Lu-1590.	Bjärsjön, 598 to 600cm	$10,890 \pm 90$ $\delta^{_{13}}C = -25.8\%$
Clay gyttja. 1-day counts.)	Comment: sample undersized; diluted;	'
Lu-1591.	Bjärsjön, 582 to 584cm	$10,830 \pm 100$
Clay gyttja.		$\delta^{{}^{13}C}=-24.1\%$
Lu-1592.	Bjärsjön, 574 to 576cm	$10,450 \pm 100$ $\delta^{13}C = -23.9\%$
Clay gyttja.		$0^{-1}C = -29.9\%$
Lu-1593.	Bjärsjön, 563 to 565cm	$10,220 \pm 95$ $\delta^{I_3}C = -22.5\%$
Clay gyttja.		$0^{10}C = -22.0\%$
Lu-1594.	Bjärsjön, 551 to 553cm	9840 ± 95
Clay gyttja.		$\delta^{\imath s} C = -23.5\%_0$

Sören Håkansson

Lu-1595.	Bjärsjön, 537 to 539cm	9560 ± 90
		$\delta^{_{13}}C = -26.6\%$

Detritus gyttja.

Lu-1588. Bergsjön, 249 to 253cm

 $11,970 \pm 105$ $\delta^{13}C = -19.8\%$

Silty clay gyttja from Lake Bergsjön, Mösseberg, S Sweden (58° 12' N, 13° 30' E). Alt 306m; area 0.9ha; max depth 4.5m. Coll 1976 and subm by G Digerfeldt. Dating is part of same study as Bjärsjön series, above. Sample comes from profile in E part of lake (Livingstone corer, diam 10cm). Water depth 1m at sampling point. Depth given is below sediment surface. *Comment*: no pretreatment because of small organic content. Burned at <650°C to avoid pyrolysis of carbonates that may be present in untreated samples.

Växjösjön series

Sediment from Lake Växjösjön at town of Växjö, S Sweden ($56^{\circ} 52'$ N, 14° 49' E). Alt 161m; area 87ha; max depth 6.5m. Coll 1972-73 and subm by G Digerfeldt. Dating is part of study of development of lake and surrounding region during last *ca* 2500 yr. For other dates from this lake, see R, 1974, v 16, p 312-314. Samples come from profile in central part of lake (Livingstone corer, diam 6cm). Water depth 5.5m at sampling point. Depths given are below sediment surface. Pretreated with HCl.

Lu-1639.	Växjösjön, 415 to 420cm	2500 ± 55 $\delta^{I3}C = -27.9\%$
Detritus gy	rttja.	
Lu-1640.	Växjösjön, 395 to 400cm	1710 ± 50 $\delta^{I3}C = -28.1\%$
Detritus gy	rttja.	
Lu-1638.	Växjösjön, 375 to 380cm	1610 ± 65 $\delta^{13}C = -27.4\%$
Detritus gy	ttja. Comment: sample undersized; dil	uted; 60% sample.

Central Blekinge series (II)

Sediment from Lake Logylet (56° 18' N, 14° 59' E), alt 61m, and Lake Halsjön (56° 14' N, 15° 19' E), alt 30m, Central Blekinge, S Sweden. Coll 1978 and subm by S Björck, Dept Quaternary Geol, Univ Lund. Dating is part of study of Late Weichselian stratigraphy and shore-line displacement in Blekinge (Björck, 1979). For additional dates in same series, see R, 1979, v 21, p 389-391. Samples are from cores taken with Livingstone sampler, 10cm diam. Depths refer to water surface. No pretreatment because of low organic content. Chronozones below according to Mangerud *et al* (1974).

Logylet

Lu-1597.	Logylet 2,	1015 to	1018cm	11,810 ± 19	0

 $\delta^{13}C = -23.2\%$

Clay gyttja. Lower part of Alleröd Chronozone. *Comment*: sample undersized; diluted; 40% sample. (3 1-day counts.)

Lu-1598.	Logylet 3, 995 to 998cm	$11,040 \pm 150$
		$\delta^{_{13}}C = -25.5\%$

Clayey gyttja. Boundary between Alleröd and Younger Dryas Chronozones. Comment: undersized; diluted; 47% sample. (3 1-day counts.)

Halsjön

Lu-1599.	Halsjön 1, 532 to 538cm	$12,890 \pm 190$
		$\delta^{_{I3}}C = -23.3\%_{0}$

Clay. Uppermost part of Alleröd Chronozone according to pollen analysis. The reason for difference between radiocarbon age and expected age is discussed by submitter (Björck, 1979, p 119-120). *Comment*: undersized; diluted; 45% sample. (3 1-day counts.)

Lu-1600.	Halsjön 2, 525 to 530cm	$12,090 \pm 145$
		$\delta^{13}C = -25.0\%$

Clay. Lowermost part of Younger Dryas Chronozone. Comment: undersized; diluted; 55% sample. (3 1-day counts.)

Lu-1601.	Halsjön 3, 507 to 511cm	$10,760 \pm 100$
		$\delta^{_{13}C} = -22.8\%_{co}$

Muddy clay. Middle part of Younger Dryas Chronozone.

Lu-1602.	Halsjön 4, 502 to 507cm	$10,560 \pm 100$
		$\delta^{_{13}}C = -24.0\%$

Muddy clay. Middle part of Younger Dryas Chronozone.

Lu-1603.	Halsjön 5, 498 to 502cm	$10,740 \pm 105$
		$\delta^{_{13}}C = -24.6\%$

Slightly muddy clay. Upper part of Younger Dryas Chronozone. Comment: undersized; diluted; 92% sample.

Lu-1604.	Halsjön 6, 491 to 495cm	$10,260 \pm 95$
		$\delta^{13}C = -24.1\%$
Clay outtie	Upper part of Vouncer Drugs Chr.	

Clay gyttja. Upper part of Younger Dryas Chronozone.

Lu-1605. Halsjön 7, 482 to 485cm

 9760 ± 90

 $\delta^{13}C = -25.9\%$

Clayey gyttja. Lowermost part of Pre-Boreal Chronozone.

Håkulls mosse series (II)

Sediment from bog Håkulls mosse on hill ridge Kullaberg, NW Scania (56° 17' N, 12° 31' E). Alt *ca* 125m. Coll 1975 and subm by B E Berglund, Dept Quaternary Geol, Univ Lund. Samples are from core taken with Livingstone sampler, 10cm diam. Depths refer to bog surface.

Sören Håkansson

Dated as complement to Håkulls mosse series (R, 1978, v 20, p 416-417). Pretreated with HCl.

Lu-1618.	Håkulls mosse 11, 838 to 840cm	$11,700 \pm 105$
	<i>,</i>	$\delta^{13}C = -23.2\%$
~.		f Allowäd

Clayey gyttja. Rational Empetrum curve. Beginning of Alleröd.

Lu-1619.	Håkulls mosse	12,	768	to	770cm	$10,500 \pm 100$
						$\delta^{I3}C = -25.8\%$

Clayey gyttja. Upper Artemisia-zone boundary. Middle of DR 3.

Lu-1686. Kroksjön

 580 ± 50

 $\delta^{13}C = -28.6\%$

Detritus gyttja, 75 to 77.5cm below sediment surface, from Lake Kroksjön, Kristdala parish, S Sweden (57° 24' N, 16° 06' E). Coll 1979 and subm by M Aronsson and Th Persson, Dept Quaternary Geol, Univ Lund. Level with marked increase of *Juniperus* and herbs, indicating human activity. Pollen analysis by M Hjelmroos. Pretreated with HCl.

Svedaskogen series (II)

Barnacle and bivalve shells from gravel pit at Svedaskogen, *ca* 3km N of Fjärås church, Halland (57° 29' N, 12° 10' 30" E). Coll 1978 and subm by Å Hillefors, Dept Phys Geog, Univ Lund. Dated as complement to Svedaskogen series (R, 1979, v 21, p 393).

Lu-1675.	Svedaskogen 1978, <i>Balanus</i>	$13,110 \pm 115$
	C ,	$\delta^{13}C = +0.1\%$

Barnacle shells (*Balanus* sp) from shell bank with eroded upper surface overlain by glaciofluvial sand and wave-washed material. *Comment*: outer 73% removed by acid leaching.

Lu-1676.	Svedaskogen	1978,	Mytilus	$13,080 \pm 115$
	U		•	$\delta^{13}C = -1.0\%$

Mytilus fragments from same shell bank as Lu-1675, above. Comment: outer 30% removed by acid leaching.

General Comment: corrections for deviations from $\delta^{13}C = -25\%$ PDB are applied also for shell samples. No corrections are made for apparent age of shells of living marine organisms due to the reservoir effect.

B. Norway

Østrevand series

Sediment from Lake Østrevand, Varanger Peninsula, N Norway (70° 09' 15" N, 29° 28' E). Coll 1976 and subm by B Malmström and O Palmér, Dept Phys Geog, Univ Lund. Depths are below sediment surface. Dated as complement to Varanger Peninsula Series II (R, 1978, v 20, p 422-423). No pretreatment; small samples; burned at <650°C to avoid carbonate pyrolysis and graphite oxidation.

Lu-1620.	Østrevand 7-lb, 69 to 74cm	7180 ± 75
		$\delta^{_{13}}C = -24.8\%$
Clayey gytt	ja.	

Т

Lu-1621. Østrevand 8-lb, 109 to 114cm 9220 ± 100

 $\delta^{13}C = -26.0\%$

Clayey gyttja. Comment: sample undersized; diluted; 80% sample.

Lerøy series

Sediment samples from small lakes on Lerøy I., Hordaland, W Norway (60° 14' N, 5° 11' E). Coll 1978 and subm by K Krzywinski, Bot Mus, Univ Bergen. Dated as part of study of sea-level changes in area. For other dates from area, see R, 1978, v 20, p 423-424; 1979, v 21, p 394-395. Acid-precipitated part of NaOH-soluble fraction used for dating.

Lu-1580A.	Storevatn, L	erøy, No.	10573	7330 ± 75
				$\delta^{13}C = -28.1\%$

Lacustrine gyttja with diatoms indicating brackish water. Absolute max of Tapes transgression.

Lu-1581A.	Storevatn, Lerøy,	No.	10590	9420 ± 85
				$\delta^{I3}C = -22.9\%$

Lacustrine gyttja from level for 1st isolation of lake basin.

Lu-1582A.	Austretjønn, Lerøy, No. 10351	2860 ± 55 $\delta^{13}C = -30.5\%$
Lacustrine g	yttja from isolation contact.	$0^{10}C = -90.9\%$
Lu-1583A.	Vestretjønn, Lerøy, No. 10393	3600 ± 55
		$\delta^{13}C = -28.5\%$

Lacustrine gyttja from isolation contact.

Rondane series

Subfossil wood from 3 small lakes in Rondane mt area, Østlandet, Norway. Samples pretreated with HCl and NaOH.

Lu-995.	Kåsi, Mysuseter	4890 ± 65
		$\delta^{I3}C = -25.1\%$

Wood (Pinus sp) id by T Bartholin from bottom of unintentionally drained small lake near Kåsi Mt, ca 1km N of Mysuseter (61° 49' N, 9° 40' E). Alt ca 1000m. Coll 1974 and subm by A Lima-de-Faria, Dept Molecular Cytogenetics, Univ Lund. Sample taken from firmly rooted stump. Site described by submitter (Lima-de-Faria, 1977).

Lu-1692. Haverdalen

 8240 ± 80 $\delta^{13}C = -23.7\%$

Wood (Pinus silvestris) from ca 50cm thick tree-trunk from small lake 500m SE of Haverdalsseter (62° 02' N, 9° 40' E). Alt 1030m. Treetop visible at lake surface. Coll 1976 by E K Barth, Zool Mus, Oslo; subm by E K Barth and A Lima-de-Faria. Ca 20km to nearest Pinus forest today. Sample contained 41 tree rings in *ca* 20mm and probably came from outer part of tree.

Lu-1693. Illmanndalen

$$8320 \pm 80$$

 $\delta^{13}C = -26.5\%$

Wood (*Betula* sp) id by T Bartholin from peat 7cm above bedrock and 18m from shore of Fremre Illmanntjern (61° 52.5' N, 9° 49' E). Alt 1220m. Coll 1972 by P Vassrusten; subm by E K Barth and A Lima-de-Faria. *Ca* 15km to nearest *Betula* forest today. Sample probably piece of small root with *ca* 15 indistinct tree rings.

C. Iceland

Vatnskotsvatn series

Sediment from 2 profiles in Lake Vatnskotsvatn, Skagafjördur area, N Iceland (65° 42′ 05″ N, 19° 28′ 50″ W). Coll 1977 and subm by M Hallsdóttir, Dept Quaternary Geol, Univ Lund. Dated as part of study of Postglacial vegetational history of surrounding region and for correlation of volcanic ash layers in the profiles with similar layers dated in other areas. Samples taken with Livingstone sampler, 6cm diam. Depths refer to water surface. All samples except Lu-1644 and Lu-1648 undersized; diluted. Amount of CO_2 from sample is given in *Comments* below as "% sample". No pretreatment. Burned at <650°C to avoid pyrolysis of carbonates.

a 1 a 1/2	Lu-1641.	Vatnskotsvatn 793:1, 760 to 765cm	2330 ± 55 $\delta^{I3}C = -21.2\%$
	Detritus gyt	tja. <i>Comment</i> : 70% sample. (3 1-day cou	,
	Lu-1642.	Vatnskotsvatn 793:2, 710 to 715cm	1830 ± 55 $\delta^{_{13}}C = -20.9\%$
	Detritus gyt	tja. <i>Comment</i> : 90% sample.	
	Lu-1643.	Vatnskotsvatn 793:3, 660 to 665cm	1850 ± 60 $\delta^{13}C = -20.6\%$
	Detritus gyt	tja. <i>Comment</i> : 75% sample.	
- 	Lu-1644.	Vatnskotsvatn 793:4, 610 to 615cm	1700 ± 50 $\delta^{_{13}}C = -20.0\%$
	Detritus gyt	tja.	
	Lu-1645.	Vatnskotsvatn 793:5, 560 to 565cm	1530 ± 50 $\delta^{1s}C = -19.2\%$
	Detritus gyt	tja. <i>Comment</i> : 94% sample.	
	Lu-1646.	Vatnskotsvatn 793:6, 510 to 515cm	1320 ± 55 $\delta^{13}C = -19.6\%$
•	Detritus gyt	tja. <i>Comment</i> : 80% sample.	
	Lu-1647.	Vatnskotsvatn 793:7, 460 to 465cm	1330 ± 55 $\delta^{13}C = -18.7\%$
	Detritus gyt	tja. <i>Comment</i> : 78% sample.	· · · ·
	Lu-1648.	Vatnskotsvatn 793:8, 410 to 415cm	1380 ± 50 $\delta^{_{13}}C = -19.3\%_{00}$
	Detritus gyt	tja.	

1052

Lu-1649. Vatnskotsvatn 793:9, 360 to 365cm 1450 ± 55 $\delta^{I_3}C = -20.9\%$

Detritus gyttja. Comment: 79% sample.

Lu-1650. Vatnskotsvatn 793:10, 297 to 302cm 1590 ± 60 Detritus gyttja. *Comment*: 67% sample.

Lu-1651. Vatnskotsvatn 793:11, 247 to 252cm 1390 \pm 60 $\delta^{I3}C = -21.2\%$ Detritus gyttja. *Comment*: 74% sample.

Lu-1682. Vatnskotsvatn 416:13, 386 to 393cm 8990 ± 155 $\delta^{I3}C = -21.3\%$

Fine detritus gyttja. No *Betula* pollen. *Comment*: 33% sample (3 1-day counts.)

Lu-1683. Vatnskotsvatn 416:14, 338 to 343cm 7660 ± 115 $\delta^{13}C = -17.7\%$

Coarse detritus gyttja. 1st Betula min. Comment: 53% sample.

Lu-1684. Vatnskotsvatn 416:15, 309 to 316cm 6570 ± 75 $\delta^{I_3}C = -20.3\%$

Fine detritus gyttja. A few cm below 2nd Betula max. Comment: 85% sample.

Lu-1685. Vatnskotsvatn 416:16, 267 to 272cm $\begin{array}{c} 6040 \pm 100 \\ \delta^{\iota s}C = -19.8\% \end{array}$

Coarse detritus gyttja. Comment: 56% sample.

Lu-1724. Vatnskotsvatn 416:17, 228 to 234cm 4470 ± 95 $\delta^{I_3}C = -20.9\%$

Coarse detritus gyttja. Comment: 51% sample.

Lu-1725. Vatnskotsvatn 416:18, 176 to 182cm 2710 ± 70 $\delta^{I_3}C = -17.5\%$

Coarse detritus gyttja. Comment: 65% sample.

D. Poland

Wielkie Gacno series

Sediment from Lake Wielkie Gacno, NW Poland (53° 47' 40" N, 17° 33' 45" E). Coll 1977-78 by G Digerfeldt and M Hjelmroos; subm by M Hjelmroos. Dating is part of study of Postglacial vegetational history of surrounding area. Study belongs to IGCP Subproject 158B (Berglund, 1979). Depths refer to sediment surface. All samples pretreated with HCl except Lu-1637, which is wood from dugout canoe from bottom of lake (pretreated with HCl and NaOH).

Profile 1

Coll 1977. Water depth at sampling point ca 5m.

Sören Håkansson

Lu-1531.	Wielkie Gacno, 799 to 803cm	9870 ± 90 $\delta^{13}C = -25.5\%$
Silty algal §	gyttja.	$0^{-1}C = -27.7/00$
Lu-1532.	Wielkie Gacno, 775 to 780cm	9280 ± 90 $\delta^{ISC} = -19.7\%$
Algal gyttj	а.	0
Lu-1533.	Wielkie Gacno, 750 to 755cm	8830 ± 85 $\delta^{_{13}}C = -21.7\%$
Algal gyttja	a.	
Lu-1534.	Wielkie Gacno, 725 to 730cm	8350 ± 80
Algal gyttj	a.	$\delta^{\scriptscriptstyle 13}C = -23.5\%$
Lu-1535.	Wielkie Gacno, 675 to 680cm	8120 ± 80
Algal gyttj	a.	$\delta^{{}^{13}}C = -22.9\%$
Lu-1536.	Wielkie Gacno, 625 to 630cm	7160 ± 75
Algal gyttj	a.	$\delta^{{}^{\scriptscriptstyle 13}}C=-22.9\%_{o}$
Lu-1469.	Wielkie Gacno, 575 to 580cm	6590 ± 70
Algal gyttja	a.	$\delta^{13}C = -17.3\%$
•	Wielkie Gacno, 525 to 530cm	$5950 \pm \pm 65$
Algal gyttj		$\delta^{IS}C = -21.0\%$
0.1	a. Wielkie Gacno, 475 to 480cm	5430 ± 65
		$\delta^{13}C = -20.6\%$
Algal gyttj: Lu-1539.	a. Wielkie Gacno, 445 to 450cm	5130 ± 60
		$\delta^{13}C = -21.0\%$
Algal gyttj:	^{a.} Wielkie Gacno, 425 to 430cm	4910 - 70
		$\frac{4810 \pm 60}{\delta^{13}C} = -15.6\%$
Algal gyttj		
Lu-1540.	Wielkie Gacno, 75 to 80cm	1220 ± 50 $\delta^{_{13}}C = -23.7\%$
Detritus gy	5	,
Lu-1541.	Wielkie Gacno, 25 to 30cm	780 ± 50 $\delta^{13}C = -26.0\%$
Detritus gy	rttja.	0 0 20.0700

Profile 2

1054

Coll May 1978. Water depth at sampling point ca 5m.

	University of Lund Radiocarbon Dates	XIII
Lu-1608.	Wielkie Gacno, 390 to 395cm	$4230 \pm \delta^{_{13}}C = -15$
Algal gyttja	a.	0 0 - 1)
Lu-1609.	Wielkie Gacno, 340 to 345cm	$3740 \pm \delta^{\imath \imath s} C = -16$
Algal gyttja	a.	$0^{-1}C = -10$
Lu-1610.	Wielkie Gacno, 290 to 295cm	$3320 \pm \delta^{{\scriptscriptstyle 13}}C = -18$
Algal gyttja	a.	$0^{10}C = -10$
Lu-1611.	Wielkie Gacno, 240 to 245cm	$egin{array}{c} 2650 \ \pm \ \delta^{{\scriptscriptstyle I}{\scriptscriptstyle 3}}C = -19 \end{array}$
Algal gyttja	a.	$0^{10}C = -19$
Lu-1612.	Wielkie Gacno, 195 to 200cm	$2250 \pm \delta^{{\scriptscriptstyle 13}}C = -22$
Algal gyttja	a.	$0^{10}C_{1} = -22$
Lu-1613.	Wielkie Gacno, 140 to 145cm	$1790 \pm$
		$\delta^{IJ}C = -22$
Algal gyttja	a.	
ofile 3	a.	
ofile 3	a. 978. Water depth at sampling point 1.7m	1.
file 3 Coll Oct 19		$11,840 \pm$
o file 3 Coll Oct 19	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm	
ofile 3 Coll Oct 19 Lu-1678.	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm	$11,840 \pm \delta^{13}C = -25$ 11,380 ±
ofile 3 Coll Oct 19 Lu-1678. Algal gyttja Lu-1679.	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm a.	$11,840 \pm \delta^{13}C = -25$
ofile 3 Coll Oct 19 Lu-1678. Algal gyttja Lu-1679.	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm a. Wielkie Gacno, 186 to 190cm	$11,840 \pm \delta^{13}C = -25$ $11,380 \pm \delta^{13}C = -22$ $11,100 \pm \delta^{13}C = -22$
file 3 Coll Oct 19 Lu-1678. Algal gyttja Lu-1679. Clayey and	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm a. Wielkie Gacno, 186 to 190cm sandy algal gyttja. Wielkie Gacno, 178 to 182cm	$11,840 \pm \delta^{13}C = -25$ 11,380 \pm \delta^{13}C = -22
ofile 3 Coll Oct 19 Lu-1678. Algal gyttja Lu-1679. Clayey and Lu-1680. Muddy clay	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm a. Wielkie Gacno, 186 to 190cm sandy algal gyttja. Wielkie Gacno, 178 to 182cm	$11,840 \pm \delta^{13}C = -25$ $11,380 \pm \delta^{13}C = -22$ $11,100 \pm \delta^{13}C = -22$ $11,100 \pm \delta^{13}C = -22$ $11,000 \pm \delta^{13}C = -22$
ofile 3 Coll Oct 19 Lu-1678. Algal gyttja Lu-1679. Clayey and Lu-1680. Muddy clay	978. Water depth at sampling point 1.7m Wielkie Gacno, 197 to 201cm a. Wielkie Gacno, 186 to 190cm sandy algal gyttja. Wielkie Gacno, 178 to 182cm y. Wielkie Gacno, 165 to 170cm	$11,840 \pm \delta^{13}C = -25$ $11,380 \pm \delta^{13}C = -22$ $11,100 \pm \delta^{13}C = -22$

		+ 1000)
Lu-1632.	Weglewice	II 35,100	
		- 900)
		$\delta^{\imath\imath}C=-26.7\%$	0
Compl	from 95 to	20cm thick continuous layor of organic silt 590	h

Sample from 25 to 30cm thick continuous layer of organic silt, 520 to 550cm below surface of periglacial terrace of Prosna R, 300m SE of

Sören Håkansson

village Węglewice, Kalisz Voivodship, SW Poland (51° 23' 20" N, 18° 13' 10" E). Layer is overlain and underlain by rhythmically stratified periglacial flood deposits (Rotnicki, 1966). Coll 1976 by K Tobolski and K Rotnicki; subm by K Tobolski, Dept Geog, Adam Mickiewicz Univ, Poznań, Poland. *Comment*: pretreated with HCl and NaOH.

Lu-1632A.	Weglewice II, soluble	+ 1200 36,400
	e ,	-1000
		$\delta^{_{13}}C = -26.1\%$

Acid-precipitated part of NaOH-soluble fraction from Lu-1632.

E. Switzerland/France

Lu-1606. Messery

 3230 ± 85 $\delta^{1s}C = -28.5\%$

Wood from carbonaceous silty lake sediments from Lake Geneva near village Messery, France (46° 22' N, 6° 17' E). Coll 1975 by R Thompson; subm by C Reynaud, Dept Geol, Univ Geneva, Switzerland. Only HCl pretreatment due to small sample size. Diluted; 53% sample.

Corsier series

Organic material from shore deposits overlain by limnic sediments in Lake Geneva near village Corsier, Switzerland (46° 16' N, 6° 12' E). Coll 1979 and subm by C Reynaud. Dated as part of study of lake level changes. No pretreatment; small samples. Burned at <650°C to avoid pyrolysis of carbonates.

Lu-1696.	Corsier Cl	5140 ± 120

 $\delta^{13}C = -27.4\%$

Slightly carbonaceous shore-peat. *Comment*: sample undersized; diluted; 31% sample. (3 1-day counts.)

Lu-1697.	Corsier C9	5090 ± 65
		$\delta^{13}C = -27.4\%$
C1. 1. 1	1 1	

Slightly carbonaceous shore-peat.

II. ARCHAEOLOGIC SAMPLES

A. Sweden

Löddeköpinge No. 10 series (II)

Human bones from grave field at Löddeköpinge No. 10, Löddeköpinge parish, E Scania (55° 45' N, 13° 00' E). Coll 1977 and subm by T Ohlsson, Hist Mus, Univ Lund. All samples are from structures with finds of datable coins; dated to gain information about obvious discrepancy between radiocarbon dates and expected max age of structures, reported in 1st part of series (R, 1979, v 21, p 400-402). Collagen extracted as described previously (R, 1976, v 18, p 290), but only Lu-1543 received NaOH treatment. Vertebrae and other bones with thin outer walls, consisting mainly of spongy bone, were not crushed before extraction.

Lu-1542. Löddeköpinge No. 10, Structure 182 1010 ± 50 $\delta^{I3}C = -18.3\%$

Collagen from 2 heel bones and 2 ankle bones assoc with coin minted for Olof Hunger AD 1085 to 1096. Comment: organic carbon content: 6.3%.

Lu-1543. Löddeköpinge No. 10, Structure 393 1060 ± 50 $\delta^{13}C = -18.2\%$

Collagen from 2 large heel bones and 1 $\frac{1}{2}$ ankle bones assoc with coin minted for Sven Estridsen AD 1047 to 1074. *Comment*: organic carbon content: 5.3%.

Lu-1544. Löddeköpinge No. 10, Structure 398 1070 ± 50 $\delta^{\iota_3}C = -18.3\%$

Collagen from mixture of small bones assoc with coin minted for Sven Estridsen AD 1047 to 1074. Comment: organic carbon content: 7.2%.

Lu-1545. Löddeköpinge No. 10, Structure 406 1060 ± 50 $\delta^{13}C = -17.8\%$

Collagen from a heel bone and fragments of tubular bones assoc with coin minted for Harald Hein AD 1075 to 1080. *Comment*: organic carbon content: 6.6%.

Lu-1546. Löddeköpinge No. 10, Structure 416 1060 ± 50 $\delta^{13}C = -18.2\%$

Collagen from shin bone assoc with coin minted for Sven Estridsen AD 1047 to 1074. Comment: organic carbon content: 7.5%

Lu-1547. Löddeköpinge No. 10, Structure 464 960 \pm 50 $\delta^{13}C = -18.1\%$

Collagen from fragments of tubular bones and heel bone assoc with coin minted for Sven Estridsen AD 1047 to 1074. Comment: organic carbon content: 6.5%.

Lu-1548. Löddeköpinge No. 10, Structure 471 1010 \pm 50 $\delta^{13}C = -17.7\%$

Collagen from mixture of ill-preserved bone fragments assoc with coin minted for Heinrich II AD 1002 to 1024. *Comment*: organic carbon content: 4.3%.

Lu-1549. Löddeköpinge No. 10, Structure 488 1040 ± 50 $\delta^{13}C = -17.8\%$

Collagen from mixture of bone fragments assoc with coin minted for Knut den Store (the Great) AD 1018 to 1035. *Comment*: organic carbon content: 5.8%.

Lu-1550. Löddeköpinge No. 10, Structure 535 970 ± 50
$$\delta^{13}C = -19.0\%$$

Collagen from an ankle bone, some vertebra fragments, and 3 hand or foot bones assoc with German coin, probably minted AD 1036 to 1059. *Comment*: organic carbon content: 6.9%.

Sören Håkansson

Lu-1551. Löddeköpinge No. 10, Structure 596 960 ± 50 $\delta^{_{13}}C = -18.0\%$

Collagen from tubular bone assoc with coin minted for Sven Estridsen AD 1047 to 1074. *Comment*: organic carbon content: 5.7%.

General Comment: probable time of deposition for total coin assembly is AD 1050 to 1100 according to numismatologists G Galster and J Steen Jensen, Copenhagen.

Ängdala series

Charcoal from flint mines in Senonian chalk at Ängdala, S Sallerup parish, S Sweden (55° 35' 20" N, 13° 07' 20" E). Coll 1977 by U Säfvestad; subm by B Salomonsson, Malmö Mus. Pretreated with HCl and NaOH.

Lu-1633.	Ängdala, 6120:G4	5010 ± 65 $\delta^{I3}C = -22.1\%$
Sample fro	m Mine No. 4.	
Lu-1635.	Ängdala, 6120:27:8:2	2760 ± 55 $\delta^{{}^{13}C} = -23.7\%$

Sample from Level II with Late Bronze age artifacts.

Lu-1636.	Ängdala, 6120	5080 ± 65
	8 /	$\delta^{_{13}}C = -24.9\%$

Sample from post-hole. Comment: sample undersized; diluted; 60% sample. (3 1-day counts.)

S Lappland series

Charcoal from five sites in Vilhelmina parish, S Lappland, N Sweden. Subm by A Huggert, Västerbottens Mus, Umeå. For other dates from same region, see Varris series and Vojmsjöluspen series (R, 1979, v 21, p 396-398). Nine samples were small (Lu-1561, -1562, -1566, -1569 to -1571, -1573, -1576, and -1577) and, therefore, received only mild pretreatment with NaOH and HCl. All other samples received normal pretreatment with HCl and NaOH.

Site Raä 235

(64° 40' N, 16° 20' E). Coll Aug 1978 by L Flodström.

Lu-1558.	Raä 235, A5	7280 ± 75
	,	$\delta^{I3}C = -25.9\%$

Charcoal from 180cm below ground level in hunting pit.

Lu-1559.	Raä 235, A8 F2/F3			1100 ± 50
	, ,			$\delta^{_{13}}C = -23.7\%$

Charcoal from 180cm below ground level in hunting pit.

Lu-1560.	Raä 235, A14 K2	1380 ± 50
	,	$\delta^{{\scriptscriptstyle I}{\scriptscriptstyle 3}}C=-24.4\%$ o

Charcoal from 180cm below ground level in hunting pit.

Lu-1561. Raä 235, A17 K2 1520 ± 50

 $\delta^{I_3}C = -25.2\%$

Charcoal from 200cm below ground level in hunting pit.

Lu-1562.	Raä 235, A18 Sample 1	6160 ± 70
	-	$\delta^{_{13}}C = -24.9\%$

Charcoal from 40cm below surface under mound situated beside hunting pit.

Lu-1563.	Raä 235, A18 Sample 2	4700 ± 60
	_	$\delta^{{}^{\scriptscriptstyle I}{}^{\scriptscriptstyle S}}C=-23.7\%$ o

Charcoal from 180cm below ground level in hunting pit.

Lu-1564.	Raä 235, A23	1370 ± 50
		$\delta^{I3}C = -24.6\%$

Charcoal from 180cm below ground level in hunting pit.

Site Raä 180

(64° 52' N, 16° 44' E). Coll June 1977 by L G Spång.

Lu-1565.	Raä 180, 111/416 K4	2460 ± 55
		$\delta^{I3}C = -23.4\%$

Charcoal from *ca* 5cm below recent surface in hearth or cooking pit in eroded area near lake. Assoc with quartz scraper.

Lu-1566.	Raä 180, 116/369 K2	8830 ± 110
		$\delta^{_{13}}C = -24.9\%$

Charcoal from 10cm below surface in cooking pit. Assoc with bones. Comment: sample undersized; diluted; 67% sample.

Site Raä 553

(64° 52' N, 16° 44' E). Coll July-Sept 1977 by L G Spång, B Syse, and L Kallerskog.

Lu-1567.	Raä 553, A2 K21	8180 ± 80
		$\delta^{13}C = -24.5\%$
Charcoal fi	com bottom of earth oven 30cm be	low surface.

$\delta^{IS}C =$	2120 ± 50
	= -24.2%

Charcoal from hearth 30 to 35cm below surface.

Lu-1569.	Raä 553, A6 K11	4440 ± 80
		$\delta^{_{13}}C = -24.4\%$

Charcoal from 15 to 20cm below surface. Comment: undersized; diluted; 65% sample.

Lu-1570. Raä 553, A7 K15 5270 ± 90 $\delta^{13}C = -24.2\%$

Charcoal from earth oven (?) 30 to 40cm below surface. Comment: undersized; diluted; 56% sample.

Sören Håkansson

Lu-1571. Raä 553, A9 K28

 450 ± 55 $\delta^{13}C = -24.4\%$

Charcoal from hearth 5cm below surface. Comment: undersized; diluted; 77% sample.

Ln-1572.	Raä 553, K3	5570 ± 65
		$\delta^{I3}C = -24.5\%$

Charcoal from cooking pit (?) 20cm below surface. Assoc with bones.

Lu-1573.	Raä 553, K23	7850 ± 115
		$\delta^{I3}C = -24.5\%$

Charcoal under layer of burned stones 6cm below surface. Comment: undersized; diluted; 52% sample.

Lu-1574.	Raä 553, K33	4120 ± 60
	,	$\delta^{_{13}}C = -23.4\%$

Charcoal from hearth 6cm below surface.

Lu-1575.	Raä 553, Al K7:3	1280 ± 50
	,	$\delta^{_{13}}C = -24.4\%$

Charcoal (Pinus sp) id by T Bartholin from bottom of earth oven 25cm below surface.

Site Raä 190

(64° 52' N, 16° 44' E). Coll July-Sept 1977 by K Wijkander and G Rydström.

Lu-1576.	Raä 190, A11	2550 ± 75
	,	$\delta^{_{13}}C = -24.5\%$

Charcoal from hearth 5cm below surface. Comment: undersized; diluted; 60% sample.

Lu-1577.	Raä 190, A10	3590 ± 100
	,	$\delta^{I3}C = -24.5\%$

Charcoal from hearth 5cm below surface. Comment: undersized; diluted; 31% sample. (3 1-day counts.)

Lu-1578.	Raä 190, A14	7070 ± 75
		$\delta^{13}C = -23.3\%$

Charcoal from bottom of earth oven 30cm below surface.

Site Raä 921

(64° 52' N, 16° 44' E). Coll June 1977 by L Flodström.

Lu-1579.	Raä 921, 110/301 Kl	2310 ± 55
		$\delta^{13}C = -23.6\%$

Charcoal from 20cm below surface. Assoc with asbestos ceramics.

Lu-1677. Strimasund

<150 $\delta^{14}C = -1.6 \pm 5.7\%$ $\delta^{13}C = -25.0\%$

Wood (*Betula* sp) id by T Bartholin from hole for handle in iron object from Feature No. 46, Strimasund, Tärna parish, Västerbotten Co, N Sweden (66° 04' N, 14° 52.5' E). Coll 1974 by S af Ekenstam, Hemavan; subm by A Huggert. Only mild pretreatment with NaOH and HCl due to small sample size.

Ingelstorp series

Charcoal from settlement area and grave field at Ingelstorp, Scania (55° 25' N, 14° 02' E). Coll 1977 and subm by M Strömberg, Hist Mus, Univ Lund. For other dates from Ingelstorp, see R, 1976, v 18, p 314; 1977, v 19, p 435-436; 1978, v 20, p 430-432. Only mild pretreatment with NaOH and HCl due to small sample size.

Lu-1615. Ingelstorp 41, Sample 1:HT78 2830 ± 55

 $\delta^{13}C = -25.4\%$

Charcoal from hearth in house foundation at Ingelstorp 41 (Strömberg, 1977, p 62-63). Assoc with pottery and flints.

Lu-1616.	Ingelstorp 32:5, Sample 2:HT78	2660 ± 60
		$\delta^{_{13}}C = -23.6\%$

Charcoal from fire pit (Grave 67, Field 4) at Ingelstorp 32:5 (Strömberg, 1977, p 14-15). Assoc with burned bones. *Comment*: sample undersized; diluted; 86% sample.

Valleberga series

Animal bones from Bronze age settlement area at Valleberga 36, SE Scania (55° 24' N, 14° 03' E). Coll 1975 and subm by M Strömberg. For other dates from Valleberga, see R, 1974, v 16, p 324-325; 1975, v 17, p 192-193; 1976, v 18, p 313-314; 1979, v 21, p 398. Collagen extracted as described previously (R, 1976, v 18, p 290). Lu-1652 and -1674 received NaOH treatment but not Lu-1673.

Lu-1652. Valleberga 36, Sample 3:78-79 2710 \pm 60 $\delta^{13}C = -20.2\%$

Collagen from ill-preserved lower jaw bone of Sus from cultural layer, Trench 1, Sq x = +4, y = +6, lower stratum. Assoc with Late Bronze age pottery. Comment: sample undersized; diluted; 80% sample. Organic carbon content: 1.9%.

Lu-1673.Valleberga 36, Sample 4:78-79 2800 ± 55 $\delta^{13}C = -20.4\%$

Collagen from well-preserved ulna of *Bos* from cultural layer, Trench 1, Sq x = +0, y = +7, lower stratum. Assoc with Late Bronze age pottery. *Comment*: organic carbon content: 6.0%.

Lu-1674. Valleberga 36, Sample 5:78-79 2860 ± 55 $\delta^{I3}C = -20.1\%$

Collagen from an ankle bone and 3 phalanges of *Bos* from cultural layer, Trench 1, Sq x = +2, y = +4. Assoc with Late Bronze age pottery. *Comment*: organic carbon content: 2.4%.

Lu-1614. Gislöv 7

 1100 ± 50 $\delta^{13}C = -24.0\%$

Charcoal from House 1:77 at Gislöv 7, Nöbbelöv parish, SE Scania (55° 29' N, 14° 17' E). Coll 1977 by M Strömberg. Assoc with pottery and objects of bronze and iron, indicating Viking age.

General Comment (MS): on Lu-1614 to -1616, -1652, -1673, and -1674 all dates agree well with archaeol estimates based on assoc finds.

Lu-1617. Bulltoftagården

 6660 ± 80 $\delta^{13}C = -25.6\%$

Hazel-nut shells from Layer 5a at Bulltoftagården, Malmö, S Scania (55° 35' 40" N, 13° 04' 20" E). Coll 1972 and subm by L Larsson, Hist Mus, Univ Lund. Assoc with transverse arrowheads and core axes (Early Ertebølle culture). Pretreated with HCl and NaOH. Sample undersized; diluted; 78% sample.

Ageröd V series

Hazel-nut shells and animal bone from refuse layer of Mesolithic settlement Ageröd V at raised bog Ageröds mosse, Munkarp parish, Scania (55° 56.5' N, 13° 25' E). Coll 1978 and subm by L Larsson. Results of study of settlement area pub by submitter (Larsson, 1978). For other dates from Ageröd V, see R, 1976, v 18, p 307-308. Hazel-nut shells pretreated with HCl and NaOH; bone collagen extracted as described previously (R, 1976, v 18, p 290) without NaOH treatment.

Lu-1622. Ageröd V, No. 016/003 6680 ± 70

 $\delta^{13}C = -25.3\%$

Well-preserved hazel-nut shells assoc with transverse and oblique arrowheads and blade tools (Early Ertebølle culture).

Lu-1623. Ageröd V, No. 016/003/0102

 $\delta^{I3}C = -22.0\%$

 6860 ± 70

Collagen from bone (centratarsale navicula cuboide) of Alces alces assoc with same artifact assembly as Lu-1622. Comment: organic carbon content: 7.3%.

General Comment (LL): on Lu-1617, -1622, and -1623 dates agree well with estimate based on artifact assemblage.

B. Denmark

Lu-1607.Svendborg, Franciscan monastery,
IV A-AB 1 780 ± 50
 $\delta^{I3}C = -24.8\%$

Charcoal (Fagus sp) id by T Bartholin from fire-stratum in chancel of monastery church in town of Svendborg, Fyn (55° 03' N, 10° 36' E). Coll 1978 by J Bech; subm by H M Jansen, Svendborg & Omegns Mus, Svendborg. For other dates from Svendborg, see R, 1976, v 18, p 318-319; 1977, v 19, p 437. Pretreated with HCl and NaOH.

C. Egypt

Sakkara series

Three samples assoc with mummy coll Aug 1735 in catacombs of Sakkara (*ca* 29° 51' N, 31° 14' E) by C F von Höpken and E Carlson (Leche, 1739, p 22-26); subm by E Cinthio, Hist Mus, Univ Lund. X-ray examination showed that mummy was embalmed with crossed arms, which places mummy approx between 1500 BC and 1085 BC (Ahlström, Håkansson, and Olin, 1978, p 33).

Lu-1503. Sakkara, Sample 1 2410 ± 55

 $\delta^{13}C = -24.5\%$

Wood from coffin in which mummy was found according to account of journey to Sachara by von Höpken and Carlson (Leche, 1739, p 26). Dated sample consisted of *ca* 20 tree-rings. Pretreated with NaOH.

Lu-1504.	Sakkara, Sample 2	3480 ± 55
	-	$\delta^{13}C = -24.0\%$

Pieces of "pure" resin used for embalming of mummy. No pretreatment.

Lu-1505. Sakkara, Sample 3 3460 ± 55

 $\delta^{13}C = -22.9\%$

Pieces of resin with traces of bandages from mummy wrapping. No pretreatment.

REFERENCES

- Ahlström, C G, Håkansson, Sören, and Olin, Tord, 1978, Den egyptiska mumien på Museum Stobæanum i Lund: Sydsvenska Medicinhist Sällsk Årssk (Lund) 1978, p 17-42.
- Berglund, B E, ed, 1979, Palaeohydrological changes in the temperate zone in the last 15000 years. Subproject B. Lake and mire environments: Project Guide I, Dept Quaternary Geol, Univ Lund, 123 + 21 p.

Björck, S, 1979, Late Weichselian stratigraphy of Blekinge, SE Sweden, and water level changes in the Baltic Ice Lake: Thesis, Univ Lund, Sweden, 248 p.

Håkansson, Sören, 1974, University of Lund radiocarbon dates VII: Radiocarbon, v 16, p 307-330.

1976, University of Lund radiocarbon dates IX: Radiocarbon, v 18, p 290-320.

1977, University of Lund radiocarbon dates X: Radiocarbon, v 19, p 424-441.

1978, University of Lund radiocarbon dates XI: Radiocarbon, v 20, p 416-435. 1979, University of Lund radiocarbon dates XII: Radiocarbon, v 21, p 384-404.

Larsson, L, 1978, Agcröd I:B—Ageröd I:D. A study of Early Atlantic settlement in Scania: Acta Archaeol Lundensia, ser in 4°, No. 12, 258 p.

Leche, Johannes, 1739, De Mumia Aegyptiaca, disputatio historico-medica (In latin with account of journey to Sachara by von Höpken and Carlson in Swedish): Thesis, Univ Lund.

Lima-de-Faria, Antonio, 1977, Femtusenåriga rester av tall vid Rondanes nationalpark: Svensk Bot Tidskr, v 71, p 29-30.

Mangerud, J, Andersen, S T, Berglund, B E, and Donner, J J, 1974, Quaternary stratigraphy of Norden, a proposal for terminology and classification: Boreas (Oslo), v 3, p 109-126.

Rotnicki, Karol, 1966, Rzezba Wzgórz Ostrzeszowskich jako rezultat rozwoju stoku podczas Würmu (English summary: The relief of the Ostrzeszów Hills as result of slope development during the Würm): Prace Komis Geog—Geol, Pozn Tow Przyj Nauk, v 5, no. 2, p 1-260.

Strömberg, M, 1977, Bondesamhällen under Ingelstorps forntid: Kulturnämnden i Ystad 1977, 84 p.

NANCY NATURAL RADIOCARBON MEASUREMENTS VI

RENÉ COPPENS, BERNARD GUILLET*, ROBERT JAEGY, and PIERRE RICHARD

Laboratoire de Radiogéologie, Ecole Nationale Supérieure de Géologie Appliquée et de Prospection Minière, BP 452 54001 Nancy, France

The following list includes some measurements made during 1978 and 1979 in the radiocarbon laboratory of the Ecole Nationale Supérieure de Géologie Appliquée et de Prospection Minière (ENSG) de Nancy. Equipment, measurement and treatment of samples are as reported previously (R, 1979, v 21, p 453-464) where the sample is synthesized to benzene. Radiocarbon ages are calculated using the ¹⁴C half-life of 5568 years and 95% activity of NBS oxalic acid is used as modern standard. Anthracite coal and Merck commercial benzene are used for the dead carbon run.

Counting errors are expressed at 1σ confidence level. AD/BC* dates are corrected using the half-life of 5730 years and according to the MASCA correction curve (Ralph, Michael, and Han, 1973). Description and comments are generally based on information supplied by submitters.

SAMPLE DESCRIPTIONS

I. ARCHAEOLOGIC AND HISTORIC SAMPLES

A. France

Château de la Hunaudaye, Plédéliac, Côtes-du-Nord

Castle destroyed in 1347 and rebuilt soon after. N part was modified about 1420 and two houses were built, the first in the 16th century and the second in the 17th century. Castle was set on fire by revolutionists in 1793 (Delumeau, 1969; 1971).

Ny-547.

570 ± 80 ad 1370 *

Carbonized wood. Coll by J Y Gervais under flagstone of castle yard; subm 1978 by P Henry. *Comment:* ¹⁴C date agrees with repairs about 1420.

Ny-548.

320 ± 80 ad 1510 *

 710 ± 80

AD 1250 *

Carbonized wood. Same origin as Ny-547. *Comment:* ¹⁴C date agrees with known date of building in 16th century.

Ny-669. Avioth, Meuse

Head of a wooden statue. Subm 1979 by R Sommesous, parson of Avioth, 55 Montmédy, France. May belong to old wooden statue. Possibly a more recent copy (Vigneron, 1972; 1979). *Comment*: ¹⁴C date does not conflict with first hypothesis (*cf* Ny-336, R, 1978, v 20, p 63).

* Centre de Pédologie Biologique, Nancy-Vandoeuvre

Jabreille-les-Bordes series, Lieu-dit Le Chatelard (Haute-Vienne)

Samples date rampart of fence. Coll and subm by J M Desbordes, Dir Antiquités Hist Limousin, Limoges, France. Estimated age: Gallo-Roman period.

P stock
Ny-555. 1690 ± 80 AD 270 *
Charcoal. Foundations of W part of rampart.
1820 ± 80 Ny-556. AD 150 *
Charcoal. Middle of W part of rampart.
730 ± 120 Ny-557. AD 1230 *
Charcoal. Upper part of W part of rampart.
Ny-671. 2190 ± 270 330 BC^* Charcoal. Core of the W part of rampart.
Ny-670. 2150 ± 180 300 BC^*
Charcoal. Shoulder of fence, S part, median level.
Ny-672. 1920 ± 180 AD 60 *
Charcoal. Shoulder of fence, S part, lower level.
General Comment (JMD): ¹⁴ C dates agree with expected age (early Roman age for construction of hill-fort).
Solignac series, Haute-Vienne

Coll and subm 1979 by J M Desbordes.

Ny-634.

970 ± 80 ad 1010 *

Charcoal. Estimated age: 10th century.

Carbonized wood from sepultures close by the apse of a church dedicated in 1143.

	Ny-674.	Sepulture 0	340 ± 110 ad 1490 *
	Ny-695.	Sepulture 1	730 ± 100 ad 1230 *
	Ny-696.	Sepulture 2a	1030 ± 90 ad 950 *
~	Ny-693.	Drilling	840 ± 110 ad 1140 *

General Comment: dates agree with expected age.

Ny-635. Javerdat, Haute-Vienne

980 ± 80 ad 1000 *

Coll 1978 by G Lintz; subm by J M Desbordes. Charcoal. Estimated age: 11th or 12th century. *Comment* (JMD): dates agree with age of broken pottery.

Ny-552. Tarnac, Corrèze

1760 ± 80 AD 200 *

Charcoal at foot of tumulus (No. 5). Coll 1978 by G Lintz; subm by J M Desbordes. Estimated age: Tène or Roman period. *Comment* (JMD): no material. ¹⁴C gives one and only date.

1320 ± 90 p 650 *

Ny-646. La Vallade Saint Victor, Creuse AD 650 *

Charcoal coll 1978 by Valladas; subm by J M Desbordes. May date early ploughing.

B. Italy

Monte Amiata district series, Grossetto and Sienna

Oak from regular timbering of shallow seated mines. Discovered 1970 by O Strappa; coll and subm 1978 by F Saupé.

First sample	
Ny-411.1	5730 ± 100
Ny-411.2	5720 ± 110
Second sample	
Ny-411.3	5720 ± 100
Ny-411.4	5710 ± 100
Ny-411.5	5770 ± 100

Comment: Mean: 5730 BP. Much too old to be attributed to one of known civilizations in Italy.

Mofettes — Monte Amiata dist, Grossetto and Sienna Prov, Italy. Coll and subm 1978 by F Saupé.

Ny-526.

$22,570 \pm 1000$

Drill hole Sienna 2. Dismantled power-plant of Piancastagnaio, Sienna.

Ny-524.	>41,000
Drill hole No. 10, 12th level, Solforate mine.	

Ny-525.

>41,000

Drill hole 100m N of former mine of Argus.

Ny-522.

 $30,580 \pm 1000$

Drill hole ENEL "PN 4" (open tank).

General Comment: two emanations have a high pressure and show virtually no ¹⁴C (Ny-524,-525). Two others have a pressure close to

atmospheric and small amounts of ¹⁴C were introduced by atmospheric contamination (Ny-522,-526).

Living plants (trees, bushes, and reeds) growing near volcanic emanations. Coll and subm by F Saupé 1978.

Ny-483.

 540 ± 80

Alder (Alnus sp), S bank of Rondi naia Creek, front of blowing exhaust shaft of Pietrineri mine, Sienna.

Ny-484.	370 ± 80
Ny-484.	370 ± 80

Cherry. A few m from S Giovanni shaft, Sienna.

Ny-519. 4350 ± 90

Wild cherry (Cerasus sp). Same as above.

Ny-516.

 1820 ± 100

Reed (*Phragmites* sp), immediately below Renaioli drift, next to putizze di Renaioli, Abetoso Creek, Grossetto.

Ny-517. 2450 ± 80

Broom (Sarothamnus scoparius), Putizze di S Giovanni, Sienna.

Ny-518.

4350 ± 80

Broom (Sarothamnus scoparius), Putizze di Pietrineri sink-hole, Sienna.

Ny-535.

Modern

Blank oak (*Quercus robur*), NW of Palazzo di Pietrineri, outside of presently active mofette. *Comment*: dating of plants grown in vicinity of volcanic emanations emitting CO_2 can yield pseudo-ages with too high results.

General Comment: study performed in order to check working hypothesis of volcanic contamination made to explain results of Ny-411.

II. SOIL SAMPLES

Podzols

Landes du Medoc series, France

The Landes du Medoc, near Bordeaux, are characterized by a covering of quartz sand and the presence of groundwater very close to the surface. Soils here are fairly hydromorphic podzols. Righi (1977) studied the evolution of a podzolic sequence on a very short soil catena, 12m long at Lagunan (45° 11′ 20″ N, 0° 57′ 24″ W). Altitudinal difference between foot and top of hill is ca 30cm. Best drained podzols at top of hill have cemented spodic horizon (B_{22h}). Most hydromorphic podzols at foot of the hill have loose B_{2h} horizon. B horizon samples, coll and subm by D Righi, Univ Poitiers, are further described according to vertical topographic sequence. Lateral distance between each sampled profile is ca 3m.

1068	René Coppens, Bernard	Guillet, Robert Jaegy	, and Pierre Richard
------	-----------------------	-----------------------	----------------------

Ny-609. Lagunan 3 B_{21h} 50 to 55cm, C %: 1.8 C/N = 19	1440 ± 80
Ny-610. Same location, cement B_{22h} 60 to 65cm, C %: 1.5 C/N = 39	2810 ± 70
Ny-611. Same location B_3 75 to 80cm, C %: 0.9 C/N = 47	3390 ± 80
Ny-612. Lagunan 3-2, cemented B_{22h} 60 to 65cm, C %: 1.0 C/N = 36	2380 ± 70
Ny-613. Lagunan 2, slightly cemented 3_{22h} 55 to 60cm, C %: 1.1 C/N = 34	2000 ± 70
Ny-614. Same location B_3 65 to 70cm, C $\%$: 0.7 C/N = 33	2440 ± 70
Ny-615. Lagunan 2-4 B_{2h} 40 to 45cm, C $\%$: 1.9 C/N = 22	1220 ± 70
Ny-616. Lagunan 4 B_{2h} 30 to 35cm, C $\%$: 1.9 C/N = 22	770 ± 80
Ny-617. Same location B_3 40 to 45cm, C $\%$: 0.9 C/N = 23	770 ± 80

General Comment: most striking aspects of series are very good agreement between longest mean residence times of organic matter (Ny-610-614) and micromorphologic features of corresponding horizons. In these horizons the N poor organic matter is assoc with mainly alumina-polymers to form grain coatings which solder skeleton grains together. In the other horizons, better biologic activity is demonstrated by shorter mean residence times, lower C/N ratios of organic matter and, above all, a microstructural organization of silt and organic matter as pellets and aggregates (Righi and Guillet, 1977).

Bassin Parisien series, France

During the Pleistocene and Holocene the sands of the Tertiary (Auversian Beauchamp sands and Stampian Fontainebleau sands) were more or less recovered and mixed by silt. Even in the case of a moderate sitation rate ($\approx 10\%$) the developed soils are podzols or podzolic soils in which an A₂ horizon is slightly differentiated. Samples coll near Villers Cotterets (49° 13′ 48″ N, 2° 59′ 40″ E) and Fontainebleau (48° 25′ 44″ N, 2° 39′ 10″ E) and subm 1976 by A M Robin, Univ Paris VI.

Ny-510. Villers Cotterets 11 B_h 50 ± 90 30 to 40cm, C %: 0.6 C/N = 24Ny-501. Fontainebleau 3 B_h 210 ± 50 40 to 55cm, C %: 0.5 C/N = 24

Nancy Natural Radiocarbon Measurements V	<i>I</i> 1069
Ny-511. Villers Cotterets 12 B_h 33 to 45cm, C $\%$: 0.3 C/N = 18	Modern
Ny-512. Villers Cotterets 13 B_{21h} 63 to 70cm, C %: 1 C/N = 19	160 ± 90
Ny-514. Same profile B_s 70 to 75cm, C %: 0.8 C/N = 26	Modern
Ny-508. Villers Cotterets 9 B_h 65 to 75cm, C $\%$: 1.6 C/N = 29	320 ± 100
Ny-509. Same profile B_s 75 to 85cm, C %: 0.8 C/N = 27	460 ± 100
Ny-502. Villers Cotterets 1 B_{h1} 30 to 37cm, C $\%$: 4.7 C/N = 52	1890 ± 100
Ny-503. Same profile B _{2h} 77 to 85cm, C %: 1.6	1820 ± 100
Ny-507. Villers Cotterets 3 B _{h2} 120 to 130cm, C %: 0.9	2930 ± 100
Ny-504. Fontainebleau, buried II A 40 to 55cm, C %: 2.7	1750 ± 90
Ny-505. Same profile II B _{21h} 100 to 110cm, C %: 1.5	1660 ± 90

Ny-506. Same profile, II B_{22h} 2510 ± 100

General Comment: series was classified according to two criteria. First seven dates correspond to podzols presently under deciduous forest (oak and beech) that received weak eolian silt contamination. With respect to low mean residence time of organic carbon, these forest podzols behave as biologically active soils with relatively low C/N ratio. The other profiles are in steady state equilibrium with a degraded vegetation (Pinus silvestris, Calluna vulgaris) and received no silt contamination. Although the last podzols are not necessarily older than the forest podzols, the large quantity of organic matter is biologically more stable since the mean residence times in B_h horizons are close to 2000 years. Note also the higher C/N ratio of the organic matter. According to Robin (1979) clay mineral composition must be considered in explaining the difference. In forest podzols, weathering ferromagnesian clay minerals must liberate iron which stimulates biologic activity and catalytic decay of organic matter. For the second group of podzols, the only clay minerals are kaolinite and feldspars, the weathering of which releases alumina. It is now well known (Guillet, 1979) that Al-hydroxypolymers assoc with organic matter in B_h skeleton grain coatings have a depressive effect on mineralization and decay of organic matter.

History of vegetation during Holocene in estuary of the Loire R and in "Grande Brière" Loire Atlantique, France (Visset, 1979). Samples coll and subm 1977-1979 by L Visset.

Trignac, Canal de Fougères series

Palynology shows invasion of site by *Alnus*, forming a real *alnetum* that declines towards the end of the Sub-Boreal and disappears at limit of Sub-Boreal-Sub-Atlantic.

Ny-494	. 4180 ± 9)()

Brown peat, *Alnetum*, depth, -154 to -160cm.

Ny-493.

 3770 ± 90

Brown peat, declining alnetum, depth, -125 to -131cm.

Ny-492.

 3480 ± 90

Black peat, disappearance of *alnetum*, depth, -119 to -125cm.

Tree series

At some time, increase of fresh-water level causes formation of a phragmites bog. *Quercetum* cannot survive in this anaerobic environment and gradually declines. The trees die progressively.

Ny-496.	Trignac	4000 ± 80
Ny-523.	Trignac	4120 ± 90
Ny-544.	Rozé	4100 ± 90

General Comment: trees of the same area but originating from different sites have been dated by other laboratories: (Sa-35: 4040 ± 300 BP; Sa-40: 3880 ± 300 BP; Sa-46: 4260 ± 300 BP; Gif-3536: 4230 ± 110 BP). Close correspondence of all results confirm validity of date.

Ny-495.

4260 ± 90

Organic mud, depth, -180 to -185cm. Comment: agrees with results obtained from trees (Ny-496,-523,-544). Brown peat, Ny-494, does not show meaningful differences with Ny-495, indicating short peaty mud period.

Ny-491.

$\mathbf{2110} \pm \mathbf{80}$

Black peat from top of layer, depth, -45 to -49cm. Comment: interruption of peat formation by sediments of tidal mud, as a result of rising sea level and penetration in bog (cf Ny-6, R, 1968, v 10, p 122).

Pierre blanche series	
Ny-476.	2280 ± 80
Brown peat.	
Ny-475.1.	2120 ± 80
Black peat.	

Ny-475.2.

2070 ± 80

Black peat.

General Comment: estimated age: brown peat, 4000 BP, black peat, 3500 BP. Dates corresponding to Sub-Atlantic disagree with pollen record and geologic history of site.

Rozé series

Ny-545.

3340 ± 90

Bark and wood of birch in peat in transitional brown peat — black peat during disappearance of *Betuletum*. *Comment*: date agrees with Ny-492.

Charcoal fragments at the base of black peat in a well characterized level of a fire.

Ny-546.1.	3570 ± 80
Ny-546.2.	3490 ± 90
Ny-546.3.	3390 ± 80
Comment: date of 3400 can be retained in agreement	with Ny-492

and Ny-545.

Ny-633. Ile d'Errand 2510 ± 80 Oak wood fragment.

Ny-474. Quatre canaux 6830 ± 100

Drilling -15.55m WGF. Oisters. Comment: date agrees with palynologic results and places this sediment (1m thick) around Middle of Atlantic period.

History of the vegetation of the Pleistocene in the valley of the Loire R.

Ny-543.1.	Roc-en-Pail	$19,400 \pm 560$
Ox bone.		

Ny-543.2.

$19,510 \pm 620$

Same sample. *Comment*: prehistoric site of Mousterian at Chalonnes. sur Loire (assumed age: 35,000 yr).

References

Delumeau, J, 1969, Histoire de la Bretagne: Toulouse, private ed, p 148.

1971, Documents de l'histoire de la Bretagne: Toulouse, privat ed, p 176-178.
 Guillet, Bernard, 1979, Etude du renouvellement des matières organiques des sols par les radioisotopes (4°C), in Bonneau, M and Souchier, B, eds, Pedologie: Constituants et

propriétés: Masson pub, p 210-226. Ralph, E K, Michael, H N, and Han, M C, 1973, Radiocarbon dates and reality: MASCA Newsletter, v 9, no. 1, p 1-19.

- Righi, D, 1977, Genèse et évolution des podzols et des sols hydromorphes des Landes du Médoc: Doctoral thesis, Poitiers, 144 p.
- Righi, D and Guillet, Bernard, 1977, Datations par le carbone 14 natural de la matière organique d'horizons spodiues de podzols des Landes du Médoc (France), *in* Soil organic matter studies: IAEA, Vienna, v 2, p 187-192.

1072 René Coppens, Bernard Guillet, Robert Jaegy, and Pierre Richard

- Robin, A M, 1979, Genèse et évolution des sols podzolisés sur affleurements sableux du Bassin Parisien: Doctoral thesis, Nancy, 173 p.
- Saupé, Francis, Strappa, Osvaldo, Coppens, René, Guillet, Bernard, Jaegy, Robert, 1980, A possible source of error in ¹⁴C dates: volcanic emanations (examples from the Monte Amiata district, Provinces of Grosseto and Sienna, Italy), *in* Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 525-531.
- Vigneron, Constant, 1972, L'insigne église Notre-Dame d'Avioth: Dun-sur-Meuse, France, Vigneron ed.

______ 1979, La recevresse, d'abord auditoire. Les 15 statues des piliers de la grand'nef du début du XV^{em•} siècle: Dun-Sur-Meuse, France, Vigneron ed.

Visset, Lionel, 1979, Recherches palynologiques sur la végétation pléistocène et holocène de quelques sites du district phytogéographique de Basse-Loire, Thèse Doctorat Sci: Soc Sci Nat Ouest France, Nantes, supp sér, v 1, 282 p.

QUEENS COLLEGE RADIOCARBON MEASUREMENTS III

RICHARD PARDI and E R NEWMAN

Radiocarbon Laboratory, Queens College, City University of New York Flushing, New York 11367

This list contains analyses completed between January, 1976 and April, 1977. Details of laboratory operation are contained in our first list (R, 1975, v 18, p 205). Samples submitted for analysis are reviewed by a committee consisting of W DeBoer, E Hansen, Anthropology; L Marcus, Biology; W S Newman, D L Thurber, Earth and Environmental Sciences; and Richard Pardi, Radiocarbon Laboratory.

All results are based on the conventional half-life of ${}^{14}C$, *ie*, 5568 \pm 30 years. Results are 1δ , based on the combined statistical counting error of the sample, background and standard. ${}^{12}C/{}^{13}C$ measurements and corrections have not been made for these samples.

Samples sub-labeled with letters are re-analyses of identical or equivalent samples. Those sub-labeled with numbers are repeat or duplicate counts on split samples of prepared benzene, unless otherwise noted.

ACKNOWLEDGMENTS

Sue Coughlin, Don Haarmann, and C Perdomo assisted in sample preparation. We wish to thank D H Speidel for his continued support.

I. GEOLOGIC SAMPLES

Sea level series

Peats (basal) coll and subm by W S Newman and L Cinquemani, Dept Earth Environmental Sci, Queens Coll, Oscawana I Tidal Marsh, Hudson R, New York (41° 13' 45" N, 73° 55' 50" W); Constitution I Tidal Marsh, Hudson R, New York (41° 23, 5N, 73° 58' W); Piermont Tidal Marsh, Hudson R, New York (41° 1' 30" N, 73° 54' W); Pelham Bay Park, Bronx, New York (40° 52.1' N, 73° 47.6' W); Ring Meadow, Iona I., Hudson R, New York (41° 13' 30" N, 73° 58' 40" W). All samples treated with hot dilute HCl.

QC-221A. Oscawana I, 7.5m Depth 7.5m below MHW.	5150 ± 210
QC-221B. Oscawana I, 6.8m Depth 6.8m below MHW.	4570 ± 120
QC-228. Oscawana I, 2.7m Depth 2.7m below MHW.	1870 ± 90
QC-264. Oscawana I, 7m Depth 7m below MHW.	4500 ± 100
QC-189. Constitution I, 9.45m Depth 9.45m below MHW.	5900 ± 300

1074 Richard Pardi and E R Newman	
QC-226. Constitution I, 3.9m Depth 3.9m below MHW.	2320 ± 100
QC-227. Constitution I, 7.7m Depth 7.7m below MHW.	4230 ± 120
QC-276. Constitution I, 6.15m Depth 6.15m below MHW.	4110 ± 100
QC-262. Piermont, 5.05m Depth 5.05m below MHW.	3460 ± 100
QC-261. Piermont, 8.54m Depth 8.54m below MHW.	4610 ± 120
QC-211. Piermont, 3m Depth 3m below MHW.	2300 ± 160
QC-295. Pelham Bay, 2.25m Depth 2.25m below MHW.	1800 ± 90
QC-274. Ring Meadow, 4.6m Depth 4.6m below MHW.	3610 ± 120
QC-186. Ring Meadow, 10.75m	3940 ± 140

Depth 10.75m below MHW. Comment (WSN): further field check disclosed that tidal marsh at this point extends to greater depth.

QC-187. Ring Meadow, 4.75m 3800 ± 160 Depth 4.75m below MHW.

Long Island sea level series

Peats (basal) coll and subm by M Rampino, Goddard Inst for Space Studies, Wantagh, Nassau Co, Long Island, New York (40° 39' N, 73° 31" W). Back barrier area, Cedar Beach Suffolk Co, New York (40° 37' N, 73° 23' W).

General Comment (MR): depth estimate error may be as great as .15m due to compaction.

QC-314. Cedar Beach, A76-32	5060 ± 120
Depth 10.1m below MSL.	
QC-315. Wantagh, C1-BP	1020 ± 100
Depth 1.12m below MSL.	
QC-316. Wantagh, C3-BP	300 ± 90
Depth 0.27m below MSL.	

Bergen County mastodon series

Bone, wood, and peat samples from a mastodon site, Bergen Co, New Jersey (40° 59' N, 73° 57' W). Coll and subm by S Averill, 8 Willow Brook Rd, Hillsdale, New Jersey.

QC-141. #5

Dentine from mastodon, depth ca 1.4m below surface. Sample had been shellaced. An attempt was made to remove the shellac via soxhlet extraction in hot ethanol for 3 to 4 days. Comment (SA): previous date I-6828: 9125 \pm 150 on lower stratigraphic level.

QC-142. #6

6340 ± 100

 5220 ± 120

Bone from mastodon. Also shellaced; treated same as QC-141.

OC-144. #8

5080 ± 160 Peat from above mastodon, depth ca 1.2m below surface. Sample

diluted with "dead" benzene. QC-296. #9

Peat from ca 1.8m below surface. Large sample was sieved through 40-mesh screen and treated with hot dilute HCI and KOH. Comment (SA): from 20 to 28cm above thin tan lacustrine clay over coarse outwash of most recent glaciation. Peat from which mastodon, dated QC-141 and -142, was removed.

QC-297. #10

Peat treated same as QC-296. Comment (SA): from 5 to 15cm above tan lacustrine clay.

Malaspina Glacier series

Samples coll and subm by J H Hartshorn, Univ Massachusetts. from Malaspina Glacier, Alaska.

OC-160. MAL 15-70

Wood (Sitkagi Spruce?) torn up and embedded in till in front of glacier (59° 44' N, 140° 30' W). Comment (JHH): till is subglacial; date gives age of last readvance of Malaspina Glacier to sea at Sitkagi Bluffs.

QC-161. MAL 26-70

Wood embedded in a superglacial esker (gravel) emerging from beneath glacier (59° 50' N, 140° 4' W). Comment (JHH): date to be used in recreating history of advance and retreat of Malaspina Glacier. Location of wood in englacial (now superglacial) esker is unusual.

QC-162. MAL 28-70

3630 ± 130

 2770 ± 90

Shell coll from surface of esker recently emerged from ice (59° 47' N, 140° 10' W). Comment (JHH): in 1951, esker was beginning to emerge from beneath ice. Shells date from period of ice recession when sea was far N of present limits. When ice readvanced, shells were incorporated in till or ice and then treated as gravel by meltwater streams.

Almond (Kent) Glacier series

Dates used to reconstruct history and limits of Almond (Kent) Glacier. Coll and subm by E H Muller and P Willette, Dept Geol, Syracuse Univ.

650 ± 80

$12,130 \pm 210$

 $12,820 \pm 200$

OC-232. PW-75-264

$10,830 \pm 220$

Peat with wood fragments and cones, Sargent's Peat Bog, New York (42° 17' 32" N, 78° 11' 0" W), alt ca 450m, depth 3m below bog surface. Comment (EHM): date will provide upper limit for Kent glaciation in Genesee Valley.

OC-233. PW-75-38

6270 ± 340

Wood fragments contained in stratified, well-sorted, unoxidized silt, probably of alluvial origin, Estabrook site, Allegheny Co, New York (42° 25' 14" N, 78° 8' 20" W), alt ca 370m, depth 4.5m below surface. Very small sample, diluted with "dead" benzene (date too young). *Comment* (EHM): post-dates Almond (Kent) Glacier, related to early phase of erosional terrace development in reach of Genesee Stream upstream from Portageville and Letchworth Canyon.

OC-238. EM60-185C

$\begin{array}{r}+6680\\ \textbf{25,450}\\ \textbf{-3600}\end{array}$

Wood fragments contained in silty, sparsely to moderately stony, gray till, unconformably overlain by modern alluvial-fan gravels, Rush Creek, 600m E of West Hill Rd, Allen Township, Fillmore Quad, Livingston City New York (42° 25′ 50″ N, 78° 3′ 10″ W), alt ca 420m, 60cm above stream. *Comment* (EHM): till predates Kent glaciation; is 1st such date in central New York. Analysis of 2nd, larger wood sample coll in vicinity of QC-233.

QC-263. PW-75-38-2

7950 ± 100

Repeat analysis on larger sample of same wood as QC-233. Comment (EHM): 2nd date agrees well with field relationships and provides a datum point in downcutting which followed Lake Belfast-Fillmore and was controlled by bedrock incision directly N of Portageville.

Adak I series

Peat and fine organic sediments from drained pond (Black, 1975), Adak I., Alaska (51° 54′ 54″ N, 176° 37′ 56″ W). Coll and subm by R H Black, Univ Connecticut, Storrs. QC dates are all on > 40-mesh size fraction, treated with hot, dilute HCl and NaOH.

General Comment (RFB): some fine organic sediments probably washed and blown in. Geochron dates on fraction < 80-mesh.

QC-204A. 75A-182

3830 ± 110

Depth 79 to 89cm below surface. Treated with hot, concentrated HCl and NaCl04. Previously dated GX-4028: 3440 ± 165 . Comment (RFB): most reliable date of series; from above Sandwich Ash.

QC-205. 75A-183

3770 ± 100

Depth 99 to 109cm below surface. Previously dated GX-3970: 4390 ± 150 . Comment (RFB): from below Sandwich Ash.

QC-206B. 75A-184

5110 ± 200

Depth 127 to 137cm below surface. Previously dated GX-3971: 6800 ± 175 . Comment (RFB): from above Intermediate Ash.

QC-207. 75A-185

3040 ± 370

Small sample severely diluted with "dead" benzene (date too young), depth 145 to 155cm below surface; previously dated GX-3972: 5705 ± 200 . Comment (RFB): from below Intermediate Ash.

QC-208. 75A-186

6660 ± 90

Depth 181 to 191cm below surface, previously dated GX-4029: 8310 ± 265 . Comment (RFB): from above Main ash, Geochron date too old.

OC-244. 76A-5

4460 ± 180 Comment (RFB): from above Intermediate Ash, equivalent to 75A-184.

QC-245. 75A-6

6960 ± 100

Comment (RFB): from below Intermediate Ash, equivalent to 75A-185.

Deep-Sea Core series

From Core V30-101K (44° 06' N, 32° 30' W). Coll and subm by A McIntyre, Lamont-Doherty Geol Observatory, Palisades, New York. General Comment (AMcI): results on QC-247, QC-248, and QC-249 were judged too old by about 10,000 yr each. QC-317 was run as a check, result agrees with Lamont date on split of same sample, $18,590 \pm 800$ (L-1447B). Other dates on same core are QC-198 at $16,360 \pm 220$ years, from depth of 63.5 to 71.5cm, GX-4491 at $13,520 \pm 410$ yr from depth 32.5cm, and GX-4492 at 16,760 \pm 515 years from depth 39cm. No explanation has been found for apparently anomalous results on the three deepest samples.

QC-246. V30-101K, 25cm Ca 66% CaCO3.	$10,850 \pm 280$
QC-247. V30-101K, 40cm	+ 1300 27,200
Ca 45% CaCO3.	-1200
QC-248. V30-101K, 50cm	+ 1900 29,500
Ca 41% CaCO3.	-1600
QC-249. V30-101K, 55cm	$+1650\\31,400$
Ca 45% CaCO3.	-1450
QC-317. V30-101K, 46.8cm Ca 45% CaCO3.	$18,300 \pm 660$

•

II. ARCHAEOLOGIC SAMPLES

QC-112. #12

 700 ± 120

Charcoal from hearth on much used camping floor, Dogan Pt, Haverstraw, New York (41° 14' 10" N, 73° 56' 50" W). Depth 40cm below surface. Coll and subm by L A Brennan, Briarcliff Coll, Ossining, New York. *Comment* (LAB): sample too young; evidence of much camping and many fills; charcoal subm along with soil matrix. Assoc with small stemmed (Taconic) points, Perkiomen, small side-notched points (Twombly), and distinctive industry probably related to Susquehanna. There was no pottery.

Pipins Rock series

Charcoal and shell (C virginica) from Pipins Rock site (41° 10' N, 73° 52' W). Coll and subm by L A Brennan.

QC-225. #1 and #2

3370 ± 170

 4400 ± 100

Charcoal from apparent fire pit extending downward in basal sands, depth 60 to 70cm below surface. Sample dated is composite of 3 small charcoal samples from same region. *Comment* (LAB): fire pit is within 15 cm of shell deposit and is assoc with small series of excurvate sided triangular points with basal flute flake removed.

QC-224. 13E34S

Shell from same level as QC-225, in undisturbed sand 25cm from hearth. *Comment* (LAB): Taconic stemmed point found in vicinity; 4400 BP is good date for Taconic series here.

OC-239. S Side Midden #1 4370 ± 90

Small oyster shells, depth 56cm below surface.

QC-240. S Side Midden #2

 4940 ± 100

Three large oyster shell valves, depth 61cm below surface.

QC-241. S Side Midden #3 2480 ± 340

Charcoal from small pit hearth in midden, depth 56cm below surface, assoc with QC-243.

QC-243. S Side Midden #5 4490 ± 90

Oyster shells from around and beneath hearth, depth 51cm below surface.

QC-270. S Side Midden #6 1) 4600 ± 80 2) 4700 ± 90

Small shells from yellow sand-clay basement under midden, depth 56 to 61 cm below surface.

Spruce Swamp series

Spruce Swamp site, East Norwalk, Connecticut (41° 5' 16" N, 73° 23' 18" W). Coll and subm by E L Claypool, SW Connecticut Archaeol Comm, 23 Plymouth Rd, Stamford, Connecticut 06906.

QC-217. SS-1

Shell (C virginica), depth 80cm below MSL. Comment (ELC): from Feature #1, earth wholly enclosed in glacial sand and gravel. Sample dates earliest known aboriginal occupation at Spruce Swamp site.

QC-231. SS-2

Acorns (Quercus sp), uncharred and decomposed, from storage pit (Feature #15), in black soil midden between shell midden and glacial deposits containing C virginica shells dated at QC-217. Depth 6cm above to 50cm below MSL. Comment (ELC): dates only known acorn storage pit in New England, estimated age was 2500 yr BP, based on sea level curve and relationship to QC-217. Possible sources of contamination: salt water, sewage, sludge, marine engine waste from adjacent marina, and heavy penetration of roots.

OC-273. SS-3

Twigs (tree sp unidentified) from lining of Feature #15, acorn storage pit, uncarbonized and decomposed.

QC-298. SS-4

Wood (sp unknown) from either remains of prehistoric post or tree root. Solid wood, not decomposed, showing possible rings, depth 45 to 72cm below MSL. Comment (ELC): adjacent to Feature #15. Same contamination possibilities as QC-231.

QC-318. SS-5

Charcoal assoc with pottery from above Feature #15, depth 18cm below MSL. Very small sample, diluted with "dead" benzene. Comment (ELC): date is minimum for Feature #15.

QC-332. SS-6

Shell (Venus mercenaria), depth 23cm below surface, alt 7cm above MSL. Result suggests that dates on acorns, QC-231, and twigs, QC-273, from storage pit (Feature #15) are too young, since, even correcting for expected apparent age of recent shell material (Mangerud, 1972), shells should not be younger than ca 850 yr. Comment (ELC): from Stratum 2 above acorn storage pit.

QC-307/8. #1 and #2

Bone fragments from hearth, rockshelter, Brewster, New York (41° 22.5' N, 73° 30' W), depth 1.3 to 1.4cm below surface; coll and subm by R C Thompkins, Poughkeepsie. Combined sample was very small, and was diluted with "dead" benzene. Comment (RCT): sample assoc with Palmer-like projectile point.

Shawnee-Minisink site

From flood plain of Delaware R at confluence with Brodford Creek near Stroudsburg, Pennsylvania (50° 59' 0" N, 75° 8' W). Coll and subm by C W McNett, American Univ.

2850 ± 220

750 ± 90

 610 ± 350

 1050 ± 80

 80 ± 50

130 ± 90

 2290 ± 90

QC-250.

1990 ± 80

Charcoal from Sqs 25 and 25, Level 04, depth 60cm below surface.

QC-259.

1610 ± 100

Charcoal from Sqs 5 and 9, Level 08, depth 85cm below surface.

QC-157/8. S6E66-1 and S2W6-19

1040 ± 120

Charred wood from possible fire pit (Feature 1), Mason I II site (18M013), Maryland (39° 10' 50-53" N, 77° 29' 45-55" W), depth 47 to 68cm below surface. Coll and subm by K Franklin, American Univ. *Comment* (KF): date is additional for Montgomery focus-related pottery type in Potomac Valley and evidence to suggest its temporal relationship to Luray focus.

,	~	1)	1790 ± 120
QC-222.	Sesuit Harbor	2)	1760 ± 80

Wood, white cedar (*Chamaecyparis thyoides*) from possible site, Sesuit Harbor, Massachusetts (41° 45′ 10″ N, 70° 10′ 21″ W), coll and subm by S Coughlin, Queens Coll, and R Prescott, Cape Cod Mus Nat Hist, Brewster, Massachusetts. *Comment* (SC): sample from former freshwater swamp now located in mire intertidal zone. Area subject to daily tidal flooding.

South Windsor series

Site #6Ht89, South Windsor, Connecticut (45° 50' W, 72° 37' 30" N). Coll and subm by K McBride and W Stinson, Univ Connecticut.

QC-301. N5W5/4

3510 ± 140

Charred wood from hearth overlain with ca 1.1m floodplain silt loam, alt 7.6m ASL.

Gatecliff Shelter series

Gatecliff Shelter, Nevada (39° 00' N, 116° 47' W); coll and subm by D H Thomas, American Mus Nat Hist, New York.

QC-287. GU-9, #402	1) 2900 ± 90 2) 3130 ± 90
Charcoal, Unit X, Feature 1, depth 300cm.	·
QC-288. GU-9, #409 Charcoal, Unit II, Feature 7, depth 293cm.	3140 ± 90
QC-289. GU 4-74, #416 Charcoal, Unit XX, Feature 1, depth 594cm.	5290 ± 180
QC-290. GU 6-74, #418 Charcoal, Unit XXIII, depth 592cm.	4350 ± 100
QC-291. GU 1-74, #419	7080 ± 680

Charcoal, Unit XX, depth 535cm. Very small sample, severely diluted with "dead" benzene. *Comment* (DHT): despite large statistical error, date is roughly as expected.

Queens College Radiocarbon Measurements III 1081

QC-292. GU 6-74, #421 Charcoal, Unit X.	4140 ± 130
QC-293. GU 4-74, #422	5100 ± 100

Charcoal,	Unit XXIII.		
QC-294.	B-5, #441	1)	5390 ± 150

2) 5410 ± 270 Charcoal, from Triple T shelter, West Northumberland Canyon, Nye Co, Nevada (39° 00' N, 116° 55' W), alt +2073m, depth 340 to 350cm. Coll and subm by H A Thomas.

OC-271.	Excavation 1, Level 7	A)	2650 ± 80
•		B)	2805 ± 130

Charcoal from hearth (Feature #1), Parmana village site, Guarico State, Venezuela (8° N, 66° W) depth 125 to 145cm below surface. B pretreated, as in Haynes (1966). Coll and subm by A Roosevelt, Mus American Indian. *Comment* (AR): possible contamination from rootlets and lignite. Sample from Early Corozal phase.

Ronquin Sombra series

Ronquin sombra site, Dist Infante, Guarico State, Venezuela (8° N, 66° W). Coll and subm by A Roosevelt.

QC-311A. Excavation 8, Level 7 1170 ± 100

Charcoal, depth 95 to 110cm below surface. Comment (AR): from Ronquin phase.

QC-311B. Excavation 8, Level 8 1450 ± 70

Charcoal, depth 110 to 125cm below surface. Comment (AR): from Ronquin phase.

QC-327. Excavation 9, Level 9 1300 ± 90

Charcoal, depth 137 to 147cm below surface.

Corozal series

Corozal site, Guarico State, Venezuela (8° N, 66° W), 3km NE of Parmana village. Site in tropical gallery forest. Coll and subm by A Roosevelt.

QC-272. Excavation 2, Level 20	A) 23,900 ± 650 B) 24,700 ± 1250
--------------------------------	-------------------------------------

Lignite, depth 147 to 160cm below surface. B bleached with perchlorate after regular pretreatment. *Comment* (AR): from Early Corozal phase.

QC-275.	Excavation 2, Level 20	A)	$25,400 \pm 650$
		B)	$24,700 \pm 200$

Lignite, B treated with perchlorate after regular pretreatment.

QC-309. Excavation 3, Level 4

 860 ± 70

Charcoal, shiny and not very dense, depth 30 to 53cm below surface. Some rootlets removed. *Comment* (AR): from Late Camoruco phase.

		A 1)	510 ± 70
		2)	540 ± 80
QC-310.	Excavation 3, Level 10	B 1)	410 ± 80
		2)	340 ± 90

Charcoal, depth 130 to 143cm below surface. B separately coll equivalent sample. Comment (AR): from Middle Camoruco phase.

OC-319. Excavation 2, Level 7 720 ± 80

Charcoal, depth 112 to 138cm below surface. Comment (AR): from Middle to Late Camoruco phase.

QC-320. Excavation 2, Level 8 260 ± 80

Charcoal, depth 138 to 153cm below surface. Comment (AR): from Middle Camoruco phase.

QC-321. Excavation 2, Level 9 410 ± 90

Charcoal, depth 153 to 167cm below surface. Comment (AR): from Early Camoruco phase.

QC-322. Excavation 2, Level 12 820 ± 90

Charcoal, depth 210 to 230cm below surface. Comment (AR): from Late Corozal period.

QC-323. Excavation 2, Level 14 1740 ± 100

Charcoal, depth 250 to 275cm below surface. Comment (AR): from Middle Corozal phase.

QC-324A. Excavation 3, Level 11A 460 ± 80

Charcoal, depth 145 to 153cm below surface. Comment (AR): from Early to Middle Camoruco phase.

QC-325. Excavation 3, Level 12A 830 ± 90

Charcoal, depth 153 to 170cm below surface. Comment (AR): from Early Camoruco to Late Corozal phase.

QC-326. Excavation 3, Level 15 1200 ± 90

Charcoal, depth 198 to 210cm below surface. Comment (AR): from Early Camoruco to Late Corozal phase.

		1)	$23,\!080 + 910 \\ - 820$
QC-335.	Excavation 2, Level 20	2)	$22,\!420 + 820 \\ -740$
		3)	3720 ± 270

Lignite. Dates 1) and 2) are duplicate runs on same pretreated sample. Date 3) is date on extracted humic acids from 1) and 2).

Los Mangos series

Los Mangos site, Infante Dist Guarico State, Venezuela (8° N, 66° W), 100m SE Parmana village. Coll and subm by A Roosevelt.

Queens College Radiocarbon Measurements III 1083

QC-312A. Excavation 1, Level 17 **A**) 340 ± 80 **B**) 900 ± 90

Charcoal, depth 260 to 280cm below surface. B stratigraphically equivalent to A. B small sample diluted with "dead" benzene. Comment (AR): from Middle to Late Corozal phase.

QC-313A. Excavation 1, Level 18 A) 1170 ± 90 **B**) 760 ± 100

Charcoal, depth 280 to 300cm below surface. A stratigraphically equivalent to B. Comment (AR): from Middle to Late Corozal phase.

REFERENCES

Black, R F, 1975, Late Quaternary geomorphic processes: Effects on the ancient Aleuts of Unmak Island in the Aleutians: Arctic, v 28, p 159-169.

Haynes, C V, Jr, 1966, Radiocarbon samples: Chemical removal of plant contaminants:

Science, v 151, p 1391-1392. Mangerud, J, 1972, Radiocarbon dating of marine shells, including a discussion of apparent age of recent shells from Norway: Boreas, v 1, p 143-172.

Pardi, R R, 1975, Queens College radiocarbon measurements I: Radiocarbon, v 18, p 205-209.

TARTU RADIOCARBON DATES X

EVALD ILVES

Institute of Zoology and Botany, ESSR Academy of Sciences, 202400 Tartu, Estonian SSR

The present list includes 74 dates of geologic samples determined using the liquid scintillation ¹⁴C method at the Geobiochemical sector of the Institute of Zoology and Botany, Academy of Sciences, Estonian SSR.

Benzene synthesized from wood of AD 1850 ± 10 served as a reference standard. All radiocarbon dates in BP were calculated using 5568 ± 30 yr as the half-life value of ¹⁴C.

Peat bogs of Estonia

Palasi series

Palasi bog lies in Rapla Dist, 14km SE of Rapla, and is formed of complex, *Sphagnum fuscum*, *Eriophorum* with *Sphagnum fuscum* and forest sedge peats. At sec a surface layer of ca 1m had been removed by peat manufacturing. Sample coll 1969 by E Ilves and A Sarv.

TA-290. Palasi Peat from depth 10 to 20cm.	2170 ± 70
TA-292. Palasi Peat from depth 60 to 70cm.	2470 ± 60
TA-293. Palasi Peat from depth 80 to 90cm.	2940 ± 60
TA-312. Palasi Peat from depth 120 to 130cm.	3920 ± 50
TA-295. Palasi Peat from depth 180 to 190cm.	4260 ± 70
TA-313. Palasi Peat from depth 200 to 210cm.	4390 ± 70
TA-296. Palasi Peat from depth 220 to 230cm.	4520 ± 70
TA-297. Palasi Peat from depth 270 to 280cm.	4680 ± 70
TA-291. Palasi Peat from depth 340 to 350cm.	5800 ± 90
TA-298. Palasi Peat from depth 420 to 430cm.	6570 ± 70

Tartu Radiocarbon Dates X	1085
TA-294. Palasi Peat from depth 510 to 520cm.	7720 ± 70
TA-299. Palasi Peat from depth 520 to 530cm.	8490 ± 70
TA-314. Palasi Peat from depth 530 to 540cm.	8500 ± 70
TA-315. Palasi Peat from depth 570 to 580cm.	8570 ± 70
TA-300. Palasi Sapropel from depth 590 to 600cm.	8730 ± 90

Linnusaare series

Linnusaare raised bog belongs to the Endla bog system in Jõgeva dist, 7km NW of Jõgeva. Sample coll 1973 by E Ilves and A Sarv.

TA-696. Linnusaare Peat from depth 190 to 200cm.	240 ± 60
TA-697. Linnusaare Peat from depth 270 to 280cm.	2370 ± 70
TA-699. Linnusaare Peat from depth 360 to 370cm.	3830 ± 70
TA-700. Linnusaare Peat from depth 440 to 450cm.	6330 ± 70
TA-701. Linnusaare Peat from depth 550 to 560cm.	6980 ± 70
TA-702. Linnusaare Peat from depth 580 to 590cm.	8710 ± 80
TA-703. Linnusaare Peat from depth 620 to 630cm.	9140 ± 80
TA-704. Linnusaare Peat from depth 630 to 640cm.	9360 ± 80

Peat bogs of west Siberia

Pangoda series

Tomsk region, Yamal-Nenets natl dist, between Nazym and Pura Rivers, near Pangoda settlement. Sample coll from basal layers of peat deposits and subm 1974 by O Liss (M V Lomonosov Moscow State Univ).

TA-743. Pangoda 1

 $\mathbf{2870} \pm \mathbf{60}$

Carex-Sphagnum fen peat from depth 140 to 145cm.

1086	Evald Ilves	
TA-744.	Pangoda 2	6680 ± 70
Sedge fen	peat from depth 280 to 300cm.	
TA-745.	Pangoda 3	750 ± 60
Sphagnun	n fen peat from depth 65 to 75cm.	
TA-746.	Pangoda 4	5610 ± 70
	m depth 300cm.	
TA-752.	Pangoda 5	5810 ± 70
Sphagnun	n fen peat from depth 320 to 330cm.	
Tevriz series		
	gion, between Chizhapka and Chuzika Rivers, ement. Sample coll and subm 1975 by O Liss.	60km SW o
TA-510.	Tevriz	190 ± 50
Sphagnun	n fuscum raised peat from depth 90 to 100cm.	
TA-509.	Tevriz	3220 ± 60
-	raised peat from depth 225 to 235cm.	
TA-508.	Tevriz	3610 ± 60
	magnum mesotrophic peat from depth 250 to 260	
TA-507.		3710 ± 60
	<i>nagnum</i> mesotrophic peat from depth 275 to 285	
TA-506.		7740 ± 70
	ge fen peat from depth 410 to 430cm.	
	gion, near Novyi Tevriz settlement on Vasyuga	n R. Sampl
	1977 by O Liss.	4960 - 0
	. Novyi Tevriz dge fen peat from depth 0 to 10cm.	4260 ± 80
TA-1036		8300 ± 70
	ge <i>Sphagnum</i> fen peat from depth 185 to 195cm	
TA-1036		$.8400 \pm 70$
	date. Wood of willow family. Id. by U Veib	
Acad Agric.	, ,	
TA-617. No	ovyi Vasyugan 1	2390 ± 70
Forest see	dge fen peat from depth 10 to 20cm covered	
)cm thick, from Tomsk region, Vasyugan R nea an. Sample coll and subm 1973 by O Liss.	ar settlemen
	ovyi Vasyugan 2	6120 ± 8
Forest sed	lge fen peat from depth 210 to 220cm.	
TA-666. Pa	rabel	7260 ± 90
	lge fen peat from depth 550 to 570cm. Tomsk r	

Arkadyevo series

Tomsk region, Kozhevnikov dist, near Arkadyevo village. Sample coll 1976 by O Liss and N Berezina, subm by O Liss.

TA-909. Arkadyevo 1	1580 ± 80
Forest sedge peat from depth 100 to 120cm.	
TA-910. Arkadyevo 2	1930 ± 60
Peat from depth 130 to 150cm.	
TA-911. Arkadyevo 3	5660 ± 80

Peat-like sapropel from depth 480 to 500cm.

Nazym Lyamin series

Tyumen region, Hanty-Mansy Natl dist, between Nazym and Lyamin Rivers 130km E of Karymkary settlement. Sample coll and subm 1973 by A Nagaiceva (trust "Geoltorfrazvedka").

TA-667. Naz	zym-Lyamin 1	8610 ± 90
-------------	--------------	---------------

Bryales fen peat from depth 300 to 340cm.

TA-668. Nazym-Lyamin 2

Forest sedge (mesotrophic) peat from depth 400 to 450cm.

TA-669. Nazym-Lyamin 3

Forest sedge fen peat from depth 350 to 380cm.

TA-933. Kayukovo

 8140 ± 80

 7490 ± 80

 7080 ± 90

Forest sedge fen peat from depth 580 to 600cm. Tyumen region, between Demyanka and Yuganka Rivers, 180km S of Nefteyugansk settlement, near Kayukovo lake. Sample coll and subm 1976 by O Liss.

TA-934. Salmo-Yugansk

 8900 ± 90

Peat-like sapropel from depth 480 to 500cm. Tyumen region, between Demyanka and Yuganka Rivers, 180km SE of Nefteyugansk settlement. Sample coll and subm 1976 by O Liss.

TA-1037. Purpe

6330 ± 80

 8000 ± 80

Grass fen peat from depth 200cm. Tyumen region, Yamalo-Nenets natl dist, near Purpe R. Sample coll 1977 by O Turkina; subm by O Liss.

TA-1038. Nizhnevaratovsk

Bryales-sedge fen peat from depth 600 to 625cm. Tyumen region, Nizhnevaratovsk dist, 2km W of Lake Samotlor. Sample coll 1977 by O Poloshnikova, subm by O Liss.

TA-901. Guskovskij-Ryam 1

4180 ± 70

Fen peat from depth 260 to 280cm. Novosibirsk region, Chulymsk dist, near Kabinetnaya sta. Sample coll and subm 1976 by O Liss.

TA-902. Guskovskij-Ryam 2

 3580 ± 70

Fen peat from depth 900 to 920cm.

Evald Ilves

Baksinskoye series

1088

Novosibirsk region, Kolyvanovsk dist, Baksinskoye peat deposit. Sample coll 1978 by O Liss and N Berezina; subm by O Liss.

TA-903.	Baksinskoye 1	Modern
---------	---------------	--------

Fen peat from depth 30 to 50cm, at bog edge.

440 ± 80 TA-904. Baksinskoye 2

Forest sedge peat from a small hollow ("saucer"), from depth 20 to 40cm.

TA-905. Baksinskoye 3	1640 ± 70
-----------------------	---------------

Forest sedge-phragmites peat from depth 180 to 200cm.

TA-906. Baksinskove 4 2610 ± 70

Fen peat from depth 265 to 275cm.

3380 ± 80 TA-907. Baksinskove 5

Forest sedge-phragmites fen peat from depth 415 to 425cm.

TA-908.	Baksinskoye 6	3050 ± 70
----------------	---------------	-------------

Fen peat from depth 190 to 210cm.

TA-596. Ubinskoye 1 4350 ± 70

Grass fen peat from depth 300 to 310cm. Novosibirsk region, Ubinskoye settlement. Sample coll and subm 1973 by O Liss.

TA-597. Ubinskoye 2

 2140 ± 80

Carex-Sphagnum fen peat from depth 125 to 135cm.

Lakes of Estonia

Ulemiste series

Ulemiste lake lies on SW border of Tallinn, on N Estonian plateau, at ca +36m. Area, 9.6km², max depth, 6m. Sample coll and subm 1974 by L Saarse, Inst Geol (IG), ESSR Acad Sci.

TA-69]	l. Ulemiste 1	8300 ± 90
Limy sa	propel from depth 570 to 580cm.	
TA-69(). Ulemiste 2	5330 ± 80
Saprop	el from depth 370 to 380cm.	
TA-689	9. Ulemiste 2	5330 ± 80

Sapropel from depth 410 to 420cm.

Rätsma series

Rätsma Lake belongs to Kurtna lake system in NE Estonia. Area, 0.18km², max depth, 10.8m. Sample coll and subm 1974 by L Saarse; pollen analyses by R Pirrus (IG).

TA-688. Rätsma 1 $12,040 \pm 100$ Aleuritic sand with admixture of Bryales moss from depth 530 to

540cm.

TA-686. Rätsma 2

Lake lime with plant remains from depth 90 to 100cm.

TA-687. Rätsma 2

$12,050 \pm 120$

 4080 ± 60

Lake lime with admixture of Bryales moss from depth 360 to 370cm.

Elistvere series

Elistvere Lake is one of drumlin country lakes in E Estonia, 4.5km SE of Järve settlement. Area of this low level lake is 1.8km². Sample coll and subm 1974 by L Saarse; pollen analyses by R Pirrus.

TA-683. Elistvere

860 ± 60

Phragmites peat from depth 70 to 80cm.

TA-684. Elistvere

1330 ± 60

Sapropelized forest phragmites peat from depth 170 to 180cm.

TA-685. Elistvere

8990 ± 90

Sapropel containing distributed wood remains and detritus of sub-fossil mollusk from depth 380 to 390cm.

Pangodi series

Pangodi Lake lies in N part of moraine-type Otepää Heights, 10km SE of Elva, at +105m; area, 1.15km². Sample coll and subm 1974 by L Saarse.

TA-652. Pangodi

1540 ± 80

 6660 ± 90

 8530 ± 80

Sapropel containing distributed fragments of mollusks from depth 500 to 510cm.

TA-651. Pangodi 4590 ± 80

Sapropel from depth 930 to 940cm.

TA-650. Pangodi

Sapropel containing distributed fragments of mollusks from depth 1160 to 1170cm.

Kirikumäe series

Kirikumäe Lake lies in Vôru dist, 7.5km SE of Vastseliina, at +183m; area, 0.61km², max depth, 3.5m.

TA-677. Kirikumäe 2680 ± 80

Sphagnum peat from depth 450 to 460cm.

TA-678. Kirikumäe 3210 ± 70

Bryales-phragmites peat from depth 570 to 580cm.

TA-679. Kirikumäe

Sapropel layered with plant remains from depth 780 to 790cm.

UNIVERSITY OF TEXAS AT AUSTIN RADIOCARBON DATES XIV

S VALASTRO, JR, E MOTT DAVIS, ALEJANDRA G VARELA, and CAROLYN EKLAND-OLSON

Radiocarbon Laboratory, Balcones Research Center, The University of Texas at Austin

This list reports certain ¹⁴C measurements completed by December 1979; other projects completed by this time will be reported later. Age calculations are based on ¹⁴C half-life of 5568 yr and modern standard of 95% NBS oxalic acid, supplemented by tree rings of pre-industrial wood from a log cut in the 1850's (Tx-540; R, 1970, v 12, p 249). Deviations reported are based on counting statistics of sample, background and modern, and are $\pm 1\sigma$, except that when sample count approaches either modern or background, 2σ limits are reported. Unless noted, ¹²C/¹³C measurements were not made and results are not corrected for ¹³C fractionation (assumed ratio = -25% WRT PDB). Our laboratory uses liquid scintillation counting of benzene, with Li₂C₂ and vanadium-activated catalyst in preparation; chemical yields range between 95% and 99%. Three counters are employed; a Packard Tri-Carb Model 3002 and 2 Beckman LS230 spectrometers obtained through a grant from the National Science Foundation.

We acknowledge with gratitude the administrative support and assistance of W G Reeder and Saralind Mings of the Texas Memorial Museum.

I. OCEANOGRAPHIC SAMPLES

Bahamas

Great Bahama Bank series, Bahamas

Samples of carbonate sediment from slope N of Great Bahama Bank, Bahama Is. Coll to determine origin and rate of deposition of breccia deposits and rates of coral growth. Coll 1978 by A C Neumann and subm by M Boardman, Marine Sci Program, Univ North Carolina, Chapel Hill.

Tx-2997.	E-29262/40cm	$\delta^{I3}C = +3.8\%$

 4010 ± 60

30km S of Freeport (26° 19' N, 78° 33' W), 39 to 41cm in core.

	$26,500 \pm 1000$
Tx-2998. E-29262/80cm	$\delta^{_{13}}C = +1.8\%$ o
Same location as Tx-2997, 79 to 81cm in core.	
	$35,800 \pm 2200$
Tx-2999. E-29262/100cm	$\delta^{_{13}}C = +2.8\%$
Same location as Tx-2997, 99 to 101cm in core.	
	2610 ± 60
Tx-3000. E-29262/20cm	$\delta^{\imath} C = +3.7\%$

Same location as Tx-2997, 18.5 to 21.5cm from surface.

University of Texas at Austin Radiocarbon Date	es XIV 1091
Tx-3001. E-29283/7cm 15km S of McLean's Town (26° 27′ N, 78° 05′ W), 6 to	1970 ± 60 $\delta^{I3}C = +3.5\%$ 0.8 cm in core.
Tx-3002. E-29283/20cm Same location as Tx-3001, 19 to 21cm in core.	3860 ± 60 $\delta^{13}C = +3.5\%$
Tx-3003. E-29283/40cm Same location as Tx-3001, 39 to 41cm in core.	6550 ± 90 $\delta^{13}C = +3.2\%$
Tx-3004. E-29283/60cm Same location as Tx-3001, 59 to 61cm in core.	$\frac{12,260 \pm 160}{\delta^{13}C} = +1.6\%$
Tx-3005. E-29283/88cm Same location as Tx-3001, 88cm in core.	$\begin{array}{l} \textbf{30,600} \pm \textbf{2400} \\ \delta^{13}C = +2.1\% \end{array}$
Tx-3006. E-34631/47cm 40km S of McLean's Town (26° 11' N, 78° 07' W), 45 t	3870 ± 60 $\delta^{13}C = +3.6\%$ to 50cm in core.
Tx-3007. E-34631/7cm	1790 ± 60 $\delta^{13}C = +3.6\%$

Same location as Tx-3006, 5 to 10cm in core.

General Comment on Tx-2997 to Tx-3007 (MB): data have been coupled with mineralogic, minor element, and stable isotope data with following results: 1) Holocene deposits have higher aragonite and strontium content than late Pleistocene, calcite-rich sediments; 2) Holocene deposition rates are approx 5 times greater than late Pleistocene rates; 3) major change in mineralogy and minor element concentrations occurs at 5000 to 7000 BP; 4a) isotope data from Holocene sediments are distinctly clumped ($\delta^{18}O \approx -0.5$ to 0.0, $\delta^{13}C \approx +3$ to +4), and this range is indistinguishable from shallow carbonate sediments; 4b) isotope data from Pleistocene sediments are $\delta^{18}O \approx +0.8$ to +1.6, $\delta^{13}C \approx +1.5$ to +2.8. These data strongly support hypothesis that when sea level flooded banktops, offbank transport of carbonate sediments began and now dominate deposition of carbonate sediments in deep channels. Roughly 80% of deep-sea sediments in NW Providence Channel is of banktop origin.

Tx-3008. 764-F17

80 ± 40 $\delta^{13}C = +1.6\%$

Deep water coral (BASE), 4km W of Memory Rock (26° 50' N, 79° 10' W).

Tx-3009. 764/F17

Ultra modern $\delta^{13}C = +2.1\%$

Coral (TIPS), 4km W of Memory Rock, same location as Tx-3008.

General Comment on Tx-3008 and Tx-3009 (MB): dates demonstrate that this deep-sea (ahermatypic) coral grows quite rapidly. Coral, ca 50cm high, appears to have grown 50cm in 80 yr.

 4650 ± 70

 22.670 ± 290

Tx-3027.	E-34652-15-SED	$\delta^{{}^{\scriptscriptstyle I}{}^{\scriptscriptstyle S}{}}C=+3.7\%_{o}$
NW Provide	ence Channel (25° 56′ N,	78° 31' W), 405m water depth,
	ment-water interface.	

		,
Tx.3028.	E.34652-110-SED	$\delta^{_{13}}C = +3.2\%$

Same location as Tx-3027, 110cm below sediment surface.

17,210 ± 310Tx-3029. E-34652-88-RX $\delta^{13}C = +3.6\%$

 $CaCO_3$ rock fragments, same location as Tx-3027, 88cm below sediment surface.

ine our racer		$26,250 \pm 680$
Tx-3030.	E-34652-140-SED	$\delta^{\imath s} C = +3.2\%$

Same location as Tx-3027, 140cm below sediment surface.

		$21,260 \pm 490$
Tx-3031.	E-34652-88-SED	$\delta^{I3}C = +3.3\%_0$

Same location as Tx-3027, 88cm below sediment surface.

		$20,000 \pm 490$
Tx-3032.	E-34652-140-RX	$\delta^{{}^{\scriptscriptstyle 13}C}=+3.6\%$

 $CaCO_3$ rock fragments, same location as Tx-3027, 140cm below sediment surface.

		0000 1 110
Tx-3033.	E-34658-20-SED	$\delta^{{}^{I}{}^{g}}C=+3.5\%$

NW Providence Channel (25° 54' N, 78° 32' W), 295m core depth, 20cm deep in core.

 $13,880 \pm 150$ $\delta^{13}C = +3.5\%$

8380 + 110

30 990 ± 100

....

CaCO₃ rock fragments, same location as Tx-3033, 80cm deep in core.

 9970 ± 90 $\delta^{_{13}C} = +3.2\%$

 $CaCO_3$ rock, NW Providence Channel (25° 53' N, 78° 33' W), 200m water depth.

General Comment on Tx-3027 to Tx-3035 (MB): dates demonstrate that sediments and rock fragments of breccia zones are late Pleistocene, not Holocene; so modern chemical conditions are of little direct interest in lithification processes of these rock fragments. Rocks are 4000 to 5000 yr younger than surrounding sediment. Deposition rates of these brecciafilled cores are 8 to 15 cm/1000 yr; this suggests mass movement of sediment as deposition process.

Abaco Sound series, Bahamas

Tx-3034. E-34658-80-RX

Tx-3035. E-34664

Shell and sediment samples from 3 cores of lagoon sediments in Abaco Sound, NE margin of Little Bahama Bank near Great Abaco I., Bahamas. Coll 1977 by A C Neuman and subm by S Locker, Dept Marine Sci, Univ North Carolina, Chapel Hill. Cm figures are depths in core.

University of Texas at Austin Radiocarbon Dates XIV 1093 Tx-3229. C7714-18-30 5840 ± 80 Anodontia alba shells, ca 3.7km N of Marsh Harbour (26° 35' N, 77° 3.9′ W), 489 to 493cm. Tx-3230. C7714-16-22 4410 ± 100 Chione cancellata shells, ca 4.6km NW of Treasure Cay (26° 43.7' N, 77° 19.7' W), 415 to 417cm. Tx-3231. C7714-14-19 8230 ± 260 Anodontia alba shells, ca 11km NW of Treasure Cay (26° 46.7 'N, 77° 22.6' W), 424 to 427cm. Tx-3232. C7714-14-19 4120 ± 100 Chione cancellata shells, same location as Tx-3231 above, 245 to 247cm. Tx-3233. C7714-14-19 6940 ± 80 CaCO₃ sediment, same location as Tx-3231, above, 420 to 422cm. Tx-3234. C7714-14-19 6510 ± 90 CaCO₃ sediment, same location as Tx-3231, above, 376 to 378cm. Tx-3235. C7714-18-30 3800 ± 100 CaCO₃ sediment, same location as Tx-3229, above, 410 to 413cm. Tx-3236. C7714-18-30 3920 ± 90 CaCO₃ sediment, same location as Tx-3229, above, 310 to 313cm. Tx-3237. C7714-14-19 1190 ± 80 Codakia orbicularis shell, same location as Tx-3231, above, 69 to 73cm. Tx-3238. C7714-18-30 1640 ± 50 CaCO₃ sediment, same location as Tx-3229, above, 110 to 113cm. Tx-3239. C7714-18-30 1060 ± 50 CaCO₃ sediment, same location as Tx-3229, above, 10 to 13cm. Tx-3240. C7714-16-22 2040 ± 140 CaCO₃ sediment, same location as Tx-3230, above, 200 to 202cm. Tx-3241. C7714-16-22 1110 ± 70 CaCO₃ sediment, same location as Tx-3230, above, 100 to 102cm. Tx-3242. C7714-18-30 1940 ± 70 CaCO₃ sediment, same location as Tx-3229, above, 210 to 213cm. General Comment (SL): sedimentation rate in core C7714-14-19 is ca 58cm/1000 yr and in Core C7714-16-22 is 101cm/1000 yr. In Core C7714-18-30 rate is 97cm/1000 yr with increase during last 1000 yr (as indicated by highest 3 dates, Tx-3238, -3239, -3242) to 300cm/1000 yr, comparing with Pb-210 data from Core C7714-16-22 indicating maximum rate of

300cm/1000 yr.

S Valastro, Jr and others

II. GEOLOGIC SAMPLES

United States

Tx-2561. MGM 1CD1, Nevada

Wood from E wall MGM GRAND-Reno Pit site, 34m depth, Reno, Nevada (39° 31' 15" N, 119° 46' 30" W). NW 1/4, NE 1/4, Sec 18, T19N, R20E, MDBM. Coll 1976 and subm by J Bell, Nevada Bur Mines & Geol, Univ Nevada, Reno. Comment (JB): date supports interpretation that outwash deposit is Tahoe (early Wisconsinan) age.

Mexico, Venezuela

Tlapacoya series, Mexico

Dark lacustrine mud from Trench Beta, SE side Cerro Tlapacoya, N of Puebla toll rd ca 28km SE of Plaza de Constitucion, D F, Mexico (19° 17' 30" N, 98° 55' 00" W). Coll to establish ages for sediments used in paleomagnetic investigation. Coll 1973 by P W Lambert, U S Geol Survey, and subm by Lambert and Valastro, this lab.

$13,180 \pm 290$ Tlapacoya, 73L61 Tx-1784.

NE side of trench, 23m from reference point.

$14,540 \pm 90$ Tx-1913. Tlapacoya, 12/15/73/1

N wall of trench, 30m from reference point. Date is average; sample split and 2 parts prepared and counted separately: $14,450 \pm 120, 14,630$ ± 130.

$14,450 \pm 100$ Tx-1914. Tlapacoya 12/16/73/2

NE wall of trench, 22.5 to 23.2m from reference point. Date is average; sample split as in Tx-1913: $14,210 \pm 140, 14,690 \pm 130$.

General Comment (SV, Jr): paleomagnetic directions and 14C dates do not support existence of geomagnetic field excursion formerly reported in 14,500 yr mud at Tlapacoya (Liddicoat and Coe, 1974; Liddicoat et al, 1979). Tx-1784 believed contaminated by root hairs.

North-Central Coastal Range series, Venezuela

Samples from Holocene outcroppings along N-central coast between Arrecifes and Borburata, DF, Venezuela. Coll to determine velocity of uplift of coastal range (Caribbean Mts). Coll 1975 and subm by C Schubert, Inst Venezolano Investigaciones Científicas, Caracas, Venezuela. Last number in sample title refers to elev in m above sea level.

1170 ± 80 Tx-2274. ARR-3, 0

Conglomeratic beach rock, on Taguao Bay, ca 1.5km W of Arrecifes (10° 33' N, 67° 08' W).

4480 ± 50 Tx-2275. ARR-4, 0.5

Coral, same general loc as Tx-2274. ARR-6, 0.5

Tx-2276.

 1020 ± 60

Coral, on Taguao Bay, ca 1.7km W of Arrecifes (10° 33' N, 67° 08' W).

1094

>40,000

University of Texas at Austin Radiocarbon Dates X	TV 1095
Tx-2277. ARR-10, 0.5	970 ± 70
Coral, on Taguao Bay, ca 1.8km W of Arrecifes (10° 33 W).	
Tx-2278. ARR-11, 0.5 Shell, same loc as Tx-2277, above.	1040 ± 60
shou, oune foe as 1x-2217, above.	Modern
Tx-2279. ARR-13, 0 $\delta^{14}C = +3$	$5.7 \pm 4.7\%$
Shell on La Salina Bay, ca 2.1km W of Arrecifes (10° 33 W).	8′ N, 67° 08′
Tx-2280. ARR-15, 0	2840 ± 80
Conglomeratic beach rock, same loc as Tx-2279, above.	
Tx-2281. ARR-18, 2	3260 ± 50
Coral, on La Salina Bay, ca 3km W of Arrecifes (10°	33' N, 67°
08' W).	, .
Tx-2282. ARR-19, 0.5	1860 ± 60
Coral, same loc as Tx-2281, above.	
Tx-2283. ARR-20, 0.5	1500 ± 50
Coral, same loc as Tx-2281, above.	
Tx-2325. CH-2, 15-18	310 ± 100
Coral, ca 2km W of Puerto Colombia (10° 30' N, 67° 38' W	V).
Tx-2326. PAT-1, 0.5	, 4500 ± 80
Coral, W side Patanemo Bay, ca 4.5km E Puerto Cabello	
67° 58′ W).	
Tx-2327. PAT-3, 1.2	3620 ± 90
Coral, W side Patanemo Bay (10° 30′ N, 67° 58′ W).	
Tx-2328. PAT-5, 1.0	3380 ± 50
Coral, same loc as Tx-2327, above.	
Tx-2329. BOR-2, 0	3430 ± 70
Coral, W end Borburata beach, ca 3.5km E Puerto Cabel	
N, 67° 59′ W).	(
Tx-2330. BOR-5, 0	990 ± 50
Shell, same loc as Tx-2329, above.	
Tx-2331. BOR-6, 0	620 ± 70
Coral, same loc as Tx-2329, above.	
Tx-2332. BOR-10, 1	1310 ± 60
Coral, ca 300m W Tx-2329, above.	

General Comment (CS): velocity of uplift of Coastal Range varies between 0.054, 0.061, and 0.0033cm/yr. However, real velocity of uplift probably

higher because age of coral and shell fragments contained in beachrock may be considerably older than rock itself. For report, see Schubert *et al* (1977).

III. PALEOBOTANICAL SAMPLES Idaho, Washington

Hager Pond series, Idaho

Peat samples from Core 1 (except as indicated) at Hager pond, mire ca 3.2km S of Nordman, Idaho (48° 36' N, 116° 57' W). Coll 1973 by R N Mack and subm by V M Bryant, Anthropol Research Lab, Texas A & M Univ, College Station, Texas. Figures in titles are depths in cm below surface.

- - - -

Tx-2103. Core 2.	Hager Pond #31, 913-916	9110 ± 110
Tx-2104.	Hager Pond #32, 643-645	6980 ± 480
Tx-2105.	Hager Pond #33, 339-343	3030 ± 110
Tx-2108. Core 2.	Hager Pond #36, 920-923	9510 ± 190
Tx-2110.	Hager Pond #38, 904-908	8280 ± 120
Tx-2113.	Hager Pond #41, 279-283	2940 ± 80
Tx-2115.	Hager Pond #43, 161-166	2670 ± 100
Tx-2116.	Hager Pond #44, 600-605	6630 ± 80
Tx-2119.	Hager Pond #47, 395-399	4310 ± 990
Tx-2121.	Hager Pond #49, 500-505	6390 ± 230
Tx-2673.	Hager Pond C-1, 760-771	7680 ± 40
Tx-2674.	Hager Pond C-1, 805-810	7960 ± 310
		$T = 0.101 \dots J T_{er} 0.116$

General Comment (RNM): Mazama ash is between Tx-2121 and Tx-2116. Dates confirm and define environmental events of last 10,000 yr or more accurate time scale than in previous analyses of this mire (Hansen, 1939; Rumley, 1956). For complete report, see Mack *et al* (1978a).

Simpsons Flats series, Washington

Gyttja.

Samples from Core 7 in mire in closed depression at Simpsons Flats on Colville Indian Reservation, 45km N of confluence of Sanpoil and Columbia Rivers (48° 25' N, 118° 15' W). Coll 1973 and subm by R N Mack, Dept Botany, Washington State Univ, Pullman, Washington. Figures in sample titles are depths in cm below surface.

Tx-2214.	Simpsons Flats,	225-228	1970 ± 160
Fibrous pea	t.		
Tx-2215.	Simpsons Flats,	264-268	2630 ± 160

Unive	ersity of Texas at Austin Radiocarbon D	ates XIV 1097
Tx-2216. Gyttja.	Simpsons Flats, 340-344	3260 ± 100
Tx-2217. Gyttja.	Simpsons Flats, 411-414	4120 ± 170
Tx-2218. Gyttja.	Simpsons Flats, 477-480	4380 ± 240
Tx-2219. Gyttja.	Simpsons Flats, 526-529	4790 ± 230
Tx-2220. Gyttja.	Simpsons Flats, 632-635	5850 ± 240
Tx-2222. Wood.	Simpsons Flats, 840-845	$10,000 \pm 150$
Tx-2223. Wood.	Simpsons Flats, 848	$10,010 \pm 220$
Tx-2418. Wood.	Simpsons Flats, 710	9270 ± 280
Tx-2470. Wood.	Simpsons Flats, 730-735	9560 ± 110

General Comment (RNM): Mazama ash was at 680cm. Dates give rate of vegetational change with recession of glacial ice and subsequent climatic change. Sharp discontinuity between Tx-2418 and Tx-2220 suggests no preserved records for events between ca 9000 and 6700 yr. For complete report, see Mack, Rutter, & Valastro (1978).

Big Meadow series, Washington

Gyttja from two cores from mire at Big Meadow on Meadow Creek, Pend Oreille Co, NE Washington (48° 43' N, 117° 33' W). Coll 1972 and subm by R N Mack. Numbers in titles refer to cm depths of samples in core. Samples listed in stratigraphic order from highest to lowest.

Tx-2203.	Big Meadow, 76	1170 ± 100
Tx-2295.	Big Meadow, 149	2480 ± 130
Tx-2416.	Big Meadow, 253	3050 ± 70
Tx-2414.	Big Meadow, 307	3390 ± 100
Tx-2415.	Big Meadow, 363	4210 ± 110
Tx-2073.	Big Meadow, 563	8910 ± 80
Tx-2417.	Big Meadow, 581	9130 ± 320

Tx-2226. Big Meadow, 607

$10,460 \pm 320$

General Comment (RNM): dates establish late Quaternary chronology of pollen record from Big Meadow and confirm relatively warmer climate than today between 9700 and 3330 BP. Present climatic conditions emerged ca 2400 BP. For complete report see Mack *et al* (1979).

Waits Lake series, Washington

Gyttja core samples from Core 1, S shore Waits Lake ca 10m from waterline, 2km W of Colville R Valley, Washington (48° 11' N, 117° 48' W). Subm to establish chronology for late Quaternary vegetational history in area. Coll 1972 and subm by R N Mack. Figures in titles are depths in cm below surface.

Tx-2657.	Waits Lake, 125-135	3530 ± 80
	Waits Lake, 275-294	6250 ± 100
	Waits Lake, 315-330	7910 ± 100
	Waits Lake, 440-456	8480 ± 260
	Waits Lake, 570-590	9880 ± 150
	Waits Lake, 660-684	9980 ± 160
	Waits Lake, 830-850	$11,950 \pm 200$
I X-2000.	Walls Lakey cost in t	

General Comment (RNM): dates evidently unreliable in absolute sense since Tx-2660 and Tx-2659 bracket Mazama ash, dated elsewhere (Fryxell, 1965) at 6700 BP. Also Tx-2663 is above Glacier Peak ash, dated elsewhere (Mehringer et al, 1977) between 11,200 and 11,300 BP. Present dates probably about 1300 yr old, due to contamination with older carbon. They provide useful within-the-core relative time frame. For complete report, see Mack et al (1978b).

Mud Lake series, Washington

Gyttja from two cores on NW margin of Mud Lake, 10km NE Concunully, Washington (48° 34' N, 119° 30' W). Numbers in title refer to cm depth in core. Coll 1972 and subm by R N Mack.

1		
Tx-2686.	Mud Lake, 254-260	8030 ± 150
Tx-2687.	Mud Lake, 326-332	8840 ± 940
Tx-2688.	Mud Lake, 355-360	9440 ± 120
	Mud Lake, 424-466	$11,300 \pm 560$
Tx-2690.	Mud Lake, 458-466	$11,500 \pm 560$

General Comment (RNM): series is below Mazama ash. For discussion, see Mack, Rutter, & Valastro (1979).

Bonaparte Meadows series, Washington

Peat from two cores from middle of fen, Bonaparte Meadows, 28km NW Republic, Washington (48° 54' N, 119° 02' W). Coll 1972 and subm by R N Mack. Numbers in title refer to cm depths in core.

Unive	ersity of Texas at Austin Radiocarl	bon Dates XIV 1099
Tx-2676.	Bonaparte, 55-60	1480 ± 60
Tx-2677.	Bonaparte, 115-119	2170 ± 220
Tx-2678.	Bonaparte, 150-155	2440 ± 100
Tx-2679.	Bonaparte, 190-195	2570 ± 70
Tx-2680.	Bonaparte, 245-250	23.0 ± 10 3340 ± 90
Tx-2681.	Bonaparte, 305-310	4780 ± 240
Tx-2682.	Bonaparte, 350-355	
Tx-2683.	Bonaparte, 410-415	6750 ± 190
Tx-2882.	Bonaparte, 415-421	6790 ± 130
Tx-2881.		6810 ± 190
	Bonaparte, 435-439	6870 ± 110
Tx-2883.	Bonaparte, 468-473	6930 ± 110
Tx-2884.	Bonaparte, 492-497	8300 ± 80
Tx-2684.	Bonaparte, 525-530	9000 ± 420
Tx-2685.	Bonaparte, 572-577	$10,000 \pm 220$

General Comment (RNM): Tx-2676 to Tx-2683 are between St Helens W and Mazama ash. Tx-2882 immediately above Mazama ash. Tx-2881 and Tx-2883 between 2 Mazama ash units; confirms earlier field evidence that Mazama ash represents 2 separate eruptions (Mack, Okazaki, & Valastro, 1979). Tx-2884, -2684, and -2685 below Mazama ash. For general discussion, see Mack, Rutter, & Valastro (1979).

Massachusetts

Tx-2948. Ned's Ditch 9, Massachusetts

 3020 ± 380

Small twigs embedded in black and orange silt and fine sand, 305 to 310cm below water surface, Core 9, Ned's Ditch, center of oxbow lake of Connecticut R within city limits of Northampton, Massachusetts (42° 17' 30'' N, 72° 37' 30'' W). Coll 1975 and subm by M H Sackett, Dept Biol Sci, Smith Coll, Northampton, Massachusetts. *Comment* (MHS): date is oldest obtained from oxbow. From same core, 349cm, was Gx-4378, 710 \pm 130 (Sackett, 1977, p 72); backcaving may have occurred at base of core.

Granby Bog series, Massachusetts

Peat samples from NE corner of Granby Bog, 0.8km S of Bachelor Brook Rd, 9.3km SSE of Amherst (42° 15' N, 72° 30' W). Coll 1977 by Sackett and Sailor and subm by M H Sackett.

Tx-2945. Granby D-14

 8520 ± 200

902 to 927.4cm depth; near base of Pollen Zone C1.

Tx-2946. Granby D-21

1205 to 1230cm depth; Pollen Zone A4.

 $10,300 \pm 370$

General Comment (MHS): chronology of Granby Bog agrees well with other ¹⁴C-dated pollen diagrams in S New England (Beetham and Niering, 1961; Flint and Deevey, 1951; Totoket series in R, 1959, v 1, p 146-147).

IV. ARCHAEOLOGIC SAMPLES

Texas

Tx-3173. Castner Range

 3080 ± 160

Charcoal from Castner Range site (31:106:3:75), E side of Franklin Mt, El Paso, Texas (31° 52′ 46″ N, 106° 25′ 45″ W). From ash lens ca 35cm below surface; late San Pedro Cochise phase. Coll 1978 by M Thompson and subm by L Herrington, Texas Hist Comm, Austin, Texas. *Comment* (LH): agrees with other dates of comparable cultural assignment in Hueco Bolson (Thompson & Beckett, 1979).

McDonald site series

Charcoal samples from hearth, 87cm below surface, early component of McDonald site (X41H1171), E bank of Hackberry Creek, 2.1km WNW of Vaughn, Texas, in Aquilla Reservoir basin (31° 55' 12" N, 97° 11' 37" W). Coll 1978 and subm by S A Skinner, Archaeol Research Prog, Southern Methodist Univ, Dallas.

Tx-3168.X41HI171/23/1 780 ± 70 Tx-3169.X41HI171/23/2 1010 ± 70

General Comment (SAS): dates not in 1σ agreement. Component includes Coles Creek Incised sherd; Tx-3169, agreeing with late part of date range usually assigned to this type, is probably nearer actual age than Tx-3168.

George C Davis site

Samples from George C Davis site (41CE19), early Caddo site E side Neches R valley, 9.6km SW of Alto, Cherokee Co, Texas (31° 35' N, 95° 10' W). Previous series from site are in R, 1970, v 12, p 626-629, and R, 1975, v 17, p 71-76. For extensive review of ¹⁴C dating of site, see Story and Valastro (1977).

George C Davis village series

Samples from hitherto uninvestigated part of site, NE of previously investigated portions. Coll 1978 and subm by D Creel, Dept Sociol & Anthropol, Texas A & M Univ, College Station. "Corrected" ages are corrected for δ^{13} C and dendrochronology (Damon *et al*, 1974).

560 ± 60

Tx-3267. 41CE19/237

 $\delta^{_{13}}C = -11.8\%$

Charred corn cob cupules and fragments, Unit 43, Feature 184-3. Corrected, 794 ± 66 .

1040 ± 230

Tx-3268. 41CE19/242

 $\delta^{13}C = -26.9\%$

Woody charcoal from bottom of pit, Unit 45, Feature 185-4. Corrected, 984 ± 232 .

 740 ± 70 Tx-3269. 41CE19/244A $\delta^{13}C = -27.1\%$ Woody charcoal, Unit 44, Feature 186-1. Corrected, 700 ± 80 . 770 ± 70 Tx-3270. 41CE19/244B $\delta^{_{13}}C = -12.0\%$ Charred corn cob cupules, Unit 44, Feature 186-1. Corrected, 970 ± 80. 790 + 80Tx-3271. 41CE19/246A $\delta^{_{13}}C = -26.9\%$ Woody charcoal, Unit 46, Feature 187-3. Corrected, 748 ± 89 . 780 ± 100 Tx-3272. 41CE19/247 $\delta^{13}C = -25.2\%$ Woody charcoal, Unit 46, Feature 187-5. Corrected, 765 ± 107 . 950 ± 80 Tx-3273. 41CE19/250A $\delta^{_{13}}C = -26.4\%$ Woody charcoal, Unit 48, Feature 189-6. Corrected, 930 ± 89 . 440 ± 90 Tx-3274. 41CE19/250B $\delta^{13}C = -10.4\%$ Charred corn cob cupules, Unit 48, Feature 189-6. Corrected, 700 \pm 104. 910 ± 90 Tx-3275. 41CE19/254A $\delta^{_{13}}C = -26.4\%$ Woody charcoal, Unit 45, Feature 185-11. Corrected, 883 ± 98 . 550 ± 60 Tx-3276. 41CE19/254B $\delta^{13}C = -10.1\%$ Charred corn cob cupules, Unit 45, Feature 185-11. Corrected, 802 ± 66. 880 ± 110 Tx-3307. 41CE19/matrix sample 468 $\delta^{13}C = -10.3\%$ Charred corn cob cupules, Unit 48, Feature 189-1. Corrected, 1099 \pm 117. 620 ± 100 Tx-3308. 41CE19/253B $\delta^{13}C = -25.6\%$ Charred hickory nut shell, Unit 43, Feature 184-4. Corrected, 625 \pm 104. 1170 ± 100 Tx-3309. 41CE19/238 $\delta^{13}C = -20.4\%$ Charred hickory nut fragments, Unit 45, Feature 185-8. Corrected, $1215 \pm 105.$ 610 ± 100 Tx-3310. 41CE19/239 $\delta^{13}C = -11.8\%$ Charred corn cob cupules, Unit 45, Feature 185-1. Corrected, 828 ± 104.

1140 ± 160

Tx-3311. 41CE19/246B $\delta^{13}C = -26.6\%$

Probable charred cane, Unit 46, Feature 187-3. Corrected, 1100 ± 163 .

Tx-3312. 41CE19/253A

1190 ± 80 $\delta^{13}C = -27.2\%$

Probable charred cane, Unit 43, Feature 184-4. Corrected, 1128 ± 87 .

General Comment (DC): all samples except Tx-3268 are from small charcoal-filled features which may be smudging pits of short-term use. Dates generally agree with previous dating of early Caddoan occupation at Davis site (Story & Valastro, 1977) and appear to relate mostly to later part of this occupation, although there is some indication of early occupation as well.

George C Davis F193-1 series

Wood charcoal from fill of pit, Feature 193-1, in Unit 62, W of Mound C, George C Davis site. Coll 1978 and subm by P Thurmond and U Kleinschmidt, Texas Archeol Research Lab, Univ Texas, Austin.

Tx-3399. Zone 4.	Davis F193-1, 299	990 ± 60
Tx-3400. Zone 5.	Davis F193-1, 255	1020 ± 60
	Davis F193-1, 288	800 ± 40

Zone 10 (deepest).

General Comment (PT, UK): pit fill was distinctly stratified, but matching sherds from different zones show that deposition was all one event. Occurrence of youngest date (Tx-3401) in deepest zone supports this conclusion. If Tx-3401 represents date of deposition, event was late in occupation of site.

Arkansas

Amos site series

Samples from Late Caddoan component, Amos site (3MN62), Upper Caddo Valley, 0.4km SW of Caddo Gap, Montgomery Co, Arkansas (34° 23.5' N, 93° 37.5' W). Coll 1976 by F Schambach and subm by A M Early, Arkansas Archeol Survey, Henderson State Univ, Arkadelphia, Arkansas.

Tx-2858. 76-690-62

Woody twigs from Feature 4, small pit filled with twigs, nut hulls, and possible cultigens. Unit N18W42, 35cm depth. *Comment* (AME): date too recent to refer to Late Caddoan component.

Tx-2859. 76-690-127-1

 440 ± 70

 230 ± 50

Wood charcoal from concentration of organic refuse on perimeter of Feature 3, Unit N16W44. *Comment* (AME): date appropriate for Late Caddoan component.

Boydell site series

Carbonized log samples from Boydell site (3AS58), Bartholomew phase Plaquemine, E side Bayou Bartholomew, in Boydell, Arkansas (30° 22' N, 91° 29' W). Coll 1977 and subm by P Stacy, Arkansas Archeol Survey, Univ Arkansas, Monticello.

Tx-2885. Boydell 77-764-1	790 ± 50
S central part of mound, 1.2m below surface; Feature 1.	
Tx-2886. Boydell 77-764-27	690 ± 60

N side Feature 2, ca 2m below surface.

Tx-2887. Boydell 77-764-41 750 ± 80

W side Feature 2, ca 2m below surface, with Burial 5.

General Comment (JM House): dates help confirm Rolingson's (1976, p 119) estimate of AD 1200 to 1400 for Bartholomew Phase of Plaquemine, and strengthen proposed chronologies for Winterville (Brain, 1969, p 279-282), lower Yazoo (Phillips, 1970, p 955-961), and Tensas (Hally, 1966).

Oklahoma

Tx-3248. 34SM-20/#2

1270 ± 60

Charcoal and charred nut hulls from Block D, Level 3, Roulston-Rogers site (34Sm-20), on ridge N side Little R, ca 4.8km NW Sasakwa, Seminole Co, Oklahoma (34° 59' 70" N, 96° 35' 60" W). Component A, Plains Woodland. Coll 1972 and subm by R Drass, Oklahoma Archaeol Survey, Norman. *Comment* (RD): date as expected; agrees with UGa-2510, 1310 \pm 105, from same component (Drass, pers commun).

Blessingame site series

Samples from Blessingame site (34Pu-74), Archaic and early Caddoan site in Jackfork Valley 5.6km N of Clayton, in Clayton Reservoir basin, Pushmataha Co, Oklahoma (34° 38' 25" N, 95° 21' 20" W). Coll 1978 and subm by C Lintz, Archaeol Research & Management Center, Univ Oklahoma, Norman. UGa dates cited are from Lintz (pers commun). Comments by CL.

Tx-3280. 34Pu-74, #2

1010 ± 50

Charred wood from roof fall, Structure 1, Sample C-6, Level 3, Sq B35-17. Early Caddo. *Comment*: sample pretreated at Texas lab, split, half-dated at Univ Georgia: UGa-2721, 890 ± 65 . Georgia date not inconsistent with present date; both dates consistent with early Caddo materials. Another date from same structure is UGa-2532, 185 ± 60 , anomalously young. See also Tx-3283, below.

Tx-3281. 43Pu-74, #4

1000 ± 50

Charred wood, roof fall post, Structure 2, Level 2, Sq C64-11. Early Caddo. *Comment*: sample pretreated at Texas lab, split, half-dated at Univ Georgia: UGa-2720, 790 \pm 65, later than present date, but both dates consistent with early Caddo assignment. Another date from same structure is UGa-2533, 565 \pm 60, anomalously young.

43Pu-74, #8 Tx-3282.

Charred wood from fill of Feature 78-9, rock hearth, Level 2, S half Sq A21-18. Comment: UGa-1518, 220 ± 100 , from same feature; dates do not agree.

43Pu-74, #7 Tx-3283.

Charred cane from roof fall, Structure 1, Level 4, Sqs B35-11, B35-9, B35-10, B35-12. Comment: date significantly younger than other dates from this structure (see comment for Tx-3280, above). Lab Comment: no δ^{13} C determination made. Anomalous date possibly due to fractionation in cane; our experience is that some species of cane fractionate, others do not. Present sample not identified botanically.

Tx-3284. 43Pu-74, #10

Charred wood, probably assoc with Feature 78-6, rock hearth, Level 2 (10 to 20cm), Sq A20-14. Comment: date inexplicably early; stratigraphically equivalent to Feature 78-9 (Tx-3282, above, and UGa-1518, 220 ± 100) and is stratigraphically above UGa-2534, 175 \pm 175.

North Carolina

Parker site series

Charcoal samples from Parker site (31Dv4), late Woodland site 250m S of Yadkin R on Horseshoe Neck, ca 11km NW of Churchland, North Carolina (35° 50' N, 80° 31' W). Coll 1972 and subm by J N Woodall, Mus of Man, Wake Forest Univ, Winston-Salem, North Carolina.

Tx-2818. Parker A

From postmold, Sq N95/E98, Level 3, 30 to 39cm below surface.

Tx-2819. Parker B

Sq N78/E100, Level 3, 30 to 45cm below surface.

Parker C Tx-2820.

Trash pit in Sq N95/E100, 99.33 to 99.36m above datum. Pit had late Woodland sherds and points, 2 late Archaic points, mussel shells, animal bones.

General Comment (JNW): Tx-2818 and -2819 agree with evidence of Late Archaic point assocs that net-impressed pottery (and large Yadkin R sites with this ware) is not protohistoric in age. Reason for late date of Tx-2820 not apparent, but fill of trash pit was dark and intrusions might have been present without being detected.

Ohio

Eddie Paul Rockshelter Tx-2374.

Eddie Paul Rockshelter, on top of hill W of Stump Run, 1.6km S of Frazeysburg, Ohio (40° 05' N, 82° 07' W). Earliest occupation of site, assoc with Late Woodland occupation including triangular projectile points and Peters cord-marked pottery. From 0.55m depth, lowest occupation level. Coll 1972 by J Carskadden and subm by J P Morton, Dept

1104

 500 ± 40

 530 ± 50

 1920 ± 60

 970 ± 80

 1340 ± 60

 120 ± 260

Geol Sci, Univ Texas, Austin. *Comment* (JPM): date later than expected; should be earlier than Philo phase (see Richards site series, below) which has shell-tempered pottery. Reason for late date unknown.

Tx-2462. Merry's Cave

2290 ± 50

Charcoal from Merry's Cave site, on Salt Creek, 1.6km N of junction with White Eyes Creek, 8km WNW of Chandlersville, Ohio (39° 55' N, 81° 52' W). From layer D-3, lowest level where pottery occurs: Early Adena. Coll 1969 by J Carskadden and subm by J P Morton. *Comment* (JPM): date recent for Early Adena.

Richards site series

Richards site (HA-13), Middle Fort Ancient aspect, Philo phase, on N bank Muskingum R, 0.8km W of Duncan Falls (39° 52' N, 81° 55' W). Coll 1975 by Carskadden and subm by J P Morton.

Tx-2344. Richards HA-13-A 660 ± 60

Bottom of Fire Pit A, 0.76m below plow zone; assoc with Philo Punctate pottery.

Tx-2345.	Richards	HA-13-B	680 ± 50
----------	----------	---------	--------------

Bottom of Fire Pit B, 0.6m below plow zone.

Tx-2346. Richards HA-13-C 600 ± 70

Bottom of Fire C, 0.76m below plow zone.

General Comment (JPM): dates consistent with previous estimates for age of Philo phase.

Hilltop Mound Group series

Hilltop Mound Group (HA-3), Adena and Late Hopewell site on N bank of Muskingum R, on ridge above Richards site 0.8km W of Duncan Falls (39° 52' N, 81° 55' W). Coll 1975 by J Carskadden and subm by J P Morton.

Tx-2347. Hilltop Mounds, HA-3D-1 2990 ± 80

Mound D, Feature 1, central fire basin on primary mound, Mound D. *Comment* (JPM): most assocs are Late Hopewell, but Early Woodland pottery was nearby; date indicates Early Woodland.

Tx-2373. Hilltop Mounds, HA-3B-1 1650 ± 60

Charred log in fire basin on floor of primary mound, Mound B. Comment (JPM): date consistent with Late Hopewell.

Tx-2375. Hilltop Mounds, HA-3E-1 2160 ± 60

From living area of House E, Late Adena. Comment (JPM): date consistent with Late Adena and Early Hopewell.

Washington

Tx-3304. Miller site #55, Washington

 2400 ± 110

Charcoal fragments from Miller site (45FR5) on Strawberry I, in Snake R, 6.4km upstream from its mouth, Franklin Co, Washington (46° 14' N, 118° 59' W). Side of 43.5 E wall, 59.4S to 60.0S, alt 103.60 to 103.70cm. Coll 1978 and subm by R R Mierendorf, Washington State Univ, Pullman, Washington. *Comment* (RRM): date assoc with non-housepit occupation; underlies large housepit occupation.

Montana

Tx-3066. Iron Jaw Wilcox Burial

 1790 ± 50

Wood charcoal from Iron Jaw Wilcox Burial (24RB93), on first alluvial terrace above Iron Jaw Creek, ca 6.4km S of Hathaway, Montana (46° 13' 38" N, 106° 13' 11" W). Above and among bones of primary burial, 2 to 30cm subsurface. Coll 1978 by J Clark and subm by R A Teegarden, U S Bur Land Management, Miles City, Montana. *Comment* (RAT): no grave goods assoc; ¹⁴C date allows placement of burial in time.

Benson's Butte series

Charcoal from hearths and bone from rock-walled dwelling in Benson's Butte site (24BH1726; Fredlund, 1979). Late Prehistoric site on spring fork of Young's Creek, tributary of Tongue R, Crow Indian Reservation, Big Horn Co, Montana, ca 32km N of Sheridan, Wyoming (45° 01' 34" N, 107° 01' 13" W). Coll and subm 1977, 1978 by L B Fredlund, Montana Tech Alumni Foundation, Mineral Research Center, Butte, Montana. For previous dates, see R, 1977, v 19, p 317. Cm figures are depths below surface.

Tx-2795. Benson's Butte #6 Charcoal, Feature 16, 35 to 40cm, 1S38W.	940 ± 60
Tx-2796. Benson's Butte # 7 Charcoal, Feature 18, 40 to 50cm, 2N/3N 37W/38W.	1510 ± 60
Tx-2797. Benson's Butte #8 Charcoal, Feature 20, 60cm, 6N38W.	4230 ± 50
Tx-2798. Benson's Butte #9 Charcoal, Feature 20, 40 to 50cm, 6N38W.	1140 ± 50
Tx-3111. Benson's Butte #10 Bone, Feature 19, 40 to 60cm, various locations.	1000 ± 90
Tx-3112. Benson's Butte #11	1770 ± 200

Bone, Feature 19, 40 to 60cm, various locations.

General Comment (LBF): charcoal dates fit well within expected range of early Late Prehistoric period, except for Tx-2797, which is inexplicably early. Bone date, Tx-3111, consistent with major occupation of site; however, Tx-3112 thought to be more realistic date for structure as living surface is stratigraphically below latest occupation. For further details see Fredlund (1979).

Hatwai site series

Charcoal from Hatwai site (10NP143), at confluence of Hatwai Creek and Clearwater R, ca 7km E of Lewiston, Idaho (46° 26' 30" N, 116° 54' 00" W). Coll 1978 by Green, Ames, and others and subm by J P Green and K M Ames, Dept Sociol, Anthropol, and Criminal Justice Admin, Boise State Univ, Boise, Idaho. Comments by JPG and KMA.

Idaho

Tx-3081. 10NP143-77

Very small samples from remnant sand layer over alluvial bar gravel, 9.6-11.8N/90-91E, alt 232.6 to 232.8cm. Early Alluvium (Qae) (Hammett, 1976). Comment: dates overbank sand deposition in broad meander at midpoint bar position. Stratigraphically below Tx-3082 and -3083, below.

Tx-3082. 10NP143-78

Truncated surface under upper gravel, 10-15N/89-90E, alt 232 to 232.6cm. Early Alluvium (Qae). Comment: dates upper limit for truncation of overbank chute sediments and start of period of increased stream competence. Dates same episode as WSU-1828, 6165 ± 210 (Ames, pers commun); present date in better agreement with geologic evidence. Stratigraphically above Tx-3083, below.

Tx-3083. 10NP143-17/78

In overbank channel, 13-15N/89-90E, alt 321.8m. Mid-point bar location. Comment: dates start of overbank chute deposition; dates upper limit for truncation of underlying deposits. Geologically same as \overline{WSU} -1840, 7860 ± 90 (Ames, pers commun); present date in better agreement with geologic evidence. Early Alluvium (Qae). Unconformably overlies Tx-3081; underlies Tx-3082.

Tx-3084. 10NP143-87

Bottom of channel cut into Early Alluvium, 13-14N/259E, alt 231.85 to 231.90cm. Comment: dates upper limit for cut. Dates cut and fill episode represented by Overbank "A" set, chute fill. Overbank episode records vigorous Clearwater R flow in Altithermal period. Upper point bar location; correlates with units at mid and lower bar positions.

Tx-3085. 10NP143-102

Organic fraction of Overbank Laminae "C" set, Unit B, 12.5-13.6N/ 259E, alt 232.78 to 232.81m. Comment: dates episode of increased Clearwater R flow, roughly co-eval with Tucannon phase pit houses (Tx-3088, -3263, below). Upper point bar location, correlates with units at mid and lower bar positions. Middle Alluvium unit (Qam).

Tx-3086. 10NP143-64

Occupational surface in Early Alluvium (Qae) unit, 9-12N/56-60E, alt 231.9 to 232.1cm. Comment: laterally equivalent to Tx-3083, above; dates agree. Dates upper limit for lower point bar gravels containing Windust phase artifacts (Leonhardy and Rice, 1970).

4310 ± 70

 9160 ± 230

8560 ± 520

 9280 ± 110

 9320 ± 1830

10NP143-103 Tx-3088.

Small branch or house timber, lower floor House 2; 15.35-15.40N/ 141.18-141.40E, alt 233.25cm. Comment: pit house of Tucannon phase (Leonhardy and Rice, 1970); below upper floor of house, from which came Tx-3092, -3264, below.

Tx-3089. 10NP143-70A

From intrusive pit, Feature 90, dug into House 3, Tucannon phase pit house, 2.05-3.05N/59.45E, alt 234cm. Comment: dates trash in pit.

Tx-3090. 10NP143-4A-5

From pit, Feature 2, 26.20-27.25S/32W, alt 234cm. Comment: small side-notched points assoc; latest precontact date for site use.

Tx-3091. 10NP143-37

Buried soil surface on upper Tucannon sediment, 18-28S/32W, alt 232.6 to 232.7cm. Comment: Middle Alluvium; composite sample from along contact, Qal position; correlates with paleosol developed on Qam.

Tx-3092. 10NP143-119

Composite sample from small area on upper floor House 2, 14-16N/ 141-145E, alt 233.4 to 233.5cm. Comment: assoc with Tx-3264, below; dates agree closely. Appropriately later than Tx-3088, above, on lower floor of same house. See Tx-3264, below, for further comments.

10NP143-217 Tx-3158.

Intergravel sand lens at lower point bar position; 10-12N/56-60E, alt 230.94 to 231.38cm. Comment: assoc with Windust phase artifacts, post-Missoula flood gravels. Stratigraphically inconsistent with Tx-3159, below; present date probably too recent.

Tx-3159. 10NP143-187

Lower point bar gravel unit, 8-10N/51.3-54.0E. Comment: Windust phase artifacts directly assoc; first post-Missoula flood occupation. Overlies Tx-3158, above, which has more recent date; present date believed more reliable because consistent with those from Marmes Rock Shelter for initial occupation (Rice, 1972).

10NP143-216 Tx-3160.

Intergravel sand lens, 14-16N/124-127E, alt 232.64 to 233.03cm. Midpoint bar position. Comment: dates period of high stream competence. Artifacts in overlying gravel foreset unit.

Tx-3161. 10NP143-283

Organic fraction of Overbank Lamina "B", from buried channel at intersection of lower point bar and creek; 0.5-1.0N/48-50E, alt 231 to 231.38cm. Comment: dates episode of increased stream competence. Gives median age for ashy (Mazama) fan deposits derived from Hatwai Creek.

360 ± 60

 4120 ± 110

10.820 ± 140

 $10,110 \pm 720$

 5450 ± 120

 9850 ± 870

3420 ± 380

 2270 ± 150

Tx-3262. 10NP143-261

5550 ± 220

Composite sample from fill of large pit intrusive into fill of House 1; 10-12N/128-130E, alt 233 to 233.1cm. *Comment*: stratigraphically more recent than Tx-3263, below, and WSU-1842, 3330 ± 70 ; present date must be too old for age of pit.

Tx-3263. 10NP143-271

4340 ± 90

Composite sample from floor of House 1, 10-12N/128-130E, alt 232.9 to 233cm. *Comment*: agrees with Tx-3088, above, in dating first pit house here, and provides support in dating House 5 at Alpowai site (Brauner, 1976). Hatwai and Alpowai are thus earliest villages on Columbia Plateau.

Tx-3264. 10NP143-186

Composite sample from small pit assoc with upper floor of House 2; 14.7-15.4N/142.18-143.05E, alt 232.82 to 233.20cm. *Comment*: agrees closely with Tx-3092, above. These 2 dates, and dates on House 1 (WSU-1842, 3330 \pm 70; WSU-1878, 3130 \pm 90; Ames, pers commun) and House 4 (WSU-1892, 3240 \pm 90; Ames, pers commun) date second major house construction episode at site, Tucannon phase.

Tx-3265. 10NP143-117

Small composite sample on occupational surface in late glacial overbank sediment; 7-12N/51-60E, alt 231.84cm. *Comment*: assoc with early Cascade phase material. Early Alluvium (Qae). Duplicate sample of Tx-3086, above, with which it agrees.

Tx-3266. 10NP143-229

8660 ± 1660

Small composite sample assoc with upper gravel veneer on lower point bar, Feature 63, 6-12N/51-60E, variable alt. *Comment*: Windust phase cultural material assoc. Laterally equivalent to episode dated by Tx-3082; dates agree.

General Comment on Hatwai series: series provides first good set of dates for an open Windust phase site, establishes initiation of pit house villages on Columbia Plateau at 4300 to 4000 BP, and provides chronologic base for developing Clearwater R alluvial sequence.

Curecanti Project, Colorado

Samples from sites in Curecanti area, Blue Mesa Reservoir Basin, on Gunnison R, W of Gunnison, Colorado. Coll 1978 by R T Euler and subm by M Steiger, Midwest Archeol Center, Lincoln, Nebraska.

5GN191 series

Charcoal from Site 5GN191, extensive lithic deposit with slab-lined firepits, points including variant type of Pinto Basin; S bank of Gunnison R, ca 22.5km W of Gunnison (38° 28' N, 107° 08' W).

Tx-3149. #19 Feature 11, unlined firepit.

 8550 ± 100

 8800 ± 1310

 5810 ± 120

Tx-3152. #16 Feature 3, slab-lined firepit.

Tx-3155. #18

 5690 ± 170

Feature 6, slab-lined firepit.

General Comment (MS): dates earlier than expected; all are before end of Altithermal.

5GN205 series

Charcoal from site 5GN205, in Elk Creek development area, ca 0.8km N of Blue Mesa Reservoir, ca 24km W of Gunnison (38° 28' N, 107° 10' W). All samples are from same stratigraphic level, 20 to 30cm below present ground surface.

Tx-3150. #420/422 4430 ± 300

Feature 1, circular ash stain (probable habitation structure), general fill, ca 3m diam.

		4560 ± 80
Tx-3151.	#443	4000 ± 00

From hearth on edge of *in situ* lithic concentration.

Tx-3154. #297/298 9800	± 830
------------------------	-------

Same location as Tx-3151, above.

Tx-3156. #442 7060 ± 110

From poorly defined charcoal stain, 4m NW of Feature 1.

Tx-3157. #437 4270 \pm 90

Sample from possible cribbing from Feature 1.

General Comment (MS): dates from Feature 1 consistent; earlier than expected.

Tx-3153. 5GN200, Catalog #1 4520 ± 120

Charcoal from Site 5GN200, within Elk Creek development area (see 5GN205 series, above). From possible shallow hearth in test pit. *Comment* (MS): consistent with most other dates from similar components in Curecanti area.

South America

Perijá series, Venezuela

Charcoal samples from 2 sites in Perijá Dist, state of Zulia, Venezuela. Coll 1976 and subm by E Wagner, Dept Antropol, IVIC, Caracas, Venezuela.

Tx-2608.Perijá, Caño Pescado 9140 ± 140 9140 ± 140 9140 ± 140

From Trench A, level 0.25 to 0.5m, Caño Pescado site, on riverbank where Caño Pescado enters Rio Palmar (10° 41′ N, 72° 26′ W).

Tx-2609. Perijá, Berlin #1 490 ± 70

Trench V, surface to 0.25m, Berlin site, in valley between Caño Pescado and Caño Colorado, ca 1.5km from Rio Palmar (10° 38' N, 72° 25' W).

Tx-2610.	Perijá, Berlin #2	7710 ± 700
Same as T	x-2609 level 0.25 to 0.5m	

Same as Tx-2609, level 0.25 to 0.5m.

Tx-2611. Perijá, Berlin #3 8420 ± 970

Same as Tx-2609, Level 0.5 to 1m.

General Comment (EW): assoc ceramics are similar to those at El Diluvio site (Tx-2409 to -2413; R, 1978, v 20, p 265), which were widely varied. Present dates much too old to date occupations, except Tx-2609 which is too young. Samples seem to consist partially of coal from Tertiary formations of Perijá area.

La Galgada series, Peru

Carbonized wood from pre-ceramic temples, La Galgada site, 1km S of La Galgada village on E bank of Rio Tablachaca, Prov Pallasca, Peru $(8^{\circ} 28' \text{ S}, 78^{\circ} 9' \text{ W})$. Coll 1978 and subm by T Grieder, Art Dept, Univ Texas, Austin.

Tx-3166. C1-J6	3660 ± 80
----------------	---------------

Fire pit in Floors 3, 5, 7, Sec C1, Sq J6.

Tx-3167. D1-D3

 3820 ± 60

Fire pit in Floor 25, Sec D1, Sq D3.

General Comment (TG): dates provide rough time range for pre-ceramic temples.

Vegas series, Ecuador

Shell (Anadara tuburculosa) and human bone from Vegas culture type site midden, on low hill 1km SW Santa Elena, Santa Elena Peninsula, Prov Guayas, Ecuador (02° 13' S, 80° 52' W). Coll 1977 and subm by K E Stothert, Paleo-Indian Proj, Central Bank of Ecuador, 723 E Woodlawn, San Antonio, Texas.

Tx-3313. OGSE-80 #1 Shell, Quad G-H/8-9, 90 to 95cm level.	7440 ± 100
Tx-3314. OGSE-80 #2 Shell, Quad G-H/8, 95 to 100cm level.	7150 ± 70
Tx-3315. OGSE-80 # 3 Shell, Quad G-H/8-9, 105 to 110cm level.	8170 ± 70
Tx-3316. OGSE-80 #4 Shell, Quad G-H/8, 140cm level.	9550 ± 120
Tx-3318. OGSE-80 Moved bones	6750 ± 150

1x-3318.UGSE-80 Moved bones 6750 ± 150 Bone from cemetery in midden.Lab Comment: date is on apatitefraction.

Tx-3413. OGSE-80, Feature 24 8250 ± 120

Bone from cemetery in midden. Lab Comment: date is on apatite fraction.

S Valastro, Jr and others

General Comment (KES): shell dates in fairly good stratigraphic order excepting Tx-3313 and -3314; dates confirm previous dates from midden (L-1042A, 8600 \pm 200 BP; L-1042F, 7600 \pm 100 BP; I-10,097, 8810 \pm 395 BP; Stothert, pers commun). Bone dates confirm burials made while midden accumulating; Tx-3318 probably corresponds to refuse levels that have eroded from upper level of midden.

Yugoslavia

Stobi mortar, Series I, Yugoslavia

Samples of mortar (CaCO₃) from masonry buildings at Stobi, Hellenistic and Roman site at junction of Crna and Vardar Rivers, S of Titov Veles, Macedonia (41° 33' N, 21° 59' E). Previous dates from Stobi are in R, 1975, v 17, p 96-98, and 1977, v 19, p 323. Present series represents first work on application of modified technique for dating of mortar, in which aggregate is removed and only first fraction of CO2 gas evolved from mortar is used (for details of technique see Valastro, 1975; Folk and Valastro, 1975; 1976). Tx-1431 and -1940 to -1944 coll 1973 by Davis (except as noted) and represent 1st phase of project. These dates have been reported and discussed in sources just cited (some dates are slightly different here because of being rounded to nearest 10 yr). Tx-2488 to -2494 coll 1974-5 by Davis, reported here for 1st time. Most samples split and parts prepared and counted independently. In such cases, date is average and dates of parts are given in description. "Corrected dates" are corrected for ${}^{13}C/{}^{12}C$ and dendrochronology (Damon *et al*, 1974). Subm by J R Wiseman, Dept Classical Studies, Boston Univ, Boston, Massachusetts, and E M Davis; comments by JRW and EMD.

Tx-1431. Stobi Cent Bas, Folk mortar 1870 ± 180

Small sample for preliminary experiment in mortar dating. Floor 1, narthex of Central Basilica (formerly called Synagogue Basilica). Coll 1971 by R L Folk. *Comment*: archaeol date of building construction, AD 460 \pm 30 (1490 \pm 30BP), but mortar might be as much as a century later. Mortar ¹⁴C date much earlier, but this preliminary experiment justified continuing work on mortar dating.

1600 ± 60

Tx-1944. Stobi, Cent Bas, Mortar 11 $\delta^{13}C = -15.8\%$

Same provenience as Tx-1431, above, 1628 ± 50 , 1560 ± 90 . Comment: corrected date, 1510 ± 60 , agrees with archaeol date of building construction, 1490 ± 30 BP; suggests mortar does not refer to time after building was abandoned, as had been suspected.

1730 ± 40Tx-1941.Stobi, Theater 2X73, Mortar 4 $\delta^{13}C = -9.3\%$ Theater, foundation of analemma in E parodos, 1740 ± 60, 1720 ±60, 1720 ±60, 1730 ± 60. Comment: corrected date is 1690 ± 40.40.

 Tx-1942.
 Stobi, Theater 7X73, Mortar 9
 1720 ± 50
 $\delta^{13}C = -8.2\%$

Theater, foundation of S wall of 1st radial corridor of cavea, next to

W parodos, 1738 ± 80 , 1690 ± 70 , 1715 ± 70 . Comment: corrected date is 1700 ± 50 .

1950 ± 60 Tx-2488. Stobi, Theater 1X74 $\delta^{13}C = -14.9\%$

Theater, E Porch II, from core of porch of scene building. Comment: corrected date is 1850 ± 75 .

1780 ± 50 Tx-2489. Stobi, Theater 4X74 $\delta^{13}C = -6.8\%$

Theater, core of W wall of center radial corridor, just N of outer circular corridor. Comment: corrected date is 1775 ± 70 .

General Comment on Tx-1941, -1942, -2488, -2489: samples are all from same construction episode in early 2nd century AD, ca 1840 BP. Average of 4 corrected dates is 1755 ± 30 . Tx-1941, -1942 agree with each other but are more recent than archaeol date. Tx-2488 agrees well with archaeol date. Tx-2489 is intermediate.

1660 ± 50 Tx-1943. Stobi, E Bas, Mortar 10 $\delta^{13}C = -19.2\%$

Episcopal Basilica, foundation of S wall, 1680 ± 130 , 1627 ± 70 , 1670 ± 60 , 1640 ± 70 . Comment: corrected date is 1550 ± 50 .

1600 ± 70 Tx-2490. Stobi, E Bas 45X75 $\delta^{_{13}}C = -10.6\%$

Episcopal Basilica, foundation of S stylobate at E end. Comment: corrected date is 1525 ± 85 .

Tx-2491. Stobi, E Bas 46X75

 1800 ± 80 $\delta^{13}C = -18.3\%$

Episcopal Basilica, foundation of N wall near E end. Comment: corrected date is 1625 ± 85 .

General Comment on Tx-1943, -2490, -2491: samples are all from construction Phase I, 2nd quarter or middle of 5th century AD, ca 1510 \pm 20 BP. Average of 3 corrected dates is 1570 ± 40 . Dates agree with one another within 1σ , and Tx-1942 and -2490 agree with archaeol date; Tx-2491 is early.

2040 ± 50

Tx-1940. Stobi, CWE 4X73, Mortar 1

 $\delta^{13}C = -16.2\%$ From horizontal layer of mortar in deposits against exterior of E wall (Wall 15) of Casa Romana, alt 131.20 to 131.44m; later than wall, 2015 \pm 80, 2051 \pm 60. Coll 1972 by J F Cherry. Comment: corrected date is 1880 \pm 60, much earlier than archaeol date of 4th century AD based on pottery in strata above and below mortar layer; secondary deposition

1970 ± 80

Tx-2492. Stobi, CWE 48X75

suspected. See general comment, below.

$\delta^{13}C = -12.3\%$

Casa Romana, E (older) part of S wall (Wall 6). Comment: corrected date is 1915 ± 80 .

 1940 ± 80 $\delta^{13}C = -12.7\%$

Tx-2494. Stobi, CWE 50X75

Casa Romana, W (younger) part of S wall (Wall 6). Comment: corrected date is 1865 ± 85 .

General Comment on Tx-1940, -2492, -2494: age of Casa Romana not known from direct archaeol evidence. Tx-2492 and -2494 indicate 1st century AD, which is compatible with stratigraphic evidence and style of wall decoration. Structural evidence shows that Tx-2492 is earlier than -2494; dates suggest same relationship. Tx-1940, stratigraphically much later, nevertheless agrees with other 2 dates; very likely mortar of Tx-1940originally came from Casa Romana and was redeposited. Field evidence suggested this possibility.

General Comment on Stobi mortar dates (SV, Jr & EMD): mortar dates support archaeol dates of times of construction, except in case of Theater where mortar dates vary.

References

- Beetham, N and Niering, W, 1961, A pollen diagram from southeastern Connecticut: Am Jour Sci, v 259, p 69-75.
- Brain, J P, 1969, Winterville: A case study of prehistoric culture contact in the lower Mississippi Valley: PhD dissert Yale Univ, New Haven, Conn.
- Brauner, D'R, 1976, Alpowai: the culture history of the Alpowa locality: PhD dissert, Washington State Univ, Pullman.
- Damon, P E, Ferguson, C W, Long, A, and Wallick, E I, 1974, Dendrochronologic calibration of the radiocarbon time scale: Am Antiquity, v 39, p 350-366.
- Flint, R F and Deevey, E S, 1951, Radiocarbon dating of late Pleistocene events: Am Jour Sci, v 259, p 257-300.
- Folk, R L and Valastro, S, Jr, 1975, Radiocarbon dating of mortars at Stobi, in Wiseman, J, ed, Studies in the antiquities of Stobi: Beograd, v 2, p 29-41.
 - ______1976, Successful technique for dating of lime mortar by carbon-14: Jour Field Archaeol, v 3, p 203-208.
- Fredlund, L B, 1979, Benson's Butte 24BH1726: Cultural Resources Div, Montana Tech Alumni Foundation, Min Research Center, Repts Investigations no. 8.
- Fryxell, R, 1965, Mazama and Glacier Peak volcanic ash layers: relative ages: Science, v 147, p 1288-1290.
- Hally, D J, 1966, Post Coles Creek cultural development in the upper Tensas Basin in Louisiana: Southeastern Archaeol Conf Bull, v 6, p 36-40.
- Hammett, H H, 1976, Late Quaternary stratigraphy and archaeological chronology in the lower Granite Reservoir, Lower Snake River, Washington: PhD dissert, Washington State Univ, Pullman.
- Hansen, H P, 1939, Pollen analysis of a bog in northern Idaho: Am Jour Botany, v 26, p 225-228.
- Leonhardy, F C and Rice, D, 1970, A proposed cultural typology for the lower Snake River region, southwestern Washington: Northwest Anthropol Research Notes, Pullman, Washington, v 4, no. 1, p 1-29.
- Liddicoat, J C and Coe, R S, 1974, Geomagnetic secular variation recorded in late Pleistocene Lake Lahontan deposits: Am Geophys Union Trans, v 54, p 1109.
- Liddicoat, J C, Coe, R S, Lambert, P W, and Valastro, S, Jr, 1979, Paleomagnetic record in late Pleistocene and Holocene dry lake deposits at Tlapacoya, Mexico: Royal Astron Soc Geophys Jour, v 59, p 367-378.
- Mack, R N, Okazaki, R, and Valastro, S, Jr, 1979, Bracketing dates for two ash falls from Mount Mazama: Nature, v 279, no. 5710, p 228-229.
- Mack, R N, Rutter, N W, Bryant, V M, Jr, and Valastro, S, Jr, 1978a, Re-examination of postglacial vegetational history in northern Idaho: Hager Pond, Bonner Co: Quaternary Research, v 10, no. 2, p 241-255.

______ 1979, Late Quaternary pollen record from Big Meadow, Pend Orcille County, Washington: Ecology, v 59, no. 5, p 956-966. Mack, R N, Rutter, N W, and Valastro, S, Jr, 1978, Late Quaternary pollen record from the Sanpoil River Valley, Washington: Canadian Jour Botany, v 56, no. 14, p 1642-1650.

- 1979, Holocene vegetation history of the Okanogan Valley, Washington: Quaternary Research, v 12, p 212-225.

- Mack, R N, Rutter, N W, Valastro, S, Jr and Bryant, V M, Jr, 1978b, Late Quaternary vegetation history at Waits Lake, Colville River Valley, Washington: Botanical Gazette, v 139, no. 4, p 499-506.
- Mehringer, P J, Blinman, E, and Petersen, K L, 1977, Pollen influx and volcanic ash: Science, v 198, p 257-261.
- Phillips, P, 1970, Archaeological survey in the lower Yazoo Basin, Mississippi; 1949-1955: Peabody Mus Archaeol Ethnology, Papers, Harvard Univ, v 60.
- Rice, D G, 1972, The Windust Phase in lower Snake River prehistory: Lab Anthropol, Washington State Univ, Pullman, Rept Investigation no. 50.
- Rolingson, M A, 1976, The Bartholomew Phase: A Plaquemine adaptation in the Mississippi Valley, in Cleland, C, ed, Cultural changes and continuity: Essays in honor of James Bennett Griffin: New York, Academic Press.
- Rumley, J H, 1956, Plant ecology of a bog in northern Idaho: PhD dissert, Washington State Univ, Pullman.
- Sackett, M H, 1977, Phytosociology and geological development of three abandoned meanders of the Connecticut River in western Massachusetts: PhD dissert, Dept Botany, Univ Massachusetts, Amherst.
- Schubert, C, Valastro, S, Jr, and Cowart, J B, 1977, Evidencias de levantamiento reciente de la costa norte-central (Cordillera de la Costa), Venezuela: Acta Científicas Venezolana, v 28, no. 6, p 363-372. Story, D A and Valastro, S, Jr, 1977, Radiocarbon dating and the George C Davis
- site, Texas: Jour Field Archaeol, v 4, p 63-89.
- Thompson, M and Beckett, P H, 1979, A study of prehistoric camp sites in northeast El Paso: New Mexico State Univ, Las Cruces, Rept Texas Hist Comm, Texas Antiquities Permit 184.
- Valastro, S, Jr, 1975, A new technique for the radiocarbon dating of mortars: MA thesis, Dept Geol Sci, Univ Texas, Austin.

UNIVERSITY OF MIAMI RADIOCARBON DATES XVIII

R A JOHNSON and J J STIPP

Department of Geology, University of Miami Coral Gables, Florida 33124

The following radiocarbon dates are a partial list of samples measured for a variety of projects and materials since August 1979. Chemical and counting procedures remain the same as indicated in R, v 20, p 274-282.

Calculations are based on the 5568-year Libby ¹⁴C half-life. Precision is reported as one standard deviation based only on statistical counting uncertainties in the measurement of the background, NBS modern standard, and sample activities. δ^{13} C values are measured relative to PDB and reported ages are corrected for isotopic fractionation by normalizing to -25%. An additional 400-year reservoir age correction has been applied to marine carbonates.

SAMPLE DESCRIPTIONS

I. GEOLOGIC SAMPLES

Western Mediterranean series

Foraminiferal mud taken by piston corer at two localities in the western Mediterranean Sea. Dated to establish planktonic foraminiferal paleoclimate curve. Coll 1975 to 1978 and subm 1979 by P Loubere, Oregon State Univ, Corvallis.

UM-1801.Core 35326: 150 to 165cm $\delta^{I3}C = -0.6\%$ Sample coll in water depth 2480m (41° 24.8' N, 5° 57.8' W).UM-1824.TR 173-16P: 92 to 107cm7390 ± 110

Sample coll at water depth 1904m (36° 10.1' N, 1° 51.4' W).

 UM-1825.
 Core 35326: 275 to 290cm
 16,760 ± 300

 Sample coll at water depth 2480m (41° 24.8' N, 5° 57.8' W).

Mediterranean Sedimentation series

Carbonate mud coll by piston corer from two sites in the W Mediterranean Sea. Samples analyzed to establish sedimentation rates for the area. Coll 1978 and subm 1979 by M Ayers, Duke Univ, Durham, North Carolina.

UM-1814. 35279: 5cm $10,500 \pm 200$

Sample coll at water depth 2595m (36° 33' N, 0° 4.5' W).

UM-1815. 35073: 3 to 10cm 6110 ± 100 Sample coll at (36° 55.9' N, 0° 2.2' W).

Sea Level Fluctuation series

Wood samples coll from littoral zone in several counties in Georgia

for sea level fluctuation studies. Coll 1979 by R Brokaw and subm 1979 by J Howard, Skidaway Inst Oceanog, Georgia.

UM-1875. RB-5

3020 ± 90

Sample taken from S bank of Tybee Creek, Chatham Co (31° 32' 32" N, 81° 20' 30" W).

UM-1876. RB-8

2810 ± 110

 4160 ± 80

Sample from Sapelo R, McIntosh Co (31° 32' 32" N, 81° 20' 30" W).

UM-1877. RB-9

Sample from E bank of Carr's Neck Creek, Liberty Co (31° 41' 25" N, 81° 17' 30" W).

UM-1878. RB-11

4550 ± 90

Sample from N bank of Little Ogeechee R, Chatham Co (31° 55' 00'' N, 81° 08' 20' W).

UM-1879. RB-12

UM-1828. VHS-1, A11 #3

3750 ± 70

Sample coll from N bank of Little Ogeechee R, Chatham Co (31° 57' 05" N, 81° 10' 45" W).

Peace River series

Soil samples coll from Peace R in Bartow, Florida (27° 47' N, 81° 48' W). Samples dated to determine chronology sequence of soils. Coll and subm 1979 by B Volk, Univ Florida, Gainesville.

		2150 ± 130
UM-1826.	BA-10, 15 to 36cm, #1	$\delta^{13}C = -25.2\%$

Sample of alluvium taken from depth 15 to 36cm from submerged stream bank.

		5400 ± 150
UM-1827.	S BA-15, 38 to 51 cm, $#2$	$\delta^{_{13}}C = -26.2\%$
Sample take	n from depth 38 to 51cm.	/

114.6% modern $\delta^{13}C = -27.2\%$

 3960 ± 120

Sample from soil surface which is continuously exposed.

			<270
UM-1829.	VHS-1, 91cm, #	44	$\delta^{_{13}}C = -27.2\%$
C 1 . 1			 /00

Sample taken immediately above water table at depth 91cm.

UM-1830. 1021, 1028, 1035, #5 Sample taken from A1 horizon.	$\frac{112.5\%}{\delta^{13}C} = -29.2\%$
UM-1831. 1068, 1074, 1079, #6 Sample coll from A1 soil horizon.	<370 $\delta^{_{13}}C = -28.4\%$
UM-1832. BA-10, 15 to 36cm, #11 Sample identical to UM-1826, above, but treated	3500 ± 370 $\delta^{I3}C = -26.9\%$ with NaOH.

		11	0.9% modern
UM-1833.	1021, 1028, 1035, #	#15	$\delta^{13}C = -27.5\%$
UNI LOUGO		I I	NaOH

Sample identical to UM-1830, above, but treated with NaOH.

Southern California series

Various species of wood taken from excavations and welling operations in S California. Dated for rate of alluviation studies. Coll 1974 and subm 1979 by D Morton, Branch chief, Western Environmental Geol, Menlo Park, California. Coordinates are unavailable and, thus, are only general. All samples are from within Los Angeles city limits (34° 03' N, 118° 15' W).

,	$19,630 \pm 230$
UM-1816. LA Landslides	$\delta^{_{13}}C = -26.3\%$
Sample taken from excavation in Los Angeles.	
I S	11.800 ± 130

		$11,000 \pm 100$
UM-1817.	Burrows (61m)	$\delta^{\imath s} C = -25.2\%$

Sample taken from well at depth 61m in San Jacinto Valley.

					+ 2210
					31,440
					-1730
UM-1818.	Burrows	(91m))		$\delta^{_{13}}C = -23.7\%$
~ • •		•	1116 1017	c	1 .1 01

Sample taken from same site as UM-1817, from depth 91m.

		+ 510
		18,500
		-480
UM-1819.	Bridge Street (160m)	$\delta^{_{13}}C = -25.1\%$
0 1 1	C	at doubh 160m

Sample taken from well in San Jacinto Valley at depth 160m.

+66029.850 -610 $\delta^{13}C = -22.5\%$ **UM-1820.** Sanderson & San Jacinto (131m) Sample taken from well at intersection of Sanderson and San Jacinto R, at depth 131m. 810 ± 60 $\delta^{13}C = -28.0\%$ UM-1821. Temescal Canyon Sample coll during excavation. + 950 33,460 -850 $\delta^{13}C = -25.5\%$ UM-1822. DWR Long #36565 Sample taken from well in San Jacinto at intersection of First St and Camino Los Banos. Sample from depth 140m. 12.260 ± 210

UM-1823. West Side Bridge St $\delta^{13}C = -23.7\%_0$

Sample taken from well on W side of Bridge St, San Jacinto.

San Andreas Fault series

Carbonized wood fragments coll from San Andreas Fault, Dogtown trenching site, Point Reyes Natl Seashore, California (37° 56′ 56″ N, 122° 42′ 46″ W). Dated to determine recurrence interval on San Andreas fault. Coll and subm 1979 by N Hall, Foothill Coll, Los Altos Hills, California.

	SAF-PR3-79	${2230 \pm 110} \ {\delta^{{}^{13}C}} = -24.8\%$
Sample from paleosol.	n fluvial unit beneath clayey gra	avel interpreted to be

UM-1795. SAF-PR4-79	1410 ± 100
Sample from gray sands overlying bluish gray clay.	$\delta^{13}C = -24.7\%$
UM-1796. SAF-PR8-79	1250 ± 110
Sample from unconsolidated fluvial sands.	$\delta^{_{13}C} = -24.3\%$
UM-1797. SAF-PR9-79	380 ± 90 $\delta^{_{13}}C = -27.0\%$

Sample from unconsolidated alluvium.

Alaskan River series

Samples of suspended particulate matter from the Kuparuk R and the Colville R delta, Alaska. Samples dated to establish mean ¹⁴C activity of river borne particulate matter and for constructing ¹⁴C baseline for coastal marine food chains.

		900 ± 120
UM-1803.	79-12	$\delta^{_{13}}C = -26.4\%$
Sample from	Colville D. Joles (700 9/ N. 1800 90/ MAN	,

Sample from Colville R delta (70° 3' N, 150° 30' W).

		2690 ± 90
UM-1804.	79-14	$\delta^{_{13}}C = -26.9\%_{0}$
Sample from	n Kuparuk R (70° N, 149° W).	

Hatteras Slope series

Foraminiferal sand coll via piston cores and coral coll from the Florida Hatteras Slope. Samples dated to determine sedimentation rates. Coral coll 1886 by Agassiz and subm 1979 with foraminiferal sand by M Ayers.

		38,970
	344998: 20 to 40cm	- 1560
Foraminifer	ral sand coll at water depth 420m	a (32° 35' N, 77° 33' W).

UM-1792. 16154 Coral (29° 24' N, 79° 43' W). 9

+1940

 680 ± 70

+ **860** 28,770

-780

Foraminiferal sand coll at water depth 440m (32° 43' N, 77° 21' W).

Lost Lake series

Low grade peat and freshwater gastropods taken with an auger from a site 400m SE of Lost Lake, California (34° 16' N, 117° 27' W). Coll and subm 1979 by R Weldon, Caltech, Pasadena.

 2430 ± 110

 $\delta^{13}C = -23.7\%$

Peat coll 91cm below surface, underlain by 1.5m lake clay.

 5180 ± 90

UM-1813. CP2

UM-1812. CP1

UM-1793. 34987: 25 to 40cm

 $\delta^{13}C = -10.4\%$

Freshwater gastropods coll at depth 2.4m in 1.5m sequence of lake clay.

General Comment (RW): comparing dates for these 2 samples should yield a movement rate on the San Andreas Fault through Cajon Pass.

Pamet Bog series

Peat samples coll with a piston sampler from Pamet Cranberry Bog, North Truro, Barnstable Co, Massachusetts (42° 00' N, 70° 02' W). Samples dated for correlation with pollen stratigraphy. Coll and subm 1979 by W Patterson, III, Univ Massachusetts, Amherst.

UM-1914. PB 105 to 110	1910 ± 100
Sample depth 105 to 110cm.	
UM-1915. PB 400 to 405	3700 ± 110
Sample depth 400 to 405cm.	

UM-1798. 8 La 118

 850 ± 70 $\delta^{13}C = -26.8\%$

Sample coll from wooden post at Alexander Springs, Ocala Natl Forest, Florida (29° 05' 06" N, 81° 34' 42" W). Dating required for cultural resources management in Ocala Natl Forest. Coll and subm 1979by A Prokopetz, US Forest Service, Tallahassee, Florida.

UM-1913. Main

860 ± 90

Thalassia detritus coll via core taken at Crane Key in Florida Bay (25° 0.5' N, 80° 37' W). Sample dated for physical sedimentation studies, specifically storm events. Coll and subm 1979 by H Wanless, RSMAS, Miami, Florida.

II. ARCHAEOLOGIC SAMPLES

Alachua and Suwannee County series

Charred wood fragments coll from Alachua and Suwannee Co, Florida. Dated to establish chronology and periods of utilization of several Indian sites in central Florida. Coll 1976 and subm 1979 by J Milanich and L Loucks, Florida State Mus, Gainesville.

UM-1781. Sample A 8-A-462 FS 11 1680 ± 70

Sample from aboriginal fire pit, Alachua Co, dates late Cades Pond culture.

UM-1782. Sample B 8-A-462 FS 18 1460 ± 70

Sample from probable storage pit, Alachua Co, dates late Cades Pond culture.

UM-1783. Sample C 8-A-462 FS 24 1740 ± 70

Sample from Feature 6, a probable fire pit which dates late Cades Pond period, Alachua Co (29° 32′ 12″ N, 82° 05′ 24″ W).

UM-1784. Sample D 8-A-48 FS 18 590 ± 80

Sample from circular fire pit from Woodward Village site, Alachua Co (29° 31' 50" N, 82° 19' 37" W). Dates single component of Hickory Pond period.

UM-1785. Sample E 8-A-48 FS 20 520 ± 70

Sample from fire pit, Woodward Village site, Alachua Co (29° 31' 50" N, 82° 19' 37" W). Dates single component of Hickory Pond period.

UM-1786. Sample F 8-Su-65 FS 79 510 ± 70

Sample from *in situ* charred post, Suwannee Co (30° 08' 01" N, 83° 08' 04" W). Dates Mission period Utina Indian.

UM-1787. Sample G 8-Su-65 FS 121 250 ± 80

Sample from aboriginal smudge pit, Suwannee Co (30° 08' 01" N, 83° 08' 04" W). Dates Mission period Utina Indian.

UM-1788. Sample H 8-A-463 FS 64 1360 ± 80

Sample on top of Burial 16, Henderson Mound, Alachua Co (29° 38' 28" N, 82° 23' 47" W). Dates early Hickory Pond period of Alachua tradition.

UM-1789. Sample I 8-A-463 FS 72 1210 ± 70

Sample from under skull of Burial 13, Henderson Mound, Alachua Co (29° 38' 28" N, 82° 23' 47" W). Dates early Hickory Pond period of Alachua tradition in N-central Florida.

UM-1790. Sample J 8-A-463 FS 85 840 ± 100

Sample from alongside Burial 15, Henderson Mound, Alachua Co (29° 38' 28" N, 82° 23' 47" W). Dates early Hickory Pond period of Alachua tradition in N-central Florida.

Useppa Island series

Shell samples coll from Useppa I., Lee Co, Florida. Dated for analysis of middens on Useppa I. Coll 1979 by J Milanich and J Chapman; subm 1979 by J Milanich, Florida State Mus, Gainesville. UM-1835. TEST-2 Useppa (A) 5630 ± 100

Busycon columella from buried shell midden, dates presumed Archaic period shell midden (26° 39' 45" N, 82° 12' 46" W).

UM-1836. TEST-2 Useppa (B) 4940 ± 100

Mercenaria from same site as UM-1835.

UM-1837. TEST-3 Useppa (C) 1850 ± 90

Crassostrea from buried shell midden (26° 39' 52" N, 82° 12' 43" W). Sample dates lower portion of shell midden, may correlate with early Caloasahatchee region coastal cultures.

UM-1838. TEST-3 Useppa (D) 2260 ± 80

Duplicate run of UM-1837 using Strombus.

UM-1839. TEST-6 Useppa (E) 1360 ± 70

Various shell fragments which date construction of ramp leading to large, steep, shell mound (26° 40' N, 82° 12' 44" W).

UM-1840. TEST-6 Useppa (F) 1180 ± 80

Busycon and Strombus shell samples which date upper shell midden underlying what appears to be constructed shell ramp leading to shell mound (26° 41' N, 82° 12' 44" W).

UM-1841. TEST-5 Useppa (G) 1700 ± 80

Busycon columella dates lower portion of shell midden (26° 39' 52" N, 82° 12' 44" W).

Horrs Island series

Shell samples coll from Horrs I., Collier Co, Florida. Dated for interpretation of multi-component site presumed to be late Prehistoric Calusa. Coll and subm 1979 by A McMichael, Florida State Mus, Florida.

UM-1918. #4 Md C Strat A 4460 ± 110 Busycon shell from base of Strat A. Dates shell used in constructionof small shell mound ($25^{\circ} 54' 13'' N$, $81^{\circ} 41' 3'' W$).

UM-1919. #6 Md B Strat C 4220 ± 80

Clam shell from densely packed shell layer with sand matrix which dates construction of mound (25° 54' 14" N, 81° 41' 5" W).

UM-1920. #8 Md B Strat C 6330 ± 90

Duplicate run of UM-1919 using oyster shell.

UM-1921. #9 Md B Zone A 4250 ± 90

Oyster shell from densely packed shell cap on shell and sand mound (25° 54' 14" N, 81° 41' 5" W).

UM-1922. #20 Md C Strat A 4470 ± 80

Strombus shell from approximate center of Strat A which dates construction of small shell mound (25° 54' 14" N, 81° 41' 5" W).

1122

University of Miami Radiocarbon Dates XVIII 1123

UM-1923. #22 Md A Strat A 4340 ± 70

Trachycardium shell from upper layer of conical shell and sand mound which dates construction of mound (25° 54' 14" N, 81° 41' 0" W).

UM-1924. #24 Md A Strat B 4030 ± 80

Crassostrea shell from layer below Strat A (25° 54' 14" N, 81° 41' 0" W).

UM-1925. #26 Md A Strat A 4060 ± 80

Crassostrea shell from densely packed shell core of Mound A (25° 54' 14" N, 81° 41' 0" W).

UM-1926. #33 TEST-9 Strat H 3900 ± 80

Crassostrea from thin shell lens within largely shell-free stratum in a large stratified shell midden. Probably dates pre-Glades tradition (25° 54' 15" N, 81° 40' 54" W).

UM-1927. #34 TEST-9 Strat B 3900 ± 90

Crassostrea fragments dates shell stratum 1.25 to 1.50m below surface of large stratified shell midden. Presumed to be Glades or pre-Glades tradition $(25^{\circ} 54' 15'' \text{ N}, 81^{\circ} 40' 54'' \text{ W})$.

UM-1928. #35 TEST-9 Strat A 4120 ± 90

Crassostrea fragment dates uppermost stratum of large, stratified shell midden (25° 54' 15" N, 81° 40' 54" W).

UM-1929. #36 TEST-9 Strat D 4080 ± 80

Crassostrea shells date shell stratum from bottom, 3.4m below surface, of test excavation in large, stratified midden ($25^{\circ} 54' 15''$ N, $81^{\circ} 40' 54''$ W).

UM-1930. #37 TEST-9 Strat C 3980 ± 90

Crassostrea shells date shell stratum at 2m depth in excavation of large, stratified shell midden (25° 54' 14" N, 81° 41' 0" W).

UM-1931. #38 TEST-9 Strat J 3890 ± 80

Busycon shell from thin layer of whelk shells, 2.5m deep, within dense shell zone in large, stratified midden (25° 54' 14" N, 81° 41' 0" W).

Shiloh Mound series

Charred wood and shell samples from Mound A, Shiloh Natl Military Park, Tennessee (35° 06' N, 88° 21' W). Sample dated to determine time of construction and utilization of Mississippian Period mound. Coll and subm 1979 by J Ehrenhard, Southeast Archeol Center, Tallahassee, Florida.

UM-1807. T2 L2

 860 ± 70

Charred wood from clayey moist soil.

1124	R A Johnson and J J Stipp	
UM-1808.	T2 L9	1190 ± 60
Charred wo	od from friable, clayey soil.	
UM-1809. Charred wo	T2 L11 od from friable, reddish and brown sands.	1130 ± 80
UM-1810. Charred wo	T2 L23 od from yellowish gray sand, dark sand and	1220 ± 50 gravel.
UM-1811. Charred wo	T2 L26 mod from friable gravelly soil.	1810 ± 180
UM-1872. <i>Busycon</i> use	T2 L26 ed as cross-check for UM-1811.	2280 ± 90
UM-1873.	T2 L26 mple from same shell as UM-1872 though	2360 ± 70 recrystallized
UM-1874. <i>Busycon</i> fra	T2 L31 agment from friable, gravelly soil.	2270 ± 80

Aqui Esta series

Marine shells (*Busycon*) coll from Aqui Esta burial mound on S side of North Fork of Alligator Creek, Charlotte Co, Florida (26° 53' 52" N, 82° 02' 40" W). Dated to establish construction of mound. Coll by R Jones 1962 and subm 1979 by G Luer, Sarasota, Florida.

UM-1805.	AE26	1180 ± 50
UM-1806.	AE 9	1050 ± 70

 2640 ± 90

UM-1756. DM 3C - 1 - 3

Charcoal coll 100cm below surface of Indian burial mound in sand matrix. Sample dated to establish age of new pottery type found in mound. Coll 1977 by P Recourt from Pelates I., Duval Co, Florida (30° 25' 30" N, 80° 30' 20" W), and subm 1979 by R Goslin, Northeast Florida Anthropol Soc, Jacksonville, Florida.

References

Calvert, M, Rudolph, Kim, and Stipp, J J, 1978, University of Miami radiocarbon dates XII: Radiocarbon, v 20, p 274-282.

[RADIOCARBON, VOL 22, No. 4, 1980, P 1125-1129]

UNIVERSITY OF MIAMI RADIOCARBON DATES XIX

R A JOHNSON and J J STIPP

Department of Geology, University of Miami, Coral Gables, Florida 33124

The following radiocarbon dates are a partial list of samples measured for a variety of projects and materials since January 1980. Chemical and counting procedures remain the same as indicated in R, v 20, p 274-282.

Calculations are based on the 5568-year Libby ¹⁴C half-life. Precision is reported as one standard deviation based only on statistical counting uncertainties in the measurement of the background, NBS modern standard, and sample activities. δ^{13} C values are measured relative to PDB and reported ages are corrected for isotopic fractionation by normalizing to -25%.

I. GEOLOGIC SAMPLES

East Pacific Rise Series I

Carbonate sediment samples from eight cores taken on the East Pacific Rise, Clipperton Fracture Zone, and Galapagos Fracture Zone. Dated to study sedimentation rates and benthic mixing. Coll 1976 and subm 1979 by W H Berger, Scripps Inst Oceanography, La Jolla, California.

-1757. PLDS 77Bx#1 (1-4cm) apagos Fracture Zone, water depth 4366m (1°	7530 ± 220 3.6' N, 119° 55.8'
1758. PLDS 77Bx#1 (7-10cm) ation and water depth identical to UM-1757.	6810 ± 420
1759. PLDS 77Bx#1 (20-25cm) ation and water depth identical to UM-1757.	$13,040 \pm 190$
1760. PLDS 79Bx#2 (1-4cm) dope East Pacific Rise, water depth 4542m	6230 ± 170 (1° 4.6' N, 122°
1761. PLDS 79Bx#2 7-10cm) ation and water depth identical to UM-1760.	5950 ± 170
1762. PLDS 79Bx#2 (20-25cm) ation and water depth identical to UM-1760.	$10,690 \pm 150$
1763. PLDS 81Bx#1 (1-4cm) Pacific Rise, water depth 4771m (1° 1.7' N, 124	6580 ± 280 ° 37.3' W).
1764. PLDS 81Bx#1 (7-10cm) tion and water depth identical to UM-1763.	5960 ± 190

1126 R A Johnson and J J Stipp	
UM-1765. PLDS 81Bx#1 (20-25cm) 12, Location and water depth identical to UM-1763.	645 ± 160
UM-1766. PLDS 83Bx#1 (1-4cm) 5 East Pacific Rise, water depth 4527m (0° 56.6' N, 126°	5780 ± 150 37.7' W).
UM-1767. PLDS 83Bx#1 (7-10cm) 6 Location and water depth identical to UM-1766.	5030 ± 210
UM-1768. PLDS 83Bx#1 (20-25cm) 11. Location and water depth identical to UM-1766. 11.	,800 ± 120
UM-1769. PLDS 85Bx#1 (1-4cm) 4 East Pacific Rise, water depth 4385m (0° 58.3' N, 128° 27.'	1850 ± 100 7' W).
UM-1770. PLDS 85Bx#1 (7-10cm) 5 Location and water depth identical to UM-1769.	5620 ± 130
UM-1771. PLDS 85Bx#1 (20-25cm) 11 Location and water depth identical to UM-1769. 11	,580 ± 150
UM-1772. PLDS 89Bx#1 (1-4cm) 5 East Pacific Rise, water depth 4407m (0° 58.3' N, 131° 39	5520 ± 220 .4′ W).
UM-1773. PLDS 89Bx#1 (7-10cm) 5 Location and water depth identical to UM-1772.	5460 ± 110
UM-1774. PLDS 89Bx#1 (20-25cm) 11 Location and water depth identical to UM-1772. 11	.,520 ± 170
UM-1775. PLDS 90Bx#1 (1-4cm) East Pacific Rise, water depth 4297m (0° 59.2' N, 135° 4.8	5680 ± 150 ′ W).
UM-1776. PLDS 90Bx#1 (7-10cm) Location and water depth identical to UM-1775.	6340 ± 180
UM-1777. PLDS 90Bx#1 (20-25cm) 13 Location and water depth identical to UM-1775.	8,430 ± 140
UM-1778. PLDS 107Bx#1 (1-4cm) 13	+ 690 8,700 - 640
Clipperton Fracture Zone, water depth 4849m (138° 16.6' W).	
UM-1779.PLDS 107Bx#1 (7-10cm)17Location and water depth identical to UM-1778.	7,390 ± 350
UM-1780. PLDS 107Bx#1 (20-25cm) 31,	+ 2500 900 - 1900

East Pacific Rise Series II

Carbonate sediment samples from seven cores taken on the East Pacific Rise, Clipperton Fracture Zone, and Galapagos Fracture Zone. Dated for mixing and sedimentation studies. Coll 1975 and subm 1979 by W H Berger.

UM-1892. ERDC 77Bx#1 (1-5cm) Water depth 3585m (4° 51' N, 156° 3.5' E).	6500 ± 100
UM-1893. ERDC 77Bx#1 (7-10cm) Location and water depth identical to UM-1892.	7210 ± 90
UM-1894. ERDC 77Bx#1 (20-25cm) Location and water depth identical to UM-1892.	19,180 ± 210
UM-1895. ERDC 83Bx#1 (1-5cm) Water depth 2342m (1° 24.1' N, 157° 18.6' E).	3700 ± 80
UM-1896. ERDC 83Bx#1 (7-10cm) Location and water depth identical to UM-1895.	4380 ± 110
UM-1897. ERDC 83Bx#1 (20-25cm) Location and water depth identical to UM-1895.	8930 ± 110
UM-1898. ERDC 108Bx#1 (1-5cm) Water depth 3383m (1° 44.8' S, 160° 48.0' E).	4680 ± 90
UM-1899. ERDC 108Bx#1 (7-10cm) Location and water depth identical to UM-1898.	5870 ± 90
UM-1900. ERDC 108Bx#1 (20-25cm) Location and water depth identical to UM-1898.	11,650 ± 150
UM-1901. ERDC 112Bx#1 (1-5cm) Water depth 2169m (1° 37.5′ S, 159° 14.1′ E).	4340 ± 70
UM-1902. ERDC 112Bx#1 (7-10cm) Water depth and location identical to UM-1901.	5040 ± 80
UM-1903. ERDC 112Bx#1 (20-25cm) Water depth and location identical to UM-1901.	9895 ± 120
UM-1904. ERDC 128Bx#2 (1-5cm) Water depth 3732m (0° 0.3' S, 161° 25.6' E).	4020 ± 80
UM-1905. ERDC 128Bx#2 (7-10cm) Water depth and location identical to UM-1904.	5570 ± 90
UM-1906. ERDC 128Bx#2 (20-25cm) Water depth and location identical to UM-1904.	$12,070 \pm 150$

1127

1128	R A Johnson and J J Stipp	
	ERDC 136Bx#2 (1-5cm) n 3848m (1° 6' N, 161° 36.3' E).	4250 ± 100
	ERDC 136Bx#2 (7-10cm) a and location identical to UM-1907.	5920 ± 100
	ERDC 136Bx#2 (20-25cm) h and location identical to UM-1907.	$13,740 \pm 130$
	PLDS 92Bx#1 (1-5cm) h 4515m (3° 57.7′ N, 135° 58.6′ W).	9410 ± 90
	PLDS 92Bx#1 (7-10cm) h and location identical to UM-1910.	$14,130 \pm 140$
UM-1912.	PLDS 92Bx#1 (20-25cm)	$27,630 \pm 350$

Water depth and location identical to UM-1910.

Clipperton Fracture Zone series

Carbonate sediment samples from a core taken along the Clipperton Fracture Zone (2° 47.1' N, 156° 13.8' E) at depth 2767m. Samples were dated for sedimentation and paleo-oceanographic studies. Coll 1975 and subm 1979 by W H Berger.

UM-1842.	ERDC 79Bx#2 (0-2cm)	4090 ± 70
UM-1843.	ERDC 79Bx#2 (2-4cm)	4400 ± 100
UM-1844.	ERDC 79Bx#2 (4-6cm)	4710 ± 110
UM-1845.	ERDC 79Bx#2 (6-8cm)	4400 ± 80
UM-1846.	ERDC 79Bx#2 (8-10cm)	5210 ± 100
UM-1847.	ERDC 79Bx#2 (10-12cm)	6800 ± 100
UM-1848.	ERDC 79Bx#2 (12-14cm)	6820 ± 100
UM-1849.	ERDC 79Bx#2 (14-16cm)	7330 ± 90
UM-1850.	ERDC 79Bx#2 (16-18cm)	7880 ± 100
UM-1851.	ERDC 79Bx#2 (18-20cm)	7800 ± 160
UM-1852.	ERDC 79Bx#2 (20-22cm)	9250 ± 110
UM-1853.	ERDC 79Bx#2 (22-24cm)	$11,820 \pm 120$
UM-1854.	ERDC 79Bx#2 (24-26cm)	$12,590 \pm 120$
UM-1855.	ERDC 79Bx#2 (26-28cm)	$15,130 \pm 160$
UM-1856.	ERDC 79Bx#2 (28-30cm)	$16,930 \pm 220$
UM-1857.	ERDC 79Bx#2 (30-32cm)	$17,320 \pm 220$
UM-1858.	ERDC 79Bx#2 (32-34cm)	$20,330 \pm 220$
UM-1859.	ERDC 79Bx#2 (34-36cm)	$22,890 \pm 430$
UM-1860.	ERDC 79Bx#2 (36-38cm)	$23,700 \pm 310$
UM-1861.	ERDC 79Bx#2 (38-40cm)	$24,290 \pm 240$

San Jacinto Valley series

Wood and bark samples coll from well at depth 49m in San Jacinto Valley, California (33° 48' 25" N, 116° 55' 30" W). Samples dated to study Quaternary history of San Jacinto Valley fill. Samples coll 1974

and subm 1980 by D Morton, Western Environmental Geology, Menlo Park, California.

UM-1984.	San Jacinto Valley wood	$27,280 \pm 350$ $\delta^{\imath \imath} C = -21.3\%$
		+ 1400 31,000
UM-1985.	San Jacinto Valley bark	$-1200 \ \delta^{{}_{13}}C = -22.0\%$

Bogue Banks series

Various shell and organic samples coll using auger drill from Bogue Banks, North Carolina. Samples dated for barrier in stratigraphic research. Samples coll Aug 1979 and subm Nov 1979 by A Steel, Duke Univ, Durham, North Carolina.

UM-1941. RC#1

 5460 ± 170

Oyster shell (possibly Crassostrea virginica) taken at 6.4m below msl in unconsolidated sediments (34° 41' 51" N, 76° 49' 24" W).

UM-1942. RC#2

Oyster shells (Crassostrea ?) taken at 8.8m to 9.1m below msl (34° 40' 18" N, 77° 1' 30" W).

UM-1943. RC#3

7820 ± 80

 4700 ± 80

 9330 ± 110

 7080 ± 70

Oyster shells taken at 13.7m below msl (34° 40' 40", 76° 58' 38" W).

UM-1944. RC#4

Oyster shells taken at 5.2m below msl (34° 39' 52" N, 77° 3' 32" W).

UM-1945. RC#5

Wood fragments coll at depth of 11.9m to 13.1m below msl (34° 41' 22" N, 76° 51' 43" W).

UM-1946. RC#6

$\textbf{26,}\textbf{440} \pm \textbf{240}$

Basal peat coll from shelly unconsolidated sediment 18.3m to 18.9m below msl (34° 42′ 4″ N, 76° 44′ 47″ W).

UM-1947. RC#7

 1380 ± 100

Organic bound sand coll from depth of 2.1m to 2.4m below msl (34° 40′ 0″ N, 76° 49′ 49″ W).

REFERENCE

Calvert, M, Rudolph, Kim, and Stipp, J J, 1978, University of Miami radiocarbon dates XII: Radiocarbon, v 20, p 274-282.

[RADIOCARBON, VOL 22, No. 4, 1980, P 1130-1140]

LABORATORIES

- A ARIZONA Dr Austin Long Laboratory of Isotope Geochemistry Geosciences Department University of Arizona Tucson, Arizona 85721
- ALG ALGIERS Omar Rahmouni Bd Frantz Fanon BP 1147 Algiers, Algeria
- ANL ARGONNE NATIONAL LABORATORY Mr James Gray, Jr Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439
- ANTW ANTWERP UNIVERSITY Prof R Vanhoorne Dept of General Botany State University Centre Antwerp Groenenborgerlaan 171 B-2020 Antwerp, Belgium
- ANU AUSTRALIAN NATIONAL UNIVERSITY Henry A Polach Radiocarbon Dating Research Australian National University PO Box 4, Canberra 2600 Australia
- AU UNIVERSITY OF ALASKA William S Reeburgh and M Springer Young Institute of Marine Science University of Alaska Fairbanks, Alaska 99701
- B BERN Prof H Oeschger Physikalisches Institut Universität Bern Sidlerstrasse 5 CH-3012 Bern, Switzerland
- Ba BRATISLAVA Prof S Usacev and Dr P Povinec Department of Nuclear Physics Comenius University Mlynská dolina F1 816 31 Bratislava Czechoslovakia
- BC BROOKLYN COLLEGE Prof Evan T Williams Department of Chemistry Brooklyn College Brooklyn, New York 11210
- BIRMINGHAM R E G Williams Department of Geological Sciences, PO Box 363 University of Birmingham Birmingham B15 2TT, England

Laboratories

Bln BERLIN Dr Günther Kohl Akademie der Wissenschaften der DDR Zentralinstitut für Alte Geschichte und Archäologie 1199 Berlin, Rudower Chaussee 6 German Democratic Republic BM BRITISH MUSEUM **Richard Burleigh** Research Laboratory The British Museum London WC1B 3DG, England BS BIRBAL SAHNI INSTITUTE Dr G Rajagopalan Radiocarbon Laboratory Birbal Sahni Institute Paleobotany Post Box 106 Lucknow-226 007 India CRCA CAIRO Dr Shawki M Nakhla Cairo Carbon-14 Dating Laboratory Center of Research and Conservation of Antiquities Organization of Egyptian Antiquities Midan El Tahrir Cairo, Egypt CSM COSMOCHEMISTRY LABORATORY A K Lavrukhina and V A Alexeev VI Vernadsky Institute of Geochemistry and Analytical Chemistry USSR Academy of Sciences Moscow, USSR CU CHARLES UNIVERSITY Jan šilar Department of Hydrogeology and Engineering Geology **Charles** University Albertov 6 CS-128 43 Praha 2, Czechoslovakia D DUBLIN Prof G F Mitchell Department of Botany **Trinity** College Dublin, Ireland Dak DAKAR Dr Cheikh Anta Diop Directeur du Laboratoire de Radiocarbone IFAN Université de Dakar République du Sénégal DAL DALHOUSIE UNIVERSITY Prof J Gordon Ogden, III Department of Biology Dalhousie University Halifax, Nova Scotia, Canada B3H 315 DE UNITED STATES GEOLOGICAL SURVEY Dr I C Yang U S Geological Survey WRD Box 25046, Mail Stop 407 Denver Federal Center Denver, Colorado 80225

Laboratories

- Deb DEBRECEN Eva Csongor Institute of Nuclear Research Hungarian Academy of Sciences (ATOMKI) Bem tér 18/c, Pf 51 Debrecen, Hungary
- DIC DICARB RADIOISOTOPE COMPANY DICARB Radioisotope Company Irene C Stehli 16432 Stone Ridge Rd Chagrin Falls, Ohio 44022
- F FLORENCE Dr C M Azzi, L Bigliocca, and F Gulisano Radiocarbon Dating Laboratory Istituto di Antropologia Università di Firenze Via del Proconsolo 12 50122, Florence, Italy
- Fr FREIBERG Dr Klaus Fröhlich Sektion Physik Bergakademie Freiberg DDR 92 Freiberg
- FZ FORTALEZA Prof M F Santiago Departamento de Física UFCe, Cx Postal 12 62 60,000 Fortaleza/CE, Brazil
- GaK GAKUSHUIN UNIVERSITY Prof Kunihiko Kigoshi Gakushuin University Mejiro, Toshima-ku Tokyo, Japan
- Gd GLIWICE Mieczystaw F Pazdur and Andrzej Zastawny Radiocarbon Laboratory Silesian Technical University Institute of Physics, C-14 Laboratory ul Bolestawa Krzywoustego 2 Pl-44-100 Gliwice, Poland
- Gif GIF-SUR-YVETTE Dr J Labeyrie or Mme G Delibrias Centre des Faibles Radioactivités Laboratoire mixte CNRS-CEA 91190-Gif-sur-Yvette, France
- GrN GRONINGEN Prof W G Mook Isotopes Physics Laboratory University of Groningen Westersingel 34 9718 CM Groningen, Netherlands
- GSC OTTAWA Mr J A Lowdon Radiocarbon Dating Laboratory Geological Survey of Canada 601 Booth Street Ottawa, Ontario, Canada

1132

	Laboratories		1133
GU	GLASGOW UNIVERSITY Dr M S Baxter Department of Chemistry The University Glasgow G12 8QQ, Scotland		(a. 1.)
GX	GEOCHRON LABORATORIES Harold W Krueger Division Krueger Enterprises, Inc 24 Blackstone Street Cambridge, Mass 02139		3
Н	HEIDELBERG Prof K O Münnich, D Berdau, and Marianne Münnich Institut für Umweltphysik Universität Heidelberg Im Neuenheimer Feld 366 D-69 Heidelberg, West Germany		
НАМ	UNIVERSITY OF HAMBURG Prof Dr H W Scharpenseel and H Schiffmann Ordinariat für Bodenkunde University of Hamburg Von Melle Park 10 D-2000 Hamburg 13 West Germany		64 D:
HAR	HARWELL R L Otlet Carbon-14/Tritium Measurements Laboratory Bldg 10.46 AERE, Harwell Oxfordshire OX11 ORA, England		r
Hel	HELSINKI Högne Jungner Radiocarbon Dating Laboratory University of Helsinki Snellmaninkatu 5 SF-00170 Helsinki 17, Finland	n T	. 1
HIG	HAWAII INSTITUTE OF GEOPHYSICS Robert W Buddemeier Hawaii Institute of Geophysics University of Hawaii 2525 Correa Road Honolulu, Hawaii 96822		; ·
Hv	HANNOVER Dr M A Geyh Niedersächsisches Landesamt für Bodenforschung D-3000 Hannover-Buchholz, Postf 510153 West Germany		
I	TELEDYNE ISOTOPES James Buckley Teledyne Isotopes 50 Van Buren Avenue Westwood, New Jersey 07675		
IRPA	INSTITUT ROYAL DU PATRIMOINE ARTISTIQUE M Dauchot-Dehon, J Heylen, and M Van Strydonck Institut Royal du Patrimoine Artistique I Parc du Cinquantenaire Brussels 4, Belgium		

1134	Luboratories
ISGS	ILLINOIS STATE GEOLOGICAL SURVEY Dr Dennis D Coleman and Chao-li Liu Section of Analytical Chemistry Illinois State Geological Survey Natural Resources Building Urbana, Illinois 61801
К	COPENHAGEN Dr Henrik Tauber Geological Survey of Denmark and National Museum DK-1220 Copenhagen K, Denmark
KAERI	KOREA ATOMIC ENERGY RESEARCH INSTITUTE Dr Kyung Rin Yang Radioanalytical Division Korea Atomic Energy Research Institute PO Box 7, Cheong Ryang Scoul, Korea
KI	KIEL Dr Horst Willkomm and Dr H Erlenkeuser Institut für Reine und Angewandte Kernphysik Universität Kiel Olshausenstrasse 40-60 23 Kiel, Germany
KN	KÖLN Dr J C Freundlich Universität Köln, Institut für Ur-und Frühgeschichte C ¹⁴ -Laboratorium Köln-Lindenthal Weyertal 125, W Germany
L	LAMONT Dr. Tsung-Hung Peng Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964
LAR	LIEGE STATE UNIVERSITY Prof Dr Jean Govaerts Lab d'application des radioéléments Chimie B6, Sart Tilman Liège, Belgium
LE	LENINGRAD Radiocarbon Laboratory Institute of Archaeology (Leningrad Section) Dvortsovaya Nab 18 Leningrad 192041, USSR
LJ	UNIVERSITY OF CALIFORNIA, SAN DIEGO Prof H E Sucss Mt Soledad Radiocarbon Laboratory S-003 University of California, San Diego La Jolla, California 92093
LP	LA PLATA Prof Anibal Juan Figini Laboratorio de Tritio y Radiocarbono Facultad de Ciencias Naturales y Museo Paseo del Bosque 1900 La Plata, Argentina
Lu	LUND Prof Björn Berglund and Mr Sören Håkansson Radiocarbon Dating Laboratory University of Lund Tunavägen 29 S-223 63 Lund, Sweden

1134

Laboratories

- Lv LOUVAIN LA NEUVE Mr Etienne Gilot Laboratoire de Carbone 14 Chemin du Cyclotron 2 1348 Louvain la Neuve, Belgium
 - UNIVERSITY OF LYON Mr Jacques Evin Laboratoire de Radiocarbone Centre de datations et d'Analyses Isotopiques Université Claude Bernard—Lyon I 43, Boulevard du 11 Novembre 1918 69621, Villeurbanne-Lyon France

MONACO Dr Jean Thommeret and Dr Y Thommeret Laboratoire de Radioactivité Appliquée Centre Scientifique de Monaco Avenue Saint Martin Monaco

MGU MOSCOW

MC

- Prof P Kaplin and Dr A Schulkov Laboratory of Recent Deposits and Pleistocene Paleogeography Geographical Faculty Moscow State University Moscow 117219, USSR
- ML MIAMI Dr H G Östlund Rosenstiel School of Marine and Atmospheric Science University of Miami Miami, Florida 33149

Mo VERNADSKI INSTITUTE OF GEOCHEMISTRY Vernadski Institute of Geochemistry Academy of Sciences of the USSR Moscow, USSR Address: Prof V L Barsukov Vorobevskoye shosse,d47-A Moscow, USSR

MOC MOST

- E F Neustupny Archaeological Institute Czechoslovak Academy of Sciences Letenská 4 Prague 1, Czechoslovakia 118 01
- MRRI MARINE RESOURCES RESEARCH INSTITUTE Thomas D Mathews Marine Resources Research Institute P O Box 12559 Charleston, South Carolina 29412
- N NISHINA MEMORIAL (TOKYO) Dr Fumio Yamasaki The Japan Radioisotope Association 2-28-45 Honkomagome, Bunkyo-ku, Tokyo Japan 113
- NSTF NUCLEAR SCIENCE AND TECHNOLOGY FACILITY C C Thomas, Jr, Director Radiocarbon Laboratory Nuclear Science and Technology Facility State University of New York at Buffalo Rotary Road Buffalo, New York 14214

Laboratories 1136 NSW NEW SOUTH WALES D J Carswell, Assoc Prof or Mr V Djohadze Department of Nuclear and Radiation Chemistry University of New South Wales PO Box 1 Kensington, New South Wales, 2033, Australia NATIONAL TAIWAN UNIVERSITY NTU Yuin-Chi Hsu Department of Physics National Taiwan University Taipei, Taiwan, China Ny NANCY Pr René Coppens et Dr Pierre Richard Laboratoire de Radiogéologie ENS de Géologie Appliquée et de Prospection Minière Institut National Polytechnique de Lorraine **BP 452** 54001 Nancy Cedex, France NZ NEW ZEALAND Dr B J O'Brien Institute of Nuclear Sciences DSIR, Private Bag Lower Hutt, New Zealand PENNSYLVANIA P Dr Elizabeth K Ralph and Barbara Lawn Radiocarbon Laboratory University of Pennsylvania Department of Physics, DRL/E1 Philadelphia, Pennsylvania 19104 Pi PISA Prof E Tongiorgi Laboratorio di Geologia Nucleare dell'Università Via S Maria, 22 Pisa, Italy Pr PRAGUE Alois Dubansky Laboratory for Isotopes Geochemistry and Geochronology Geological Institute Czechoslovak Academy of Sciences Prague-8 Na Hrazi 26 PRL PHYSICAL RESEARCH LABORATORY Devendra Lal and D P Agrawal Physical Research Laboratory Navrangpura Ahmedabad-380009, India Pta PRETORIA Dr J C Vogel Natural Isotopes Division National Physical Research Laboratory CSIR PO Box 395 Pretoria, South Africa CAMBRIDGE Q Dr V R Switsur University of Cambridge Godwin Laboratory Free School Lane Cambridge, England CB2 3RS

- QC QUEENS COLLEGE Richard R Pardi Radiocarbon Laboratory Queens College, CUNY Flushing, New York 11367
- QL QUATERNARY ISOTOPE LABORATORY Prof Minze Stuiver Quaternary Isotope Laboratory AJ-20 Department of Geological Sciences University of Washington Seattle, Washington 98195
- QU QUEBEC Dr Louis Barrette and Claude Samson Centre de Recherches Minérales Complexe Scientifique du Québec 2700 rue Einstein Ste-Foy, Québec Canada, GIP 3W8

R ROME

Dr Francesco Bella, Istituto di Fisica and Dr Cesarina Cortesi, Istituto di Geochimica Radiocarbon Dating Laboratory University of Rome Città Universitaria 00100-Rome, Italy

- RL RADIOCARBON, LTD Charles S Tucek Radiocarbon, Ltd Route 2, Box 21E Lampasas, Texas 76550
- RT REHOVOT GEOISOTOPE LABORATORY Dr Aaron Kaufman and Mr I Carmi Geoisotope Laboratory Department of Isotope Research Weizmann Institute of Science Rehovot, Israel
- RU RICE UNIVERSITY J A S Adams Department of Geology Rice University Houston, Texas 77001
- S SASKATCHEWAN Mr A Rutherford Saskatchewan Research Council University of Saskatchewan Saskatoon, Saskatchewan, Canada
- SI SMITHSONIAN INSTITUTION Dr W H Klein, Director Radiation Biology Laboratory Dr Robert Stuckenrath C¹⁴ Laboratory 12441 Parklawn Drive Rockville, Maryland 20852
- SMU SOUTHERN METHODIST UNIVERSITY Dr Herbert Haas Institute for the Study of Earth and Man Southern Methodist University Dallas, Texas 75275

1150	
SRR	SCOTTISH UNIVERSITIES RESEARCH AND REACTOR CENTRE Dr D D Harkness NERC Radiocarbon Laboratory Scottish Universities Research and Reactor Centre East Kilbride Glasgow G75 0QU, Scotland
St	STOCKHOLM Dr Eric Welin Laboratory for Isotope Geology Swedish Museum of Natural History S-104 05 Stockholm 50, Sweden
Su	FINLAND Tuovi Kankainen Geological Survey of Finland SF-02150 Espoo 15, Finland
SUA	SYDNEY UNIVERSITY, AUSTRALIA Assoc Prof R B Temple or Dr M Barbetti School of Chemistry The University of Sydney Sydney NSW 2006, Australia
Т	TRONDHEIM Dr Reidar Nydal, Steinar Gulliksen, and Knut Lövseth Radiological Dating Laboratory The Norwegian Institute of Technology 7034 Trondheim, Norway
TA	TARTU Evald Ilves and A Liiva Radiocarbon Laboratory Institute of Zoology and Botany Academy of Sciences of the Estonian SSR Vanemuise St 21 Tartu, Estonia, USSR
ТАМ	TEXAS A & M UNIVERSITY Dr David Schink Dept of Oceanography Texas A & M University College Station, Texas 77843
ТВ	TBILISI Dr A A Burchuladze Radiocarbon Laboratory Tbilisi University 1 Chavchavadze Avenue Tbilisi, USSR 380028
TEM	TEMPLE UNIVERSITY

- TEMPLE UNIVERSITY Koneta L Eldridge Department of Geology Radiocarbon Dating Laboratory Temple University Philadelphia, Pennsylvania 19122
- TK UNIVERSITY OF TOKYO Dr Naotune Watanabe C-14 Dating Laboratory University Museum (Shiryokan) University of Tokyo 3-1 Hongo 7-chome Bunkyo-ku, Tokyo 113 Japan

1138

Laboratories

Laboratories

Tln TALLINN J M Punning Institute of Geology Academy of Sciences of the Estonian SSR Tallinn, Estonia puiestee 7 ESSR TEHRAN UNIVERSITY NUCLEAR CENTRE TUNC Dr A Mahdavi Tehran University Nuclear Centre PO Box 2989 Tehran, Iran Тх TEXAS Mr S Valastro, Jr or Dr E Mott Davis Radiocarbon Laboratory University of Texas at Austin Balcones Research Center 10,100 Burnet Road Austin, Texas 78758 U UPPSALA Dr Ingrid U Olsson Institute of Physics University of Úppsala Box 530 S-751 21 Uppsala, Sweden UB BELFAST Gordon W Pearson Palaeoecology Laboratory The Queen's University Belfast, BT7 1NN Northern Ireland UCLA UNIVERSITY OF CALIFORNIA, LOS ANGELES Dr Rainer Berger Institute of Geophysics University of California Los Angeles, California 90024 UCR UNIVERSITY OF CALIFORNIA, RIVERSIDE Dr R E Taylor Department of Anthropology Institute of Geophysics and Planetary Physics University of California Riverside, California 92512 UGa THE UNIVERSITY OF GEORGIA

- UGa I HE UNIVERSITY OF GEORGIA John E Noakes and Betty Lee Brandau Center for Applied Isotope Studies The University of Georgia 110 Riverbend Road Athens, Georgia 30602
- UM UNIVERSITY OF MIAMI Dr J J Stipp and Sharon Crabtree Radiocarbon Dating Laboratory Department of Geology University of Miami Coral Gables, Florida 33124
- USGS US GEOLOGICAL SURVEY MENLO PARK, CALIFORNIA Dr Stephen W Robinson US Geological Survey 345 Middlefield Road Menlo Park, California 94025

1139

1140	Laboratories
UW	UNIVERSITY OF WASHINGTON Dr A W Fairhall Department of Chemistry University of Washington Seattle, Washington 98195
VRI	VIENNA RADIUM INSTITUTE Dr Heinz Felber Institut für Radiumforschung und Kernphysik Boltzmanngasse 3 A·1090 Vienna, Austria
W	US GEOLOGICAL SURVEY Dr Meyer Rubin US Geological Survey National Center, 971 Reston, Virginia 22092
WIS	WISCONSIN Dr Margaret Bender Radiocarbon Laboratory of the Center for Climatic Research Institute for Environmental Studies University of Wisconsin 1225 W Dayton St Madison, Wisconsin 53706
WRD	US GEOLOGICAL SURVEY, WATER RESOURCES DIVISION Dr F J Pearson, Jr US Geological Survey, Water Resources Division Isotope Hydrology Laboratory National Center, MS 432 Reston, Virginia 22092
WSU	WASHINGTON STATE UNIVERSITY Dr John C Sheppard Department of Chemical and Nuclear Engineering Washington State University Pullman, Washington 99164
х	WHITWORTH COLLEGE Dr Edwin A Olson Department of Earth Science Whitworth College Spokane, Washington 99218
Ya	YALE Prof Karl K Turekian Department of Geology and Geophysics Yale University New Haven, Connecticut 06520
Z	ZAGREB Dr Adela Sliepcevic and Dr Dušan Srdoc Institute "Ruder Boškovic" 41001 Zagreb, POB 1016, Yugoslavia

INDEX

Volume 22, Nos. 1 to 4, 1980

All samples published in Volume 22, 1980 are listed here in index form. This is a new type of index, organized in chronologic order according to sample type and geographic distribution. The editors consider this index a pilot project requiring the full cooperation of our laboratories. Instructions for submitting copy for the index have been mailed and further suggestions will be considered.

ARCHAEOLOGIC SAMPLES

Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Page
		102		-					
49,500	AFR Middle Stone	KN-1-619	1	74	2190±270	FRA PARTA			
49,500		-620	1	73	2190±270 2150±180	Early Roman	NY-557 -671	4	1065
49,500		-621			1920±180		-672		
49,000		-615			1820± 80		-556		• "
48,500		-623			1760± 80	Historic	-552		1066
48,500		-618			1690 [±] 80	Early Roman	-555		1065
48,500		-617 -616	"		1320± 90	Historic	-646		1066
48,000		-622			1030± 90		-696		1065
47,500					980± 80 970± 80		-635		1066
46,400 ⁺³⁵⁰⁰ -2500	"	-847		"	840±110		-634		1065
39,000		-626		75	730±100		-693		
36,000±1150		-629		74	730±120	Farly Roman	-695		
33,500 ± 750		-628			710± 80	Early Roman Historic	-557 -669		
33,370 ±550		-869	"	73	570± 80	"	-547		1064
32,700 ±860		KN -2115			340±110		-547		1065
29,900±1600 28,400 ±450		KN-1-627		74	320± 80		-548		1064
28,400 ±450 26,700 ±650		KN- 2056		72					
9 760 ±130	Early Later Stone	KN-I-813				GREI	ECE		
19,760 ±175 19,320 ±320		-812		74	-				
.8,660 ±210		-625 KN -2057		74 72	7490±150	Sesklo	LJ-4449	4	1040
4,550 ± 60		KN-I-613		"					
3,690 ±120		-612				HUNG	GARY		
3,470 ±125		-811			3260±140	15+h_19+h c no	1 1 4 2 2 4		
3,030 ±100		-614	н		3040±140	15th-18th C BC	LJ=4376	4	1037
0,420 ± 80	Later Stone	-611			3030±110	15th-17th C BC 12th-16th C BC	-4377		
-9430 ± 90	"	-610			3030±110	12th-16th C BC	-4379		1038
8230 ± 70		KN -2143		76	1980±100	1st CAD-4th C BC	-4382 -4378		
7560 ± 75		-2142				13th-10th C AD	-4378		
7200 / 75		KN-1-867		72		15th-11th C AD	-4381		
6910 / 45		-624		74			1501		
6200 / 65		-609		72		INE	AI		
5960 ± 60		KN-I-632		77					
3450 ± 40		KN-I-468		80	740,000		BS-79	1	59
-3330 ± 55 -2940 ± 45		-633 -460		77 78	34,6701710	Upper Paleolithic	-78		58
2910 ± 45		-461			3355±105		-103		59
2840 ± 55		-730		79	3255±120		-98		58
2820 ± 55		-638			2495±105		-94 -92		
2190 ± 40		-732		78	2455±100	,	-119		
2150 ± 60		-731			2210±100				57
2090 ± 45		-639		79	2130±105 2065±120		-66		
2070 ± 90		-637			2045± 90		-97		58
1930 ± 50		-465	"	77	1975±110				57
1670 ± 55		-870		69	1965± 90		-117		58
1460 ± 55		-846			1940±110		-68	"	"
910 ± 55 860 ± 55		-635		80	1920/110		-67		57
490 ± 55		-636		79	1910± 95		-118		58
$490 \div 50$ 490 ± 45	 Proto-Historic	-631 -608		77	1350± 95	• •	-113	"	59
490 - 45 420 ± 60	Proto-Historic Later Stone	-608		69 77	1				
370 ± 50	"	-467		77 80		IF	AN		
250 ± 70	Proto-Historic	KN -2141		80 75	2920+20	T ====	VDT-470	,	114
230 ± 50	Later Stone	KN-1-729		75	2920±20 2640±80	Iron "	VRI-479	1	114
110 ± 60	Proto-Historic	-630B	••	75	2040180		-480		
40 ± 50	"	-728	•			Ť.,	200		
40 ± 50		-634	"	76		11	AQ		
60 ± 50		-630A		75	< 200		VRI-632	1	114
	5	DIN						-	
	AUST	RIA				IREL	AND		
7000±130	Hallstatt	VRI-603	1	113	2960±110	Bronze	D-132	4	1028
5140 ± 90		-577		"	2960±110 2860±110	Late Bronze	-134	4	1028
2330 ± 80		-598		114	2810±110	"	-133		
1740 ± 90		-596		113	2490±120	Bronze	-135		н
1450 / 70		-578							
1430 ± 90		-579				ITA	LY		
< 200		-583							
					>41,000		NY -524	4	1066
	DENM	1A K.K			>41,000		-525		"
780:50	Historic	Lu-1607	4	1062	30,580 ±1000		-522		
					22,570±1000 7110±140		-526		
	ECUA	DOR) Early 60th-Late 70	LJ-4548 hth C BC -4551		1040
					6870 ± 100		-4143		1020
95501120	Vegas	TX-3316	4	1111	6780 ± 100				1039
8250:120	"	-3413		"	6530 ± 150		-4550	н	1040
81701 70		-3315		••	6490 ± 100) "	-4144		1039
7440±100		-3313			6230 ± 90) Late-Mid-60th C BC	-4139		1039
7150± 70		-3314			6220 ± 100		-4140		u
6750±150		-3318			6090 ± 90	50th-54th C BC		"	
	EGYF	РТ			6070 ± 90) "	-4142		
				100-	5940 ± 100		-4138	"	1038
3480755		LU-1504	4	1063	5940 ± 80		-4136		
		-1505 -1503			5770 ± 100 5730 ± 100		Ny -411.5		1066
3466±55 2410±55							-411.1		

ARCHAEOLOGIC SAMPLES

Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Page
	LTA (con					VENEZUE	LA		
	(con			1066	24,400 ± 650	Early Corozal	QC-275A	4	1081
5720*100		NY -411.2 -411.3	4	1066	24,700±1250		-272B		
5720±100 5710±100		-411.4	4	1066	24,700 ± 200		-275B -272A	"	
5700 ± 90	45th-48th C BC	LJ -4137		1038	23,900 ± 650 23,080 +910	Early Camoruco -	-335(1)		1082
710 ± 80	34th-36th C BC	-4545		1039	-820	Late Corozal			
1680 ± 60	34th-37th C BC	-4544 -4546		1040	22,420 +820		-335(2)		
4580 ± 80 4440 ± 70	34th-36th C BC 31st-45th C BC	-4547			-740		Tx-2608		1110
4350 ± 90	5150 1000 0	NY - 519		1067	9140 ± 140 8420 ± 970		-2611		1111
1350 ± 80		- 518 - 517			7710 ± 700		-2610		
2450 ± 80		- 516			3720 ± 270	Early Camoruco -	QC- 335(3)		1082
1820±100 540 ± 80		- 483			0000 (100	Late Corozal	-271B		1081
370 ± 80		- 484			2810±130 2650±80	Early Corozal	-271A		"
4odern		- 535			1740 ± 100	Middle Corozal	- 323		1082
	T	ERU			1450 ± 70	Ronquin	-311B -327		1081
					1300 ± 90 1200 ± 90	Early Camoruco -	- 320		1082
3820±60	Pre Ceramic	Tx -3167	4	1111	1200 2 50	Late Corozal			
3660±80		-3166			1170 / 100	Ronquin	-311A		1081
	יס	OLAND			1170 ± 90	Middle-Late Coroza	1 -313AA		1083
	P				900 ± 90	Tata Caronal	-312AB -309		1081
2450±180		Gd-448	1	64	860 ± 70 830 ± 90	Late Corozal Early Camoruco -	-325		1082
2 4 00±170		-447			0.50 2 50	Late Corozal			
2020±155		-436 -427		65	820 ± 90	Late Corozal	-322		
1970±150 1940±150		-437		64	760 ± 100	Middle-Late Coroza	1 - 31 3AB - 31 9		1083 1082
1940±150 1895±160	Roman (?)	-432		65	720 ± 80 540 ± 80	Middle Corozal	-319 -310A2		
1790±150		-431		" 64	540 ± 80 510 ± 70	Middle Corozar	-310A1		
1760± 70	Roman	-489 -428		65	490 ± 70		Tx-2609		1110 1082
1730±140 1720± 70	Roman	-428		64	460 * 80	Early-Middle Camo	ruco QC-324A		1082
1720± 70	Rollidit				410 ± 90 410 ± 80	Early Camoru Middle Camoruco	-310B1		
	<u>SI</u>	WEDEN			410 ± 80 340 ± 90	"	-310B2		
8830±110		Lu-1566	4	1059	340 ± 80	Middle-Late Coroz			1083
8180± 80		-1567			260 ± 80	Middle Corozal	- 320		1082
7580±115		-1573	"	1060		YUGOSLA	WTA .		
7280± 75		-1558		1058		1000314			
7070± 75	Paulu Putobello	-1578 -1623		1060 1062	2035±50	lst C AD	TX-1940	4	1113
6860± 70 6680± 70	Early Ertebølle "	-1622			1970±80	"	-2492		"
6660± 80		-1617			1950±60	Early 2nd C AD	-2494 -1431		1112
6160± 70		-1562		1059	1870±180 1800±80	Mid 5th C AD	-2491		111
5570± 65		-1572 -1570		1060 1059	1780±50	Early 2nd C AD	-2489		
5270± 90 5080± 65		-1636		1058	1730±40		-1921		1112
5010± 65		-1633			1720±50		-1942 -1943		111
4700± 60		-1563		1059	1660±45 1600±70	Mid 5th C AD	-2490		
4440± 80		-1569 -1574		1060	1600±60		-1944		111
4120± 60 3590±100		-1577		1000					
2860± 60	Late Bronze	-1674		1062		UNITED S	TATES		
2830± 55		-1615		1061	ARKAN	545			
2800± 55	, Late Bronze	-1673 -1635		1058	- Aldon				
2760± 55 2710± 55	"	-1652		1061	790 50	Bartholomew phase	TX-2885	4	110
2660± 60	"	-1616			250.000	Plaquemine	-2887		
2550± 75		-1576		1060 1059	750 80 690 60		-2886		
2460± 55		-1565 -1579		1059	440 70	Late Caddoan	-2859		110
2310± 55 2120± 50		-1568	"	1059	230 50		-2858		
1520± 50		-1561		"	CAL 1	ORNIA			
1380± 50		-1560		1058	CALI	U.MILIN			
1370± 50		-1564 -1575		1059 1060	36,000±4000		LJ-4535	4	10
1280± 50 1100± 50	Historic	-1614		1062	8180 ± 110		-4130	"	10 10
1100± 50		-1559	"	1058	7440 ± 110		-4134 -4133		
1070± 50		-1544		1057	7120 ± 150 7060 ± 110		-4135		
1060± 50 1060± 50		-1545 -1543			6300 ± 90		-4168		10
1060± 50 1040± 50		-1543			5810 ± 90		-4131		
1010± 50		-1548			5650 ± 90		-4132 -4169		
1010± 50		-1542			4950 ± 90 3810 ± 70				10
970± 50	"	-1550		1058	3310 ± 70		-4173		10
960± 50		-1551 -1547		1057	3110 ± 120	14th, 15th, 16t	h C BC-4170		10
960± 50		-1547		1060	1400 ± 100	7th, 6th, 5th	C AD -4533		10
450± 55 ≤ 150		-1677		1061	910 ± 50 430 ± 70		h C AB-4532 -4219		10
					410 ± 70	L. C.	-4534	"	10
					350 ± 70	Late Histori	ic (?) -4224		10
					330 ± 70		-4255		10
					< 250		-4217 -4254		
					230 ± 70 230 ± 60		-4535		10

ARCHAEOLOGIC SAMPLES

Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Paq
	<u>UNITED STA</u> (cont)	ATES							
cc	DLORADO				FLOR:	IDA (cont.)			
9800/830		TX-3154	-1	1110	940 ± 60		CM-1742	1	106
3550*100 7060*110		-3149		1109	890 ± 60		-1668		
060/110 0810/120		-3156 -3152		1110	860 ± 70	Mississippian	-1807	4	1123
690/170		-3155			840±100 590±80	Early Hickory Pond	-1790		11.21
560± 80		-3151			530±60		-1784 -1661	1	105
5201120		-3153			520 £ 70	Early Hickory Pond	-1785	4	10.
4301300 270190		-3150			510 ± 70	Mission	-1786		
27090		-3157		"	490±110 250±80	Mission	-1667 -1787	1	100
	NECTICUT				GEORC		1,0,	-1	1121
510/140 290: 90		QC -301	4	1080					
290: 90 050:5 80		-217		1079	2430770 1420780	Woodland "	CM-1076	1	105
750± 90		-298			980±100	" Early Mississippia	-1677		
610:350		-318				party massissifut	ui =1075		
130:5 90		-231			IDAHO				
801 50		-273			$10,820 \pm 140$	Windust	Tx -3159	4	1108
FLO	RIDA				10,110 ± 720		-3160		
120 1 22	*				9850 ± 870	Windust	-3158		
330 ± 90	Late Prehistroic Calusa		4	1122	9320±1830		-3081		1107
530±100 940±100	Archaic "	-1835 -1836			9280 ± 110 9160 ± 230	Windust	- 3083 - 3086		
470 ± 80	Late Prehistoric Calusa				8800±1310	Early Cascade	- 3265		1109
460±110	*	-1918			8660±1660	Windust	-3266		
340 ± 70		-1923		1123	8560 ± 520		-3082		1107
250 ± 90 220 ± 80		-1921 -1919		1122	6240 ± 100		-3084 -3262		
120 ± 90		-1928		1123	5550 ± 220 5450 ± 120		-3161		1109 1108
080 / 80		-1929		"	4340 / 90		-2263	.,	1109
060 <u>/</u> 80		-1925			4310 ± 70	Tucannon	-3085		1107
030 ± 80	11	-1924			4120 ± 110		-3088		1108
980 ± 90 950 ± 90		-1930 -1726	1	107	3440 ± 110 3420 ± 380		- 3264 - 3092		1109 1108
900 ± 90		-1927	4	1123	2270 ± 150		-3091	"	1100
900 ± 80		-1926			360 ± 60		-3089		
390 ± 80		-1931			150 ± 70		- 3090		
770 ± 80	Pre-Occupation	-1723	1	107	MADVI	ND			
540 ± 90 440 ± 70	Mississippian "	-1756 -1720	4 1	1124 106	MARYL	hind			
360 ± 70		-1873	â	1124	1040 ± 120	Montgomery	QC-157/8	4	1050
280 <u>±</u> 90		-1872					2, -		1000
270 <u>+</u> 80		-1874			MASSAC	CHUSETTS			
260 ±80 210 ≠80		-1838 -1722	1	1122 107	1790 ± 120		00,000,000	-1	1000
00 ± 70		-1721		106	1760 ± 80		QC-222(1) -222(2)	-1	1080
960 <u>±</u> 70		-1727		107					
30 + 75 390 + 120 110		-1672		106	MONTAN	NA			
90 - 110 50 ± 90		-1725	4	107 1122	4230 ± 50	Early Take Deablate.			1100
10±180	Mississippian	-1837 -1811	4	1122	1790 ± 50	Early Late Prehistor	-3066	4	1106
70 ± 70		-1642	1	104	1770 ± 200	Early Late Prehistor			
40 <u>±</u> 70	Late Cades Pond	-1783		1121	1510 ± 60		-2796		
00 ± 80 90 ± 90		-1841		1122	1140 ± 50 1000 ± 90		-2798		
30 <u>₹</u> 90 80 <u>₹</u> 70	Late Cades Pond	-1644 -1781	4	104 1121	940 ± 60		-3111 -2795		
30 ± 80	have caues rond	-1645	1	104			-2123		
$ \begin{array}{c} 20 \pm 78 \\ 60 \pm 138 \end{array} $		-1646		105	NEW YO	DRK			
		-1724	"	107	4949 4 100		00.040	,	107-
60 ± 70 50 ± 90	Late Cades Pond	-1782	4 1	1121	4940 ± 100 4700 ± 90		QC-240 -270(2)	4	1078
40±140		-1643 -1674	1	104 106	4600 ± 80		-270(2)		
60 ± 80	Early Hickory Pond	-1788	4	1121	4490 ± 90		-243		
60 ± 70		-1839		1122	4400 ± 100		-224	0 11	
50 ± 80 30 ± 80		-1665	1	105	4370 ± 90 3370 ± 170		-239 -225		
30 ± 80 20 ± 50		-1669 -1671		106	2850 ± 220		-225		1079
20±50	Mississippian	-1810	4	1124	2480 ± 340		-241	0	1078
10 ± 70	Early Hickory Pond	-1789		1121	700 ± 120		-112		
90 ± 60	Mississippian	-1808		1124	ALC: UND				
80 ± 80 80 ± 50		-1840		1122	NEVADA	<u>`</u>			
60 ± 50		-1805 -1663	I	1124 105	7080 ± 680		QC-291	4	1080
	Mississippian	-1809	4	1124	5410 ± 270		-294		1081
30 ± 80		-1666	1	106	5390 ± 150		-293		"
190 ± 70		-1660		105	5290 ± 180		-289		1080
90±70 80±50									
90 ± 70 80 ± 50 60 ± 70		-1806	4	1124	5100 ± 100 4850 ± 100		-293 -290		1081
190 ± 70 180 ± 50 150 ± 70 130 ± 50		-1806 -1664	4 1 "	105	5100 ± 100 4850 ± 100 4140 ± 130		-293 -290 -292		1081 1080 1081
30 ± 80 990 ± 70 980 ± 50 950 ± 70 930 ± 50 920 ± 70 920 ± 50		-1806	1		4850 ± 100		-290		1080

ARCHAEOLOGIC SAMPLES.

Date	Culture or Period	Sample No.	No.	Page
NOR	TH CAROLINA			
1340 ± 60	Late Woodland	Tx-2819	4	1104
970 ± 80		-2818		
1201260		-2820		
NOF	TH DAKOTA			
47 0 ± 75		WIS-1016	1	115
265 ± 70	Woodland "	-1021		
60	• •			
PLN	INSYLVANIA			
1990 (80		QC-250	1	1080
16104100		-259		
01	110			
2990-580	Early Woodland	¶x=2347	4	1105
2990-580 2290/50	Early Adena	-2462		••
2160160 La	ate Adena-Early Hopwell	-2375		
1650±60	Late Hopewell	-2373		
680750	Philo	-2345		
660/60 660/50 600·70		-2344		1104
660750	Late Woodland	-2374 -2346		1104
600+70	Philo Phase	-2340		11/0
<u>0K</u>	LAHOMA			
1920,60		Tx-3284	4	1104
	Plains Woodland	- 3243		1103
	Early Caddo	-3280		
1000150		-3281		
530150		= 3283		1104
500140		-3282		
SOU	TH DAKOTA			
610 55	Initial Coalescent	WIS-1074	1	115
TEX	AS	÷		
	Late San Pedro Cochise	т х- 3173	4	1100
1190 4 80	Early Caddo	-3312		1102
1170,100		-3309		1101
1140+160		-3311		1102
1040(230	"	-3268		1100
1020 + 60		-3400		1102 1100
1010 ± 70	San Pedro Cochise	-3169 -3399		1100
990 + 60	Early Caddo	-3399 -3273		1101
950 ± 80		- 3275		
910±90 880±110		-3307		
800 (40		-3401		1102
700 4 90	Early Caddo	- 3271	"	1101
780+100	Late San Pedro Cochis Early Caddo	-3272		
780 ± 70	Late San Pedro Cochis	e -3168		1100
770 ± 70	Early Caddo	-3270		1101
740 ± 70	**	-3269		
620 (100		-3308		
610±100		-3310		
560 ± 60	a 11	-3267		1100 1101
550 ± 60		-3276		1101
440 ± 90		-3274		
WA	SHINGTON			
	7th,8th,9th C BC	LJ-4218	4	1034
2500 1 70		Tx-3304		1105

GEOCHEMICAL SAMPLES

∆ Value	ern				% of Modern				
or Date	Depth	Sample No.	No.	Page	∆ Value or Date	Depth	Sample No.	No.	Pag
	ANT	ARCTICA				PACIFIC	ISLANDS		
-731780	20m below ice	LJ-4256	4	1043	>41,000	+ 50 m	MGU-164	1	84
		53.0TT			31,930±1300	+ 34 m	-634		87
	F	RAZIL			31,600 ± 500 29,880 ± 300	+ 60 m + 29 m	-165		85
		LJ-4099-4102	4	1044	29,780/1000	+ 29 m +100 m	-173		84
		-4303-4308		"	29,590 / 600	+3.5 m	-184-2		86
0.710.5		-4450-4455			28,968/1020	+ 65 m	-625		38
2.5%0.8	277 m	FZ-44		1032	27,480 ± 330	+ 20 m	-622		
4.1:05	240 m	-53 -43			26,870 ± 350 26,290 ± 450	+166 cm +3.5 m	-592		87
4.9:03	210 m	-37			25,160 ± 500	+ 24 m	-184-1 -187		86
5.741.1		-45			25,100 ± 780	+ 60 m	-181		35
9.7±0.4	77 m	- 38	"		23,894 ± 430	+1.3 m	-631	"	37
0.6±0.8 1.7±0.3	141 m	-41		:	22,897 ± 352	+ 1 m	-628		
9.1/0.7	32 m	-64 -67		1033	$22,500 \pm 180$ $22,400 \pm 100$	+ 5 m + 70 m	-593		90
3.1:0.7	52 m	- 34		1033	21,920 ± 360	+ 80 m	-175 -162		33 84
3.9±0.7	164 m	- 35			21,400 ± 270	+ 14 m	-176		
5.610.7	36 m	-77		1033	20,000 / 220	+ 2 m	-179		86
7.140.7	120 m	-40		1032	19,580 / 460	+ 3 m	-590		58
2.810.6 7.110.7	130 m	-66		1033	15,220 ± 300	+ 15 m	-172		64
7.8/0.8	130 m 89.5 m	-14 -36		1031 1032	12,316 ± 210 6478 ± 116	+1.5 m	-633		36
0.010.6	142 m	-78		1032	4100 2 84	185 cm - 55 cm	-630 -618		37
3.910.7	60 m	-71		1035	3960 / 150	+ 8 m	-170-1	0	83
5.440.6		-69			3780 ± 150		-170-3		
1.5/0.9		-72		"	3740 ± 250		-170-2	n.	
2.1 ± 1.0 $7.2\pm.1$	110 m	-73			3623 ± 116		-632		53
0.2±.1	110 m 68 m	- 79 -68			3190 ± 170	+ 20 cm	-629 -591		36
1.6±1.4	00 m	-70			3180 ± 170 2954 ± 170	+0.3 m	-591		57 38
.010.9		-65		1032	2890 ± 500	1.5 m	-174		33
					2615 / 84		-627		31
	CP	NADA			2500 ± 190		-177		34
4,540±300	+ 150 m				2467 ! 84	+0.8 m	-624		37
1,5401300 1,2801160	+ 150 m + 84 m	MGU-334 -330	1	90	2385 ± 120 2230 ± 150	+1.5 m 98-104 cm	-171 -239		34
8570±120	+ 98 m	- 331			1823 / 100	98-104 Cm	-239		86 35
7590±100	+ 62 m	-333			1666 ± 70	+1.5 m	-178		84
6336±160	+ 44.5 m	-332			1435 ± 80		-185		35
					1197 ± 170	+2.5 m	-626		38
	S	CUBA			830 ± 50	+5-10 m	-190		85
,780 ±500	1.4 m	MGU-465	,	88	725 ± 180 530 ± 60	340-350 cm	-180 -237		86 35
160+150	3-4 m	- 363	1		440 ± 90	196-202 cm	-236		30
,000 ! 260	5 . 14	-416		89	Recent	0-10 cm	-238	н	
,430±200	6-7 m	-415			ч	40m 0-10 cm	-235		0
,020/300	310-330 cm	-547		.	"	+0.5 m	-623	"	88
7680 (150	275-295 cm	-551		90					
7590±250 7480±800	340-360 cm 420-440 cm	-550 -548		89		POL	AND		
7360±290	380-435 cm	-368			149.711.4		Gd-494	1	66
5480±140	340-380 cm	- 367			134.9/1.6		-480		
4055 (120	10-45 cm	-369			103.0:0.8		-493	n 11	
3370± 80	400-455 cm	-552		90	100.341.7		-288		
2150± 90		-417		89 "	85.3±1.6 74.8±1.6		-289		
1900±120 1610±130	1 m	-419 -414			69.5/1.5		-483		
13101 80	20-30 cm	-414			66.3/1.4	Surface	-417		65
1170/130	1 m	-418			62.0+1.3		-292		66
					61.9/1.3	ca 400 m	-467		65 "
	1	NDIA			59.8/1.7	Surface	-433 -457		
0.075 /					59.5±1.7 59.1±1.1	ca 400 m	-457 -291		66
2875±100		BS-59	1	59	55.8/1.2		-434		
2755/105 2455/100		-61 -64		60	52 311.2	ca 600 m	-466		65
2455(100 2215±100		-63			48.8±1 1		-481		66
595±105		-62		59	43.2/1 1	ca 600 m	-456		65
475 ± 75		-58			41 7/1 0	ca 600 m	-462		
100 105		-65	"	60	25 3±0.9 24.9±1.1	ca 380 m	-412 -411		
180 ± 95						ca 600 m	-4		
180 1 95					21.511 2	ca 380 m	-434		

 SWEDEN

 13,110:115
 1u-1675
 4
 1050

 13,080:115
 1676

GEOLOGIC SAMPLES

of Modern I or bate I	Jepth	Sample No.	No.	Page	<pre>% of Modern or Date</pre>	Depth	Sample No.	No.	P
	AUST	RIA		- which is an			ANCE ont)		
28,300-700		VRI-618	1	118			Ny-491	4	
26,300/600		-619			2110 + 50 2070 + 80	45-49 cm	-475.2		
25,630/660		-570		111 109	2000 170	55-60 cm	-613		
11,560(170		-464 -594		107	1890'100	30-37 cm	-502		
96804210		-582		111	1820:100	77-85 cm	-503		
7830±130 6980±130	214-316 cm	-533		110	1750 £ 90	40-55 cm	-504 -505		
*6490 ± 90	285-300 cm	-501			1660 ± 90	100-110 cm 50-55 cm	-609		
*6270(100	188-189 cm	-534			1440 ± 80 1220 ± 70	40-45 cm	-615		
6130 £120		-634		109 110	770 / 80	30-35 cm	-616		
6000/100	150-160 cm	-500 -535			770 ± 80	40-45 cm	-617		
·SA20/100	134-144 cm 350-355 cm	-532			460±100	75-85 cm	-509		
5630*110 4320:140	113-115 cm	-536		11	320/100	65-75 cm	-508 -501		
4420,100	13.2 cm	-631		109	210 ± 50 160 ± 90	40-55 cm 63-70 cm	-512		
3490 ± 30	303-307 cm	-531		110	50 190	30-40 cm	-510		
3150 ± 80	279-285 cm	-530 -633		109	Modern	33-45 cm	-511		
2280/100	60 cm 1.5 m	-587		103	Modern	70-75 cm	-514		
750 ± 70 590 ± 70	14-24 cm	-588		".		7/	NET AND		
< 250 < 250	-4.5 m	-630		100		10	ELAND		
					8990±155	386-393 cm	Lu-1682	4	
	BUL	GARÍA			7660±115	338-343 cm	-1683	. "	
2625 65	102 105 cm	WIS-1014	1	129	6570 ± 65	309-316 cm	-1684		
2625 65 1810 60	182-185 cm 146-150 cm	-1010			6040/100	267-272 cm	-1685 -1704		
1010 00	110 100 000				4470 ± 95	228-234 cm 176-182 cm	-1725		
	CA	NADA			2710 ± 70 2330 ± 55	760-765 cm	-1641		
		WIS-987	1	125	1850 ± 60	660-665 cm	-1643		
10,260(100	505-515 cm	WIS-987 -985			1830 ± 55	710-715 cm	-1642		
10,040±95 9840±100	500-505 ст 490-500 ст	-983			1700 1 50	610-615 cm	-1644		
8940 ± 90	270-280 cm	-106			1590 / 60	297-302 cm 560-565 cm	-1650 -1645		
8900 ± 90	385-375 cm	-1053		126	1530 150 1450 155	360=365 cm	-1649	"	
3740 + 90	450-465 cm	-992 -1063		127	1390 ± 60	247-252 cm	-1651		
8340 - 90	946 cm 362-352 cm	-1061		126	1380 ± 50	410-415 cm	-1648		
8310 ± 80 7870 + 85	390-400 cm	-991		127	1330 ± 55	460-465 cm	-1647 -1646		
7265 ± 85	390-400 cm	-982		125	1320 ± 55	510-515 cm	~1040		
6920 ± 85	185-195 cm	-1066		127	-	I	NDIA		
6920 1 80	430-440 cm	-1055 -1054		120		-			
5625 8 75	300-290 cm	-1060	0		38,270/2480	3.4 m	BS- 83	1	
5210 ± 70 4520 ± 80	280-370 cm 310-320 cm	-1056		127	28,310:3070	43-73 cm	- 73		
4510 1 75	290-300 cm	-981	"	125	24,030 1580	179-220 cm	- 74 -122	0	
4040 / 80	90-100 cm	-1064		126	19,310 ± 360 10,620 ± 160	120-150 cm 70-100 cm	-120	"	
3860 ± 70	240-250 cm	-1057 -1047		127 126	7985 ± 110	40-44 cm	- 87		
3350 170	200-190 cm 855 cm	-1063		127	7840 ± 300	2.3-2.4 m	- 81		
3330 ± 70 3230 ± 120	855 CM	Gd-473		63	7210 ± 160	260-267 cm	-996		
2850 Å 65	190-200 cm	-980		125	5210 145	0.3 m 20-50 cm	- 88 -106		
2835 (75	160-150 cm	-1059		126	4005 ± 90 1975 ± 110	17 cm	- 86		
2675 ± 60	290-300 cm	-990 -989		1.17	1920 ± 100	30 cm	- 75		
2355 ± 55	190-200 cm 90-100 cm	-985		e.	1345 * 110		= 71b		
1840 ± 60 1135 ± 60	90-100 cm	-979		127	1220 + 350	127-132 cm	- 84		
620 ± 70	50-60 cm	-1058	"	1.40	870 - 110		- 71a - 77b		
222					825 ± 120 405 ± 90		- 77a		
	F	RANCE			330 (140	3.15 m	- 96		
19,510+620		NY-543.2	4	1071	330 ± 70	3.3 m	-100		
19,510+620		-543.1			245 / 90		-102 - 76		
6830±100		-474		" 1070	280 / 100 160 / 95	05 cm 0.9 m	- 95		
4260 / 90	180-185 cm	-495 -494		10.0	Modern	15 cm	- 82		
4180 ± 90	154-160 cm	-494			Modern	5-8 cm	- 89		
4120 ± 90 4100 ± 90		-544	"		Modern	38 cm	- 99a		
4000 1 80		-496	"		Modern	3.0 m	-101 - 85		
3770 ± 90	125-131 cm	-493		1071	Modern Modern	5-7 cm 26-43 cm	- 55		
3570 + 80		-546.1		1011	PROGETI	20 15 00			
3490 ± 90	110.105	-546.3 -492		1070		1	RELAND		
3480 ± 90 3390 ± 80	119-125 cm	-546.3	3 "	1071	10,010,170		D-136F	4	
3390 ± 80	75-180 cm	-611		1068	4030(120	Unknow 1	-119		
3340 ± 90		-545 TU 1606	1) 4	1071 1056	0.7/0.2 40.2/0.9	Bottom 1 cm Upper 1 cm	1 -144 -137		
3230 ±85		LU-1606 NY-507		1069	40.270.9		-149		
2930+100	120-130 cm	-610 NY-507		1068	53.5'0.9	Central 2 c	m -141		
2810 1 70	60-65 cm	-506		1069	72.8/1.1	Outer 2 cm	-142		
2510±100 2510±80		-633		1071	85.811.2		-139		
2446 (70	65-70 cm	-614		1068	114.1.2.6		-147 -148		
2 380 ± 70	60-65 cm	-612 -476			142.6:1.4		-140		
		-475.							
2280 ± 80									
2280 / 80 2120 ± 80		-475.	1						

GEOLOGIC SAMPLES

t of Modern or Date	Depth	Sample No.	No.	Page	% of Modern or Date	Depth	Sample No.	No.	Page
	Ī	TALY				PC	LAND		
13,0201190	450-472.5 cm	VRI-539	1	112	1220 ± 50	(0	ont)		
9370±150 8920±130	375-383 cm	-553		112	830±110	75-80 cm 45-70 cm	Lu-1540 Gd-492	4	105-
89203130 89003130	385-405 cm 110-120 cm	-548		**	810 ± 50		Lu-1637	1 4	6) 1055
78701140	110-120 cm 330-340 cm	-499 -549		111 112	780 ± 50	25-30 cm	-1541		1054
	MEX			112		SAUDI	ARABIA		•
14,540 ± 90					32,200 ⁺¹⁸⁰⁰ -1500		VRI-600	1	112
14,450(100		TX-1913 -1914	4	1094	4330 ± 100		-599		
13,180/290		-1784	v		1.8±0.4%		-601		113
	NEI	AL				SWI	EDEN		
86,000		VRI-607	1	112	12,890±190 12,090±145	532-538 cm	Lu-1599	4	1049
,200/1100		-608			11,970±105	525-530 cm 249-253 cm	-1600 -1588		" 1048
	NORW	AY			11,810±190	1015+1018 cm	-1597		1048
1120 4 05					11,700±105 11,260±100	838-840 cm 613-615 cm	-1618		1050
9420 ± 85 9220±100	109-114 cm	Lu-1581A	4	1051	11,040±150	995-998 cm	-1589 -1598		1047 1049
8320 ± 80	+ 1220 m	-1621 -1693		1052	10,890 ± 90	598-600 cm	-1590		1049
8240 ± 80	+ 1030 m	-1692		1052	10,830±100	582-584 cm	-1591		
7330 ± 75		-1580A	H	1051	10,760±100 10,560±100	507-511 cm 502-507 cm	-1601		1049
7180 ± 75 4890 ± 65	C9-74 cm	-1620		1050	10,740:105	498-502 cm	-1602 -1603		
3600 ± 55	+ 1000 m	-995 -1583A	"	1051	10,500±100	768-770 cm	-1619		1050
2860 ± 55		-1582A			10,450±100	574-576 cm	-1592		1047
					10,260 ± 95 10,220 ± 95	491-495 cm	-1604		1049
	PER	1			9840 ± 95	563-565 cm 551-553 cm	-1593 -1594		1047
,050(100	895-902 cm		,	100	9760 ± 90	432-485 cm	-1605		1049
5670 ± 80	728-736 cm		1	128	9560 ± 90	537-539 cm	-1595		1048
1100 ± 70	225-235 cm		"	м	7280 ± 75 6830 ± 90	228-230 cm 125-130 cm	-1517		1046
455 ± 60	118-123 cm		"	ч	6640 ± 75	218-220 cm	-1653 -1518		1047 1046
	POLAN	ID			4490 ± 75	94-93 cm	-1654		1040
					3810 ± 60	208-210 cm	-1587		1046
,400+1200 -1000	520-550 cm	Lu-1632A	4	1056	3430 ± 70 3470 ± 60	72-76 cm 194-196 cm	-1655 -1519		1047
,100 ⁺¹⁰⁰⁰	520-550				3180 ± 70	168-170 cm	-1520		1046
,840 / 110	520-550 cm 197-201 cm	-1632		1055	2570 ± 55	100-105 cm	-1672		
,380 ± 100	186-190 cm	-1678 -1679			2500 ± 55 2300 ± 50	415-420 cm	-1639		1048
,100 ± 105	178-182 cm	-1680			2300 ± 50 2050 ± 50	130-134 cm 75-80 cm	-1521 -1671		1046
,000 ± 100 9940 ± 210	165-170 cm	-1681			1970 ± 70	23-27 cm	-1656		1047
9870 ± 90	440-460 cm 790-803 cm	Gd-449	1	62	1850 ± 50	122-126 cm	-1522		1046
9740 ± 300	330-350 cm	Lu-1531 Gd-433	4	1054	1710 ± 50 1610 ± 65	395-400 cm 375-380 cm	-1640		1048
9610 ± 210	445-455 cm	-445	î.	62	1580 ± 50	50-55 cm	-1638 -1670		 1046
9470 ± 270 9360 ± 300	335-355 cm	-439		61	1540±55	100-104 cm	-1523	н	1040
9280 1 300 9280 1 30	325-355 cm 775-780 cm	-446 Tu 1622		"	900 ± 50	32.5-37.5 cm	-1669		
8830 1 85	750-755 cm	Lu-1532 -1533	4	1054	580 ± 50	75-77.5 cm	-1686	11	1050
8670 / 220	555-565 cm	Gd=458	1	62		SWITZER	RLAND		
i350 作 80 i120 生 80	725-730 cm	Lu-1534	4	1054					
7770 1 210	675-680 cm 495-505 cm	-1535 Gd-460			51467.120 5000 4 cc		Lu-1696	4	1000
430 / 190	145-155 cm	-454	1	62 61	5090 ± 65		-1697	17	
160 ± 75	625-630 cm	Lu-1536	4	1054		UNITED S	STATES		
930 ± 240 620 ± 180	135-165 cm	Gd-420 -442A	1	63					
600 ± 250		-442A -442B		61	ALASKA				
590 ± 70	575-580 cm	Lu-1469	4	1054	6960±100		<u>Ç</u> ⊖-245	4	1077
220 ± 120 950 ± 65	345-355 cm 525-530 cm	Gd-476	1	62	6660 ± 90		-208	4 11	1077
950 ± 65 430 ± 65	525-530 cm 475-480 cm	Lu-1537 -1538	4	1054	5110±200		-206B	н	
130 ± €0	445-450 cm	-1538			4460±180		-244		
870 ± 150	340-360 cm	Gd-452	1	62	3830±110 3770±100		-204A -205		1076
810 ± 60 230 ± 60	425-430 cm	Lu-1470	4	1054	3630±130		-162	н	" 1075
230 月 60 740 法 55	390-395 cm 340-345 cm	-1608 -1609		1055	3040/370		-207		1077
1320 ± 55	290-295 cm	-1610			2770 ± 90		-161	"	1075
270 ±160	140-160 cm	Gd-475	1	62	2690 ± 90 900±120		UM-1804 -1803		1119
150 ± 130	435-465 cm	-472		н	650 ± 80		-1803 QC-160		1075
850 ± 170 740 ± 150	140-160 cm 440-460 cm	-451 -464			107.1%		UM-1739	1	102
740 ± 150 700 ± 130	435-440 cm	-464 -470			105 %		-1738	u .	
650 ± 55	240-245 cm	Lu-1611	4	1055	104.4%		-1740		
370 / 150	160-180 cm	Gd-459	1	63	103.7%		-1741		103
250 1-50	195-200 cm	Lu-1612	4	1055					
		Gd-474	1	64					
	215-235 om								
850 ± 120	215-235 cm Ca50 cm	-471 -490		62					
150 ± 100 .850 ± 120 .790 ± 80 .790 ± 50 .640 ± 140				63 1055					

GEOLOGIC SAMPLES

of Modern or Date	Depth	Sample No.	No.	Page	% of Modern or Date	Depth	Sample No.	No.	Page
	UNITED	STATES				UNITED (cont			
					MASSACI	IUSETTS			
CALIFO	RNIA				_			,	1099
38,380 ⁺⁷³⁰ -670		UM-1631	1	102	10,300:370	1205-1230 cm 902-927 cm	TX-2946 -2945	1	109
33,460 ⁺⁹⁵⁰ -850	140 m	-1822	4	1118	8520±200 3700±110	400-405 cm	UM-1915		112
-850					3020(380	305-310 cm	TX-2948		109
31,440 ⁺²²¹⁰ -1730	91 m	-1818			1910±100	105-110 cm	UM-1914		112
aa ooot1400	49 m	-1985	"	1129	MINNES	0.072			
29,850 - 610	131 m	-1820		1118	PILING SS				
29,850+660 29,850+660 29,040+610 29,040+570		-1632 -1984	1 4	102 1129	12,060±125	1770-1778 cm	WIS-1034	1	11
27,280±350	49 m	-1984	4	118	7550 ± 90 6165 ± 80	947-952 cm 787-792 cm	-1029 -1026		11
19,630±230	160 -	-1819			5640 ± 70	13.4-13.5 cm	-1008		11
18,500 ⁺⁵¹⁰ -480	160 m				4550 ± 75	607-612 cm	-1027		11
12,260±210 18,800±130	61 m	-1823 -1817			4030 ± 75	11.30-11.40 cm	-1007 -1037		
5180 ± 90	2.4 m	-1813		1120	3950 ± 80 3785 ± 70	1150-1160 cm	-1013		11
3530 ± 80		LJ-4366		1041	3705 ± 70	487-492 cm	-1024		1
2430±110	91 cm	UM-1812 -1794		1120 1119	3705 ± 60	10.6-10.7 m	-1006		1:
2230±110 1410±100		-1795			2790 ± 65 2615 ± 65	9.7–9.8 m 945–955 cm	-1005 -1009		
1250±110		-1796			2290 ± 65	347-352 cm	-1028		1
850 ± 90		LJ-4391		1041 1118	1950 ± 65	150- 55 cm	-1035		1
810 ± 60 700 ± 50		UM-1821 LJ-4383		1041	920 ± 60	7.8-7.9 m	-1003		1
670 ± 50		-4388			910 ± 70 810 ± 60	207-217 cm 20-730 cm			1
560 ± 50		-4385			800 ± 60	1.45-7.55			1
410 ± 70		-4384 -4392			630 ± 55	1.1	-10		1
390 ± 60 380 ± 90		UM-1797		1119	390 ± 60	60-70 cm	-10		
360 ± 50		LJ-4365		1041	NEVAI	A			
340 ± 60		-4387							
330 ± 60 240 ± 60		-4386 -4389			40,000	34 m	<u></u> TY-2561	4	10
110 ± 30		-4390		"	NEW	JERSEY			
					<u></u>	551051			
FLORID					12,820±200		QC-297	4	10
38,970 +1940	20-40 cm	UM-1791	4	1119	12,130±210 6340±100	1.8 m	-296 -142		
-1560		-1793		1120	5220±120	1.4 m 1.4 m	-141	"	
28,770 + 860	25-40 cm	-1832		1117	5080 ± 60	1.2 m	-144		
3500 ± 130 3260 ± 130		-1827							
2150 ± 130		-1826			NEW	YORK			
860 ± 90		-1913		1120	25,450+6680	+ 60 cm	QC-238	4	10
850 ± 70 680 ± 70		-1798 -1792		1119	10,830(220	3 m	-232	"	
370		-1831		1117	10,360/100	997-1023 cm	WIS-1050		1
270	910 m	-1829			7950±100	4.5 m	QC-263 WIS-1051		10
180 ± 80) 3 m	-1692 UM-1828	1 4	104 1117	7880±100 6270±340	231-249 m 4.5 m	QC-233		10
Modern Modern		-1830			5900±300	9.45 m	-189	"	10
Modern		-1833		1118	5150±210	7.5 m	-221A -314		10
					5060±120 4610±120	10.1 m 8.54 m	-261		1
GEORG	51A				4570±120	6.8 m	-221B		10
4550±90		UM-1878	4	1117	4500±100	7 m	-264		10
4160±80		-1877			4230±120	7.7 m 6.15 m	-227 -276		1
3750±70		-1879 -1875			4110±100 3940±140	10.75 m	-186		
3020±90 2810±110		-1876			3800±160	4.75 m	-187		
					3610±120	4.6 m	-274 -262		
IDAHO	2				3460±100 3245 ± 65	5.05 m 231-249 m	-262 WIS-1052	1	
9510+190	920-923 cm	Tx-2108	4	1096	2326±100	3.9 m	QC-226	4	1
9110±110	913-416 cm	-2103			2300±160	3 m	-211		1
8280±120	904-908 cm	-2110			1870 ± 90	2.7 m 2.25 m	-228 -295		1
7960±310 7680± 40	805-810 cm 760-771 cm	-2674 -2673			1800 ± 90 1020±100	1.12 m	-315	"	
6980±480	643-645 cm	-2104			300 ± 90	0.27 m	-316	"	
6630± 80	600-605 cm	-2116				U CADOLINA			
6390±230	500-505 cm	-2121 -2119			NORT	H CAROLINA			
4310±990 3030±110	395-399 cm 339-343 cm	-2119		"	>32,000	475-483 cm	UM-1651	1	
2940± 80	279-283 cm	-2113		"	32,540+680	335-427 cm	-1707		
2670±100	161-166 cm	-2115	"	"	28,940 ⁺⁵⁰⁰ -470	457-518 cm	-1717		
					26,400±240		-1946	4	۱
KANS	AS				25,050+480		-1652	1	
2395 ± 65	12 m	WIS-1030	1	116					
					23,060+625	1524-1585 cm	-1718		
MAIN			1	104	15,440±280	257-262 cm	-1650 -1715		
24.750+1560	550-570 cm	UM-1693			12,550±300	0-10 cm			

GEOLOGIC SAMPLES

* of Modern or Date	Depth	Sample No.	No.	Page	% of Modern or Date	Depth	Sample N	p. No.	Pac
	UNITED : (cont.					UNITED (cont			
NORTH	CAROLINA (cont.)				WASHING	TON (cont.)			
93301110	11.9-13.1 m	10 LOCC			4780±240		R B (0)		
9090 ⁺³⁸⁰		UM-1965	4	1129	4380±240	305-310 cm 477-480 cm	Tx-2681 -2218	4	1099 •1097
-360	241-246 m/msl	-1716	1	101	4210±110	363 cm	-2415		
7820 ± 80	-13.7m/ms1	-1943	4	1129	4120±170	411-414 cm	-2217		
7080 ± 70 5460±170	-8.8-9.1 m/msl -6.4 m/msl	-1942			3530±80 3390±100	125-135 cm 307 cm	-2637 -2414		1098 1091
4800±100	56-64 cm	-1941 -1919	1	101	3340 ± 90	245-250 cm	-2680		1095
4700 ± 80	5.2 m/ms1	-1944	4	1129	3260±100	340-344 cm	-2216		1091
4300 ± 90	188-191 cm	-1647	1	100	3050 ± 70	253 cm	-2416		
3780±140 3580±110	76 cm 91 cm	-1714	н и	101	2630±160 2570 ± 70	264-268 cm 190-195 cm	-2215 -2679		109) 109)
3190/150	287-295 cm	-1712 -1709		100	2480±130	149 cm	-2295		109
3080 ± 90	213 cm	-1648		100	2440±100	150-155 cm	-2678		109
2940±150	76 cm	-1710			2170±220	115-119 cm	-2677		"
2720±135 2710±150	10-20 cm 183-188 cm	-1711			1970±160 1480 ± 60	225-228 cm 55-60 cm	-2214 -2076		1096 1095
1520 ± 70	208-218 cm	-1713 -1649		101 100	1170±100	76 cm	-2203		109
1380/100	2.1-2.4 m/msl	-1947	4	1129					
1050/140	112-142 cm	-1708	1	100	WISCONS	IN			
VIRGIN	<u>ta</u>				12,880±125	599-603 cm	WIS-1004	4	122
	261				12,520±160 12,260±115	6 m 6 m	-1075 -1073		
,800±190 8540±100	351 cm 219 cm	UM-1706 -1705	1	102	10,620±105	541-547 cm	-1001		
82401210	104 cm	-1703		101	10,570±110	10.10-10.30 m	-1019		12.
6870:150	357 cm	-1704			10,140±105	7.95-8.10 m	-1017		
					10,080±100 9520 ± 95	514-518 cm 180-190 cm	-1000 -1023		12.
VIRGIN	ISLANDS				9060 ± 95	2.5 m	-1018		12
,370/280		UM-1733	1	99	8640±85	455-459 cm	- 999		122
7600:100		-1734	÷		8640 ± 90	6.15-6.3 m	-1015		12
5940 £ 85		-1732	••		8070±100 7810 ± 95	990-1000 cm 2.5 m	-1045 -1046		12:
3660 ± 80 2890 ± 90		-1731 -1730			6920 ± 75	395-399 cm	- 996		12
2020 ± 80		-1729			6840 / 90	1.55 m	-1041		120
1750 ± 90		-1728			6350 ± 70	4.6-4.7 m	-1048		12-
					5245 ± 65 5145 ± 65	334-338 cm 2.3 m	- 997 -1071		12:
WASHING	TON				4540 ± 70	2.2 m	-1044		
,200 ⁺³²⁰⁰ -2280		UM-1753	1	104	4410 ± 75	2.1 m	-1022		
		0.1 2100		101	41 85 ± 70	2.95-3.05 m	-1049		12/
,500		-1749		103	4105 ± 65 3215 ± 55	263-267 cm 1.55 m	- 996 -1040		12.
,600 +1730		-1750			2430 ± 65	164-169 cm	- 995		12
,210+1730 -1420		-1747			2055 ± 65	138-144 cm	- 994		
,990+1200		-1754		104	1770 ± 70	100-110 cm	-1078		12-
-1040 ,470 ⁺¹⁶⁵⁰ -1370					1760 ± 70 1615 ± 65	76-81 cm 1.45 m	-1043 -1038		12.
		-1751		103	1505 ± 65	1.45 m	-1030		
, 3 30 + 550 - 520		-1746			1370 ± 70	95-110 cm	-1081	н	12-
- 520 -910 + 690 - 630					620 ± 65	1.05 m	-1036		12
- 630		-1745			380 ± 50 245 ± 55	.140 cm 16-21 cm	-1072 - 993		12.
- 630 + 570 ,130 - 530		-1748	**		<150	10-15 cm	-1042		
,600 - 280		-1752			▲150	160 cm	-1029	"	12
,950 / 200	830-850 cm	Tx=2663	4	1098					
,500 ± 560	458-466 cm	-2690		"		05	ISR		
,300±560 ,460±320	424-466 cm 607 cm	-2689 -2226			BYELOR	USSIAN SSR			
010 ± 220	843 cm	-2233		1097					
,000±220	572-577 cm	-2685	••	1099	35,700 ⁺¹¹⁰⁰		Tln+322	L	9
,000 ± 150	840-845 cm	-2222		1097	31 850+2350		-326		••
9980±160 9880±150	660-684 cm 570-590 cm	-2662		1098	-1850 24,550±300	300 m	-327		••
9560:110	730-735 cm	-2661 -2470		1097	17,470±210	375 cm	-309		9
9440 ± 120	355-360 cm	-2688		1098	17,150±150		-329		9
9270 £ 280	710 cm	-2418		1097	10,650±160	480 cm	-325		
9130 1 320 9000 1 420	581 cm 525-530 cm	-2417 -2684		" 1099	5300 ± 80 5050 ± 70	720 cm 670 cm	-310 -308		9
8910 ± 80	563 cm	-2073		1099	5556 10	570 Cm	-500		
88401.940	326-332 cm	-2687		1098	CSSR				
3480± 260	440-456 cm	-2660		"		92-100 cm	WDT 547	l	111
8300 ± 80 8030± 150	492-497 cm 254-260 cm	-2884 -2686		1099 1098	6800±110 4240 ± 70	92-100 cm 62-70 cm	VRI-547 -546	1	111
7910 - 100	315-330 cm	-2659		1095	1610 /0	26 /0 Cm	5.0		
5930±110	468-473 cm	-2883		1099	ARKHANC	ELSK DISTRICT			
5870± 110	435-439 cm	-2881							0.1
58101 190 57901 130	415-421 cm 410-415 cm	-2882			>55,550	450 cm	T1n-335 -312	1	90 S-1
5790± 130 5750± 190	410-415 cm 350-355 cm	-2683 -2682			>54,550 >52,750	400 CH	-344		95
5250≛ 100	275-294 cm	-2658		1098	>51,600		-315	n	
5850± 240	632-635 cm 526-529 cm	-2220 -2219		1097					
4790± 230									

GEOLOGIC SAMPLES

or Date	Depth	Sample No.	No.	Page	or Date	Depth	Sample No.	No.	Page
		SSR ont.)					SSR ont.)		
ARKHAI	NGELSK DISTRICT	011017			SIBER				
51,600		T1n-350	1	96 "	8900±90	480-500 cm 300-340 cm	TA-934 -667	4	108
51.200		- 336			8610±90 8400±70	300=340 Cm	-1036B		106
46 900+2300 -1750	+550-590 cm	- 338		95	8300±70	185-195 cm	-1036A		103
46 400		-349 -314		96 95	8140±80 8000±80	580-600 cm 600-625 cm	-933 -1038		100
46,300 44 600		-314		"	7740±70	410-430 cm	-506		10
10 100 ⁺⁵²⁰⁰		- 31 3			7490±80 7260±90	400-450 cm 550-570 cm	-668 -666		10
38,600+ 900		- 324			7080±90	350-380 cm	-669		10
- 750					6680±70 6330±80	280-300 cm 200 cm	-144 -1037		10
35,300 500		~ 323			6120±80	210-220 cm	-618		10
ESTO	NIA				5810±70	320-330 cm	-752		10
				0.2	5660±80 5610±70	480-500 cm 300 cm	-911 -746		10
41,000 ⁺ 700 -2100	350 cm	Tln-328	1	92	4350170	300-310 cm	-596		10
12,050±120	360-370 cm	-687	-1	1089	4260±80 4180±70	0-10 cm 260-230 cm	-1037 -901		10 10
12,040±100 9360±80	530-540 cm 630-640 cm	-688 -704		1088 1085	3710±60	275-285 cm	-507		10
9190 ± 80	468-475 cm	- 342	1	92	3610±60	250-260 cm	-508		
9140 ± 80	620-630 cm	-703	4	1085	3580±70 3380±80	900-920 cm 415-425 cm	-902 -907		10
8990 ± 90 8730 ± 90	380-390 cm 590~600 cm	-685 -300		1089 1085	3220±60	225-235 cm	-509		10
8710 ± 80	580-590 cm	-702			3050±70	190-210 cm	-908		10
8570 ± 70 8530 ± 80	570-580 cm	-315 -679		" 1089	2870/60 2610/70	140-145 cm 265-275 cm	-743 -906		10 10
8530 ± 80 8500 ± 70	780-790 cm 530-540 cm	- 314		1085	2390±70	10-20 cm	-617		10
8490 ± 70	520-530 cm	-299			2140±80	125-135 cm	-597		10
8300 ± 90 7720 ± 70	570-580 cm 510-520 cm	-691 -294		1086 1085	1930±60 1640±70	130-150 cm 180-200 cm	-910 -905		10
7580 ± 70	280-290 cm	-294	1	91	1580±80	100-120 cm	-909		10
7350 ± 70	220-230 cm	-254			750±60	65-75 cm	-745		10
7165 ± 70 6980 ± 70	200-220 cm 550-560 cm	-253 -701	" 4	" 1085	440±80 190±50	20-40 cm 90-100 cm	-904 -510		10 10
6910±100	565-575 cm	- 346	1	92	Modern	30-50 cm	-903		10
6660 ± 90	1160-1170 cm	-650	4	1089	MIL C M	SPITSBERGEN			
6620 ± 80 6570 ± 70	155-165 cm 420-430 cm	- 340 - 298	1 4	92 1084	WE51	SPIISBERGEN			
6510 ± 70	215-225 cm	-343	1	92	41,700±1200		Tln-279	1	
6390 ± 90	340-350 cm	-282		91	33,250 ± 500 23,300 ± 500	+5-7 m	-298 -292		
6330 + 70 5800 + 90	440-450 cm 340-350 cm	TA-700 -291	4	1085 1084	10,360 ± 260	170-175 cm	-270		
5330 ± 80	370-380 cm	-690		1088	9480 ± 120	12-13 m	-275		
5330 ± 80	410-420 cm	-689			9450 ± 120 9370 ± 110	Surface	-276 -274		
4680 ± 70 4590 ± 80	270-280 cm 930-940 cm	-297 -651		1084 1089	9330 / 120		-277		
4520 ± 70	220-230 cm	-296		1084	9330 ± 70		-334		
4390 + 70	200-210 cm	-313			9300 ± 130 9250 ± 300		-273 -321		
4260 ± 70 4080 ± 60	180-190 cm 90-100 cm	-295 -686		1089	9220 140	Surface	-278		
3920 ± 50	120-130 cm	-312		1084	9150 ± 110	1-1.5 m	-272		
3830 ± 70	360-370 cm	-699		1085	8700 ± 90 8670 ± 60	Surface	-271 -362		
3610 ± 70 3480 ± 60	175-185 cm 190-200 cm	Tln-348 -281	1	91	8260 ± 80	90-100 cm	-269		
3340 ± 60	165-173 cm	-347			7965 ± 80	5-15 cm	-268		
3210 ± 70	570-580 cm	TA-678	4	1089	6900 ± 100 6590 ± 100	+ 80 m	-320 -319		
3190 ± 60 2940 ± 60	125-135 cm 60-70 cm	Tln-345 TA-293	1 4	92 1084	5350 ± 80	+ 6 m	-280		
2680 / 80	450-460 cm	-677		1089	2990 ± 50	Surface	-353 -352		
2470 ± 60	60-70 cm	-292		1084	2080 ± 50 1010 ± 60	+ 3.1 m	-352		
2370 ± 70 2170 ± 70	270-280 cm 10-20 cm	-697 -290		$1085 \\ 1084$	830 ± 50	Surface	-295		
1540 ± 80	500-510 cm	-652	"	1089	620 ± 60 150 ± 70		-266 -299		
1330 / 60	170-180 cm 70-80 cm	-684			130 1 70	VENE	ZUELA		
860 ± 60 240 ± 60	190-200 cm	-683 -690		1085	4500/80		Tx-2326	4	10
					4480150		-2275		10
MURM	ERISK DISTRICT				3620/90 3430/70		-2327 -2329		10
3,000	800-1000 cm	Tln-305	1	94	3380150		-2328		
8130265	150-165 cm	-333		"	3260±50		-2181		
7410195 74001100	70 cm 300 cm	-260 -306		93 94	2840180 1860±60		-2280 -2282		
7300±60	135-145 cm	- 332			1500150		-2283		
72 00±200	400 cm	-307			1310±60		-2332		10
7100±60 6670±80	150-160 cm	-331 -267		93	1170±80 1040±60		-2274 -2278		10
6670±80 5470±70		- 339		93	1020±60		-2276		10
4665±90	170-180 cm	-256		93	990±50		-2330		10
4285±115 3455±65	160-170 cm	-255 -259			970±70 620±70		-2277 -2331		
3455±65 3180±100	300 cm	-293		94	310±100		-2325	••	
	35 cm	- 30.2			Modern		-2279		

OCEANOGRAPHIC SAMPLES

Date	Depth	Sample No.	No.	Page	Date	Depth	Sample No.	No.	Page
	ARABI	AN OCEAN					TIC OCEAN		
9435/145		BS-109	1	59	15,130 ± 160	26-28 cm	ont.) UM-1855	4	1128
8395±145 8380±140		-107			14,130 140	7-10 cm	-1911		
8300±135		-110 -111			14,000±1000 13,740±130	190-210 cm	LJ-4175		104.
7845±130		-108				20-25 cm	UM-1909		1124
74701135		-112			13,700+690	1-4 cm	-1778	н	1120
	ATLANTI	C OCEAN			13,450 ± 140 13,040 ± 190	20-25 cm 20-25 cm	-1777 -1759		"
31,400+1650	55 cm	QC-249	-4	1077	12,645 ± 160	20-25 cm	-1765		112
-1450					12,590 ^t 120 12,500 ^t 180	24-26 cm 34-36 cm	-1854		112
29,500+1900 -1600	50 cm	-248		11	12,070 ± 150	34-36 cm 20-25 cm	LJ-4521 UM-1906		104: 112
^{27,200+1300} -1200	40 cm	-247			11,820 120	22-24 cm	-1853		112
8,300 660	46.8 cm	-317			11,800 ± 120	20-25 cm	-1768		1126
0,850 280	25 cm	-246		"	11,650 ^t 150 11,580 ^t 150	20-25 cm	-1900		112
	GEOSECS	ML&QL AMAS	1	1-24	11,580 - 150	20-25 cm 20-25 cm	-1771 -1774		1120
	DAD	AMAS			10,700 ± 600	5-7 cm	LJ-4223		104:
5,800±2200	99-101 cm	TX-2999	-1	1090	10,690 ± 150	20-25 cm	UM-1762		112
0,600±2400	59-61 cm	-3004	ч	1091	9895 ± 120	20-25 cm	-1903		112
6,250 1 680	140 cm	-3030		1092	9410 ± 90	1-5 cm	-1910		112
6,500±1000 2,670 ± 290	79-81 cm	-2998		1090	9250 ± 110 8930 ± 110	20-22 cm 20-25 cm	-1852		112
2,670 ± 290 1,260 ± 490	110 cm 88 cm	-3028 -3031		1092	7800 ± 160	20-25 cm 18-20 cm	-1897 -1851		112
0,880 ± 490	140 cm	-3032			7880 ± 100	16-18 cm	-1851		112
7,210 ± 310	88 cm	-3029			7530 ± 220	1-4 cm	-1757		112
3,880 ± 150	80 cm	-3034			7330 ± 90	14-16 cm	-1849		112
2,260 <u>+</u> 160	59-61 cm	- 3003		1091	7210 ± 90	7-10 cm	-1893		112
9970 ± 90	200 m	- 3035		1092	6820 ± 100	12-14 cm	-1848		112
8380 ± 110 8230 ± 260	295 m	- 3033		"	6810 ± 420 6810 ± 70	7-10 cm 18-20 cm	UM-1758 LJ-4520		112 104
6940 ± 80	424-427 cm 420-422 cm	-3231 -3233		1093	6800 ± 100	10-12 cm	-1847		104
6550 ± 90	59-61 cm	- 300 3		1091	6580 ± 280	1-4 cm	-1763		112
6510 ± 90	376-378 cm	-3234	н	1093	6500 ± 100	1-5 cm	-1892		112
5840 ± 80	489-493 cm	-3229		н	6340 ± 180	7-10 cm	-1776		112
4650 ± 70	405 m	-3027		1092	6320 ± 170 6030 ± 210	1-4 cm 7-10 cm	-1760		112
4410 ± 100 4120 ± 100	415-417 cm 245-247 cm	-3230		1093	5960 ± 190	7-10 cm 7-10 cm	-1767 -1764		112 112
4010 ± 60	39-41 cm	-3232 -2997		 1090	5950 ± 170	7-10 cm	-1761		110
3920 ± 90	310-313 cm	-3236		1093	5920 ± 100	7-10 cm	-1908		112
3870 ± 60	88 cm	- 3005		1091	5870 ± 90	7-10 cm	-1899		112
3860 <u>†</u> 60	19-21 cm	-3002			5780 ± 150	1-4 cm	-1766		112
3800 ± 100	410-413 cm	- 3235		1093	5680 ± 150 5620 ± 130	20-25 cm	-1775		
2610 ± 60 2040 ± 140	18.5-21.5 cm	-3000		1090	5570 ± 90	7-10 cm 7-10 cm	-1770 -1905		112
1970 ± 60	200-202 cm 6-8 cm	-3240 -3001		1093	5520 ± 220 ·	1-4 cm	-1772	**	112
1940 ± 70	210-213 cm	- 3242		1091 1093	5460 ± 110	7-10 cm	-1773		
1790 <u>+</u> 60	45-50 cm	- 3006		1091	5210 ± 100	8-10 cm	-1846		1128
1640 ± 50	110-113 cm	-3238		1093	5040 ± 80	7-10 cm	-1902		112
1190 ± 80	69-73 cm	-3237		"	4850 ± 100 4710 ± 110	1-4 cm 4-6 cm	-1769		112
1110 ± 70. 1060 ± 50	100-102 cm	-3241			4680 ± 90	4-6 cm 1-5 cm	-1844 -1898		112 112
80 ± 40	10-13 cm	-3239 -3008		1091	4400 ± 100	2-4 cm	-1843	0	112
Ultra Modern		-3009		1051	4400 ± 80	6-8 cm	-1845		
					4380 ± 110	7-10 cm	-1896		112
	MEDITERR	ANEAN SEA			4340 ± 70 4250 ± 100	1-5 cm	-1901		
7604200	276 200	100.000			4200 ± 100	1-5 cm 3-5 cm	-1907 LJ-4519		112 104
,760±300 ,600±200	275-290 cm 150-165 cm	UM-1825 -1801	4	1116	4090 ± 70	0-2 cm	UM-1892		112
,500:200	5 cm	-1801			4020 ± 80	1-5 cm	-1904		112
7390±110	92-107 cm	-1824			3980 <u>†</u> 70	0-3 cm	LJ-4518	"	104
6110/100	3-10 cm	-1815			3700 ± 80	1-5 cm	UM-1895		112
					+45 ± 12%0 +37 ± 8%0	3800 m 3800 m	LJ-4737 -4339		104
10500	PACIFIC	UCEAN			+27 ± 7%0	3800 m	-4338		
,900 ⁺²⁵⁰⁰ -1900	20-25 cm	UM-1780	4	1126		GEOSECS	ML&QL	1	25-8
,630 ± 350	20-25 cm	-1912		· 1128					
,290 ± 240	38-40 cm	-1861							
8,700 8,700 ± 310	19-21 cm	LJ-4301		1042					
3,700 ÷ 310 1,890 ± 430	36-38 cm · 34-36 cm	UM-1860 -1859		1128					
, 330 ± 220	32-34 cm	-1859							
,300±2200	11-13 cm	LJ-4222		1042					
,180 ± 210	20-25 cm	UM-1894		1127					
3,500/1900	7-9 cm	LJ-4221		1042					
	7-9 cm 7-10 cm 30-32 cm	LJ-4221 UM-1779 -1857	"	1042 1126 1128					

Proceedings of the International Radiocarbon	Conference
Bern/Heidelberg, 19-26 A published by Radiocarbo	-
Please send copy(ies) of the Proceedings (Radiocarbon, Volume 22, Nos. 2 & 3, 1980) @ \$60.0	, Bern and Heidelberg
My check is enclosed in the amount of forcopies	\$
Name	

Half life of ¹⁴C. In accordance with the decision of the Fifth Radiocarbon Dating Conference, Cambridge, 1962, all dates published in this volume (as in previous volumes) are based on the Libby value, 5570 ± 30 yr, for the half life. This decision was reaffirmed at the 9th International Conference on Radiocarbon Dating, Los Angeles/La Jolla, 1976. Because of various uncertainties, when ¹⁴C measurements are expressed as dates in years BP the accuracy of the dates is limited, and refinements that take some but not all uncertainties into account may be misleading. The mean of three recent determinations of the half life, 5730 ± 40 yr, (Nature, v 195, no. 4845, p 984, 1962), is regarded as the best value presently available. Published dates in years BP, can be converted to this basis by multiplying them by 1.03.

AD/BĆ Dates. In accordance with the decision of the Ninth International Radiocarbon Conference, Los Angeles and San Diego, 1976, the designation of AD/BC, obtained by subtracting AD 1950 from conventional BP determinations is discontinued in Radiocarbon. Authors or submitters may include calendar estimates as a comment, and report these estimates as AD/BC, citing the specific calibration curve used to obtain the estimate. Meaning of δ^{14} C. In Volume 3, 1961, we endorsed the notation Δ (Lamont VIII, 1961) for geochemical measurements of ¹⁴C activity, corrected for isotopic fractionation in samples and in the NBS oxalic-acid standard. The value of δ^{14} C that entered the calculation of Δ was defined by reference to Lamont VI, 1959, and was corrected for age. This fact has been lost sight of, by editors as well as by authors, and recent papers have used δ^{14} C as the observed deviation from the standard. At the New Zealand Radiocarbon Dating Conference it was recommended to use δ^{14} C only for age-corrected samples. Without an age correction, the value should then be reported as percent of modern relative to 0.95 NBS oxalic acid. (Proceedings 8th Conference on Radiocarbon Dating, Wellington, New Zealand, 1972). The Ninth International Radiocarbon Conference, Los Angeles and San Diego, 1976, recommended that the reference standard, 0.95 times NBS oxalic acid activity, be normalized to $\delta^{18}C = -19\%$.

In several fields, however, age corrections are not possible. δ^{14} C and Δ , uncorrected for age, have been used extensively in oceanography, and are an integral part of models and theories. For the present, therefore, we continue the editorial policy of using Δ notations for samples not corrected for age.

Citations. A number of radiocarbon dates appear in publications without laboratory citation or reference to published date lists. We ask that laboratories remind submitters and users of radiocarbon dates to include proper citation (laboratory number and date-list citation) in all publications in which radiocarbon dates appear.

Radiocarbon Measurements: Comprehensive Index, 1950 1965. This index, covering all published ¹⁴C measurements through Volume 7 of RADIOCARBON, and incorporating revisions made by all laboratorics is available to all subscribers to RADIOCARBON at \$10.00 US per copy.

Publication schedule. Beginning with Volume 15, RADIOCARBON has been published in three issues: Winter, Spring, and Summer. Contributors who meet our deadlines will be given priority but publication is not guaranteed in the following issue.

List of laboratories. The comprehensive list of laboratories at the end of each volume now appears in the third number of each volume. For Volume 22, the list of laboratories will appear at the end of No. 4.

Index. All dates appear in index form at the end of the third number of each volume. Starting with Volume 22, RADIOCARBON is publishing a new type of index which will be organized in chronologic order, according to sample type, and by geographic distribution. The editors of RADIOCARBON believe that this practice will serve a more useful function. Our readers are encouraged to make further suggestions. D

CONTENTS

Archaeology and radiocarbon dating Willard F Libby	1017
Age reporting of very old samples Adam Walanus and M F Pazdur	1021
DATE LISTS	
P Q Dresser Dublin Radiocarbon Dates III Marlucia Santiago, J R Torquato, and Heinz St Rade	1028

FZ	Marlucia Santiago, J K Torquato, and Heinz St Kade Fortaleza Radiocarbon Measurements I	1031
LJ	T W Linick La Jolla Natural Radiocarbon Measurements IX	1034
Lu	Sören Håkansson University of Lund Radiocarbon Dates XIII	1045
Ny	René Coppens, Bernhard Guillet, Robert Jaegy, and Pierre Richard Nancy Natural Radiocarbon Measurements VI	1064
QC	Richard Pardi and E R Newman Queens College Radiocarbon Measurements III	1073
TA	Evald Ilves Tartu Radiocarbon Dates X	1084
Тх	S Valastro, Jr, E Mott Davis, Alejandra G Varela, and Carolyn Ekland-Olson University of Texas at Austin Radiocarbon Dates XIV	109 0
UM	R A Johnson and J J Stipp University of Miami Radiocarbon Dates XVIII	1116
UM	R A Johnson and J J Stipp University of Miami Radiocarbon Dates XIX	1125
	List of Laboratories	1 130
	Index to Volume 22	1141