
[RADIOCARBON, VOL. 37, No. 3, 1995, P. 845,849] 

Radiocarbon 
1995 

IMPROVED RADIOCARBON AGE ESTIMATION USING THE BOOTSTRAP 

AMIR D. ACZEL 

Department of Mathematical Sciences, Bentley College, Waltham, Massachusetts 02154 USA 

ABSTRACT. This paper proposes the use of the statistical bootstrap technique as an aid in combining radiocarbon date esti- mates. The rationale for the use of the bootstrap is the theoretical result that, even if individual date estimates are normally dis- tributed, their combination by the usual formula results in a random quantity that is not normal but rather a mixture of distributions. The bootstrap is a non-parametric, computer-intensive technique. This technique can better estimate the actual distribution of the combined age, leading to more precise confidence intervals. While the bootstrap cannot solve the multiple- intercepts problem in calibration, it can nonetheless lead to better estimates. The benefits of using the bootstrap are especially noticeable when sample sizes are small (as is the case in other applications of this technique). 

INTRODUCTION 

The current approach to the combination of radiocarbon age estimates is described in Ward and Wil- 
son (1978). The "Case P" situation discussed in that article involves separate estimates of the age of 
the same item. This provides the authors with the justification justification for suggesting that (once achi-square 
criterion is satisfied) estimates and their standard errors be combined into a single age estimate. 

The methodology assumes n age estimates and standard errors, A; ± E; (i =1, ... , n), which are com- 
bined as follows: 

Ap = (1) 

V(A) = (1/E2)-1 (2) 

where Ap is the pooled age estimate and V(A) is its variance. 

Even if all the separate A; are exactly normally distributed, the statistic A is not. The reason for this 
is that the standard errors, E;, are themselves random variables. The in Equation (1) ' quantity Ap is 
distributed as a mixture. Therefore, using a normal distribution in setting confidence limits for the 14C age as suggested by Ward and Wilson (1978) is inaccurate. The statistic in (1) does, however, 
enjoy y desirable properties of estimators. It is derived as a combination of estimates that is optimal in 
some sense-it is the result of solving a particular integral equation. This makes the solution, A, an 
M-estimate (see Serfling 1980: 243). p 

Arcones and Gine (1992) showed that the distribution of M-estimates may be estimated well by the 
bootstrap method (Efron 1979. They proved the convergence of the bootstrap distribution of an M- 
estimate to the actual, unknown distribution of the statistic. The bootstrap does not require the 
assumption of normality, or any other parametric assumption, and can be estimated with high accu- 
racy using a computer. This provides an excellent alternative method for combining 14C age esti- 
mates. I form the combination of age estimates from various sources as indicated by Equations (1) 
and (2). Then, instead of assuming a normal distribution for Ap, I bootstrap the statistic. As I show 
here, the results can be promising. I describe the bootstrap method below and apply it to 14C datin 
in two well-known cases, showing that the bootstrap-derived confi 

g 
g dente intervals are narrower than 

the ones obtained by incorrectly assuming a normal distribution. 
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THE BOOTSTRAP METHOD 

The bootstrap (Efron 1979), makes use of the tremendous advances in computing power that have 

taken place in recent years. The idea is to resample a large number of times from our limited data, 

each time recomputing the value of the statistic of interest. Then a histogram may be plotted, which 

allows one to actually "see" a close estimate of the sampling distribution of the statistic. The proce- 

dure is non-parametric, and its validity does not rely on special assumptions such as normality. The 

bootstrap-estimated distribution can then be used in constructing confidence intervals for the esti- 

mated parameter, or in other statistical inference. Since its inception, the popularity of the bootstrap 

has been increasing dramatically (Kempthorne et al. (1991) counted over 360 bootstrap-related arti- 

cles in the statistical literature in the last few years). Reports of surprising results on the method's 

accuracy and versatility have been published (Bickel and Freedman 1981; Singh 1981; Efron 1982; 

Efron and Tibshirani 1986; Hall 1988). The bootstrap is a relatively new technique and questions 

have been raised about its use. Many of these questions, however, have been answered in a positive 

way as new theory becomes available confirming the method's usefulness. An excellent reference to 

bootstrap applications and theory is the book by Efron and Tibshirani (1993). Issues of bootstrap 

theory are addressed in the book by Hall (1992). 

Given a set of n data points, x1, x2, ... , xn, one first forms the empirical distribution of these data. 

The only assumption one needs is that the data are independently and randomly chosen from some 

population with an unknown distribution F(x). One attempts to estimate this common population 

distribution by the empirical distribution of the data, P(x). The empirical distribution is defined as 

that probability distribution that assigns a probability of 1/n to each one of the n data points. It can 

be shown that P(x) is the maximum likelihood estimate of the actual, unknown population distribu- 

tion F x . In this sense, P(x) is the best estimate of F(x) and sampling from the distribution P(x) 

should closely resemble sampling from F(x). Sampling from P(x) means resampling, with replace- 

ment, from our data set x1, x2, ... , xn. 

The resampling is done many times, B. Typically, B is from 200 to 1000, even more. Each time I res- 

ample from the original sample of n observations, I select a random sample of size n with replace- 

ment. If n = 4 and our original observations are 8, 5, 13, 9, a bootstrap sample may consist of 8, 13, 

9, 9, or 8, 5, 5, 13, or a similar set of four numbers randomly chosen with replacement from the orig- 

inal data. A bootstrap sample is indicated by *. Given a statistic of interest, T, one computes the 

value of the statistic from each of the B bootstrap samples. This leads to the bootstrap distribution 

of the statistic, the distribution of T*. 

The cumulative bootstrap distribution of a statistic, T, is: 

G(t) = P (T* s t) = #(bootstraps s t) / B. (3) 

The bootstrap distribution of T can be shown to be an excellent estimate of the actual sampling dis- 

tribution of the statistic. The bootstrap distribution may be used in inference. If T is an estimator of 

a population parameter, 0, then a (1-2a)100% confidence interval for 0 can be obtained using the 

percentile method (Efron 1982). This is done following the usual non-parametric procedure for set- 

ting confidence intervals by cutting off an accumulated probability a at each end of the distribution. 

Using the cumulative bootstrap distribution defined in Equation (3), a (1-2a)100% confidence 

interval for 0 is 

[G-1(a), G-1(1-a)] . (4) 
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The results of Arcones and Gine (1992) on V/n-consistency of the bootstrap for M-estimates allows 
for using the bootstrap in estimating the distribution of the combined 14C age statistic, A. In form- 
ing combined statistic, g as given in Equation (1), one must use pairs of estimates: (A;, E;). The n 
pairs are resampled B =1000 times, each time computing the value of A from the n new pairs. This 
provides 1000 values of the combined statistic. I then produce a histogram of these values obtaining 
the bootstrap distribution of A*. Finally, I use Equation (4) to compute confidence intervals for the 14C age. 

The accuracy of bootstrap computations can be improved. Efron (1982) offers a step in this direction 
by introducing the idea of bias correction. Efron (1987) offered an even finer advance in which he 
discusses confidence intervals that account for "acceleration". Another area of extension of the 
bootstrap approach may be a Bayesian bootstrap, where age estimates are resampled with probabil- 
ity inversely proportional to their standard deviations and computed with a simple (rather than 
weighted) average of these estimates. 

DATING THE THERA ERUPTION 

14C dating the eruption of the Thera volcano in the Aegean has received much attention recently. At 
the heart of the debate is the apparent disagreement of 14C results with the accepted Late Minoan 
chronology, which places the eruption about a century earlier than the 14C dates (Aitken 1988). 
Michael and Betan court (1988:172) present a table of nine calibrated 14C dates. The dates, in years 
BC, are 1521, 1606, 1628, 1615, 1622, 1681, 1615, 1642 and 1642. The standard errors reported in 
the table are very uniform, at ca. 50 yr each. 

I use these data in constructing the statistic Ap and carrying out a bootstrap estimation of its sam- 
pling distribution. Note that the bootstrap replaces both the normal distribution and the estimated 
variance as given in Equation (2). Because in this case the standard errors are roughly equal, we may 
ignore them in bootstrapping the statistic in Equation (1). Using the standard errors as weights or not 
using them leads to the same results. The distribution of 1000 bootstrap replicates of the statistic is 
shown in Figure 1. The resulting 95% confidence interval for the actual date of the eruption using 
the percentile method is only slightly wider than the one-sigma (1-a) interval reported in Michael 
and Betancourt (1988); a 2-a interval (required for 95% under the normal assumption) would be 
much wider than the result obtained by the bootstrap. Note the skewness of the bootstrap distribu- 
tion, which provides another argument against using the normal (or any symmetric) distribution in 
this case. 

DATING THE SHROUD OF TURIN 

Damon et al. (1989) reported the results of 14C dating of the Shroud of Turin. Samples of the Shroud, 
along with three control samples, were analyzed by the laboratories of Arizona, Oxford and Zurich. 
I treat the Sample 1(Shroud) results reported by the three laboratories equally. This gives the fol- 
lowing 12 pairs of observations (mean age BP, standard error), from Table 1 of Damon et al. (1989): 
(591,30), (690,35), (606,41), (701,33), (795,65), (730,45), (745,55), (733,61), (722,56), (635,57), 
(639,45), (679,5 1). These data were transformed using the Pearson and Stuiver (1986) curve, the 
error in the calibration curve incorporated in the standard errors. Wherever multiple intercepts 
occurred in the calibration curve, the earliest date was chosen (thus giving the null hypothesis of 
authenticity the "benefit of the doubt"). I recognize, of course, that the bootstrap cannot solve the 
serious difficulties caused by multiple intercepts in the calibration curve. 
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Fig. 1. Thera eruption date bootstrap distribution 
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The transformed data pairs were bootstrapped 2000 times (for improved precision) using the method 
described above. Figure 2 shows the resulting bootstrap distribution histogram. Each column in the 
histogram represents a single year. A 95% confidence interval for the date of the Shroud can be read 
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Fig. 2. Turin Shroud date bootstrap distribution 
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from the histogram as AD 1283-AD 1295. The interval is much narrower than that reported by 
Damon et al. (1989: Table 3) of AD 1262-1312,1353-1384. Although the right endpoint may be 
closer to the center due to ignoring multiple intercepts to the right, the much more important left 
endpoint of the confidence interval is also tighter-by >20 yr. From the histogram, one can also 
observe a zero empirical (bootstrap) probability that the Shroud was created earlier than AD 1280. 

CONCLUSION 

The bootstrap offers many advantages as an alternative method for combining 14C dates. T\vo exam- 
ples were given in this article; hopefully other researchers will try the method and provide further 
evidence. For the calculations, a simple computer will suffice, even a hand-held programmable cal- 
culator may perform the required computations; thus, some quick estimates could be performed in 
the field. The code required by the bootstrap is minimal (<50 commands were necessary to perform 
the analyses discussed here). 
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