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ABSTRACT. This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed)
bogs produced using the 14C bomb peak, 210Pb, 137Cs, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the
results of the different dating methods agree well. In 5 cores, there is a clear discrepancy between the 14C bomb peak and 210Pb
age estimates. In the upper layers of the profiles, the age estimates of 14C and 210Pb are in agreement. However, with increas-
ing depth, the difference between the age estimates appears to become progressively greater. The evidence from the sites fea-
tured in the study suggests that, provided aboveground plant material (seeds, leaves) is selected for dating, the 14C bomb peak
is a reliable dating method, and is not significantly affected by the incorporation of old carbon with low 14C content originat-
ing from sources including air pollution deposition or methane produced by peat decomposition. 210Pb age estimates that are
too old may be explained by the enrichment of 210Pb activity in the surface layers of peat resulting from a hypothesized mech-
anism where rapidly infilling hollows, rich in binding sites, may scavenge 210Pb associated with dissolved organic matter
passing through the hollow, as part of the surface drainage network. Until further research identifies and resolves the cause
of the inaccuracy in 210Pb dating, age estimates of peat samples based only on 210Pb should be used with caution.

INTRODUCTION

The increased human impact on the environment and climate during the last few centuries has given
added importance to the reconstruction of environmental change during this period. In addition, the
overlap between the environmental monitoring programs of the last 50–100 yr and paleoenviron-
mental data provides the opportunity to calibrate paleoenvironmental records (Charman and Garnett
2005). The high-precision dating of recent peat deposits has consequently found use in a number of
applications, such as linking short-term (<50 yr) ecological monitoring programs with longer-term
paleoecological records of 100–200 yr duration for nature conservation (Birks 1996); validating and
calibrating peat-based paleoclimate records with instrumental data (e.g. Charman et al. 2004);
reconstructions of high-resolution time series of pollutants such as Hg and Pb to evaluate the effect
of emission controls and calibrate atmospheric transport models (Shotyk et al. 2003); and investigat-
ing long-term process of carbon sequestration in peatlands (e.g. Oldfield et al. 1995; Mauquoy et al.
2002).

Holocene peats are most often dated using radiocarbon dating (see Piotrowska et al. 2011). Often,
this is the only dating technique applied on a peat profile. Conventionally, 14C dating of near-surface
horizons was avoided, for fear of obtaining dates indistinguishable from “modern,” and so the ages
of these horizons might be estimated by extrapolating to the surface a deposition rate derived from
14C dating of lower peat layers. However, this does not take into account possible changes in peat
accumulation rates related to the likely lack of auto-compaction near the surface or, in drained bogs,
the countervailing effect of peat shrinkage. Improved dating methods are therefore desirable to
improve the accuracy and precision of age estimates of recent peat.
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A number of techniques are available for dating recent peat deposits (see Turetsky et al. 2004 for a
review), with each method having advantages and limitations. This paper describes the recent chro-
nology of 10 northern European ombrotrophic peat bogs as part of the EU project ACCROTELM
(http://www2.glos.ac.uk/accrotelm/) and the Dutch NWO-ALW program “Climate Change and the
Long-Term Dynamics of Bog Ecosystems.” The upper layers of peat at each site have been dated
using the 14C “bomb peak,” 210Pb, and in some cases, stratigraphic markers such as 137Cs, spheroidal
carbonaceous particles (SCPs), and pollen. This study compares the results of these methods.

DATING TECHNIQUES

Bomb 14C Dating

A relatively new method for dating near-surface horizons makes use of the “spike” in 14C concen-
tration related to nuclear weapons testing: so-called bomb 14C dating. Nuclear weapons testing dur-
ing the 1950s and early 1960s approximately doubled the amount of 14C in the atmosphere (e.g.
Wild et al. 1998). After the Limited Nuclear Test Ban Treaty of 1963, the 14C concentration of the
atmosphere began to decline owing to the exchange of carbon with the ocean and biosphere, and by
dilution of atmospheric 14CO2 with the burning of 14C-free fossil fuels. The biosphere is generally
in equilibrium with the atmosphere, and some of this atmospheric 14CO2 would have been fixed by
terrestrial plants during photosynthesis. The remains of these plants in peat profiles will therefore
provide a record of past atmospheric 14C concentration. The large temporal changes in atmospheric
14C concentrations enable the calibration of 14C concentrations in peat deposits against a timescale,
and based on direct measurements of atmospheric 14CO2 and plant specimens (tree rings and seeds)
of known age, there are now several databases of atmospheric 14C concentrations that allow this
(e.g. Levin and Kromer 1997). Nevertheless, relatively few studies have used the 14C bomb peak
technique to date peats (e.g. Goodsite et al. 2001; Donders et al. 2004; Garnett and Stevenson 2004;
Goslar et al. 2005; Sjögren et al. 2006; van der Linden and van Geel 2006; Hua 2009; Piotrowska et
al. 2010).

Goslar et al. (2005) observed that any depth increment will likely correspond to more than a single
year of peat growth, with an incorporation of 14C activities in the Sphagnum within that increment.
This was suggested to lead to a situation where specific dated levels contain a mixture of 14C assim-
ilated over a number of years (integration). An additional source of integration may be CO2 or CH4

produced by the decomposition of older plant tissue (Jungner et al. 1995); and Raghoebarsing et al.
(2005) showed experimentally that 5–20% of the carbon fixed by Sphagnum cuspidatum is the prod-
uct of symbiotic bacteria oxidizing methane originally derived from decomposing peat. However,
this may not affect 14C content significantly in all situations, as Nilsson et al. (2001) found that 14C
measurements of living Sphagnum from a variety of mire habitats did not differ from atmospheric
levels. Contamination of vegetation by soot particles has also been suggested by Garnett and Steven-
son (2004) to dilute the 14C signal in recently accumulated peat, and was shown earlier by Chambers
et al. (1979) to yield dates on the fine particulate fraction of peat from South Wales that were thou-
sands of years older than the humic acid fraction. Sphagnum is particularly effective at trapping soot
particles (Punning and Alliksaar 1997), and soot is derived from fossil fuel without any 14C.

210Pb Dating

210Pb is a naturally occurring isotope of Pb with a half-life of 22.26 yr. The half-life makes it suitable
for dating material deposited during the last 150 yr. 210Pb is produced by the decay of 238U into radon
gas (222Rn). 210Pb can accumulate in lacustrine sediments and terrestrial soils. The constant rate of
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supply (CRS) method has been found to be more applicable for peat deposits, owing to the condi-
tions of organic decay in the aerobic acrotelm (e.g. Appleby et al. 1997).

Laboratory experiments by Vile et al. (1999) showed that Pb (and therefore 210Pb) is immobilized in
the peat column by physiochemical binding to organic matter. There is also evidence to suggest that
210Pb-derived dates from ombrotrophic unsaturated peat deposits may be reliable where 210Pb-
derived age-depth profiles have been validated by independent evidence such as pollution records,
pollen analysis, and other radioisotopes including 241Am (e.g. Appleby et al. 1997; Mackenzie et al.
1998). However, some controversy surrounds the reliability of 210Pb-derived dates from ombro-
trophic peat deposits, and there are several studies demonstrating that 210Pb age estimates are too
young (e.g. Oldfield et al. 1979; Urban et al. 1990). Damman (1978) showed that Pb profiles in
hummocks and hollows corresponded to the position of the water table on the day of sampling.
Damman suggested that Pb was immobilized as PbS in waterlogged conditions, and oxidized to sol-
uble PbSO4 when the water table lowered, enabling mobility. Following this, Clymo and Hayward
(1982) suggested that the vertical distribution of Pb (and other heavy metals) is significantly influ-
enced by changes in redox potential resulting from variations in the water table.

137Cs Dating

137Cs is an artificial radionuclide produced by nuclear weapons testing and nuclear power plants
(Ritchie et al. 1973). 137Cs chronologies are based on known concentration peaks; atmospheric con-
centrations have been monitored from 1954 onwards (Appleby et al. 1991), the main example being
the 1963 bomb peak. The vertical mobility of 137Cs in ombrotrophic peat deposits of very low min-
eral content has been demonstrated in a number of studies (e.g. Mitchell et al. 1992; Mackenzie et
al. 1997). 137Cs can have both downwards and upwards mobility in the peat column (Schell et al.
1989). Upwards transport occurs as a result of biological activity in the root zone, and saturated and
unsaturated conditions at different times of year (Aaby and Jacobsen 1978).

Spheroidal Carbonaceous Particles and Pollen Stratigraphic Markers

The high-temperature combustion of fossil fuels gives rise to several types of emissions including
fine particulate matter, sometimes called fly ash (Rose et al. 1994). These particulates are widely
dispersed and deposition usually occurs 5–100 km from the source (Rose and Juggins 1994). Soot
particles can be divided into 2 types: 1) spheroidal carbonaceous particles (SCP) with 1–50 m
diameter have a high content of elemental carbon, and their presence in the environment is entirely
due to anthropogenic emissions, particularly from oil combustion (Rose 1990a); 2) inorganic ash
spheres (IAS) are mainly produced by coal burning, in addition to natural processes such as volcanic
eruptions and meteorite impacts (Rose 1990b, 1996), and the small size (<20 m diameter) enables
long-distance transport in the atmosphere. Techniques such as energy dispersive X-ray analysis
(Alliksaar et al. 1998) or the use of different chemical extraction techniques (Rose 1990a,b) can be
used to distinguish types of soot particles, and so provide more information for dating. In this study,
the different types of soot particles have not been distinguished. If historical records of fossil fuel
combustion are available, soot particles can provide a useful stratigraphic marker. However, long-
distance transport may complicate the interpretation of the soot particles, as suggested by observa-
tions of soot in the Arctic (Rosen et al. 1981).

If historical records of land use are available, then pollen can serve as a useful stratigraphic marker.
Problems with the method can arise from postdepositional mobility in the surface layers of peat,
which has been demonstrated in the uncompacted surface layers of Sphagnum peat (Rowley and
Rowley 1956; Clymo and Mackay 1987). In this study, increases of Pinus and Picea pollen during
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the 19th and 20th centuries around the northern England (GB) and Danish (DK) sites have been
dated using local evidence of land use.

METHODS

The 10 European peat bogs sampled were Butterburn Flow (GB); Lille Vildmose (DK); Männi-
kjärve Bog (ES); Kontolanrahka (FI); Ballyduff Bog (IR); Pedrido Bog (SP); Lappmyran (LPM);
Åkerlänna Römosse (ARM); Saxnäs Mosse (SNM); and Fischbruch (FBR). Their locations are
shown in Figure 1. The mid–late Holocene 14C chronologies of the ACCROTELM sites GB, DK,
ES, and FI have been described in an earlier article (Yeloff et al. 2006). Cores were taken during
2003 from lawns at the deepest “ombrotrophic” zone of each bog, close to the highest point of the
mire. Where available, a Wardenaar corer (Wardenaar 1987) was used to remove the top 1 m of peat.
Otherwise, large diameter (>7 cm) Russian corers were used for sampling. In the laboratory, peat
samples were taken at 1-cm depth intervals. The vegetation composition of the peat profiles is
reported elsewhere (van der Linden and van Geel 2006; Sillasoo 2007; Mauquoy et al. 2008; van der
Linden et al. 2008).

Selected aboveground plant remains, mainly seeds and Sphagnum stems and branches, were care-
fully cleaned manually under a stereomicroscope by removing fungal hyphae and other contamina-
tion, and pretreated by the AAA method (Mook and Streurman 1983) in order to remove humic
acids and recently introduced CO2 (CO2 can be potentially absorbed by the sample from the sur-

Figure 1 The ombrotrophic peat bogs featured in the study: (GB) Butter-
burn Flow; (DK) Lille Vildmose; (ES) Männikjärve Bog; (FI) Kontolan-
rahka; (IR) Ballyduff Bog; (SP) Pedrido; (LPM) Lappmyran; (ARM)
Åkerlänna Römosse; (SNM) Saxnäs Mosse; (FBR) Fischbruch.
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rounding air). They were then placed in a petri dish containing some clean (Milli-Q™) water,
checked again under the microscope for contamination, and placed in preweighed tin capsules. After
drying at 80 C for 72 hr, the tin capsules containing the samples were weighed again, closed, and
processed further at the Groningen Radiocarbon Laboratory. The tin capsules containing the dried
samples were combusted into CO2 and purified using an elemental analyzer (EA) connected to an
isotope ratio mass spectrometer (Aerts-Bijma et al. 2001). The EA/MS also enabled the monitoring
of quality parameters such as organic carbon content and the 13C value of the sample. The CO2 was
then collected cryogenically for graphitization. The graphite powder was pressed into targets that
were placed in the sample carousel of the Groningen accelerator mass spectrometer (AMS) ion
source. The AMS system measures the isotopic ratios 14C/12C and 13C/12C of the graphite (van der
Plicht et al. 2000). From these measured isotopic ratios, the 14C activities were calculated (including
a correction for isotopic fractionation).

The method for spheroidal carbonaceous particle (SCP) analysis was adapted from Rose (1990a,
1994). Small aliquots of peat (~1 cm3) were first oven-dried at 50 C. The resulting dried samples
(100–400 mg) were weighed and subsequently digested in 25 mL of concentrated HNO3 at 180 C
for 1 hr. The remaining residues were washed and decanted into preweighed vials. A small amount
of each residue was mounted onto separate microscope slides and individual particles were counted
under 400× magnification. Final weights of the vials and remaining residues were established to per-
mit the calculation of the number of SCPs per gram of dried sediment (ACCROTELM 2006).

Further subsamples of peat were taken from 1-cm intervals throughout the upper 0.5 m of each core.
Each was dried at 50 C, yielding aliquots of ~0.5 g. These were milled, the <1-mm fraction sepa-
rated by sieving, and then compressed and sealed in 10-cc (26 mm diameter) polystyrene pots using
polyethylene lids, resulting in negligible gaseous diffusion. Samples were stored for 3 weeks in an
attempt to build up and retain 222Rn. Measurement of unsupported 210Pb and anthropogenically gen-
erated 137Cs was undertaken by gamma spectrometry using an Ortec GEM-S HPGe coaxial system.
The Ge crystal was 71 mm diameter and 24 mm thick, contained within an oxygen-free, high-con-
ductivity Cu cup and endcap and in a vertical cryostat arrangement. The system was shielded using
a low-background Pb (100 mm thick, 50-mm undershield) and Cu (0.9 mm)/Cd (0.5 mm) lining.
Uncertainties are expressed at 1 confidence, reflecting errors combined in quadrature and arising
from peak fitting, efficiency calibration, and calculation of unsupported 210Pb activity.

RESULTS

The deposition of 210Pb and 137Cs for the 10 sites is shown in Figure 2. The 1986 Chernobyl event
is not clear in the 137Cs profiles at any of the sites, and the 1963 peak in fallout from nuclear weap-
ons is not distinguishable in the 137Cs record of the IR, SP, SNM, and FBR cores. As noted previ-
ously, only the GB and DK cores had pollen marker horizons available. SCP horizons were available
for the DK and ES sites. Details of the pollen and SCP marker horizons are included in Appendix 1.

Full details of the 14C measurements are presented in Appendix 2, and expressed as F14C (the 14C
activity ratio after correction for 13C, Reimer et al. 2004; van der Plicht and Hogg 2006). Online
calibration was conducted using the CALIBomb program (Reimer et al. 2004), using the NH1 data
set of Hua and Barbetti (2004), covering the area from ~40N to the North Pole and spanning the
period 1955–1999. Calibration of 14C measurements using the bomb peak will always result in mul-
tiple (in most cases, double) solutions of age ranges. By assuming that the 14C measurements are in
an undisturbed stratigraphic order (shown in Figure 2), with no reworking of older material, it was
possible to disregard the age ranges that did not fit with the stratigraphy, and to select the more real-
istic solution.
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Figure 2 shows the results of a) the 14C calibrations and b) age estimates from the different dating
techniques used in the study. At 3 sites (GB, ES, and ARM), the results of the different dating meth-
ods agree well. At Ballyduff Bog (IR), only the 14C bomb peak and SCP age estimates were avail-
able, and the results of these 2 methods appear to agree. In a number of cores (DK, SP, LPM, FBR,
and SNM), there is a clear discrepancy between the 14C bomb peak and 210Pb age estimates. In all

Figure 2 Profiles of 210Pb, 137Cs, and 14C shown together with the chronology of recent peat accumulation: a) 210Pb depo-
sition (Bq m–2); b) 137Cs deposition (Bq m–2); c) F14C of plant macrofossils (see Appendix 2 and the text for details); d) age-
depth model. Symbols according to the key at the bottom of the diagram. Figure 2-1: Butterburn Flow (GB); Figure 2-2:
Lille Vildmose (DK).



Dating Recent Peat in European Ombrotrophic Bogs

1769

Figure 2-3: Männikjärve Bog (ES); Figure 2-4: Kontolanrahka (FI); Figure 2-5: Ballyduff Bog (IR).



J van der Plicht et al.

1770

 Figure 2-6: Pedrido (SP); Figure 2-7: Lappmyran (LPM); Figure 2-8: Åkerlänna Römosse (ARM)
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these cases, the 210Pb age estimates are older than those based on the 14C bomb peak. In the upper
layers of the profiles, the age estimates of 14C and 210Pb are in agreement. The difference between
the age estimates appears to become progressively greater with depth. At the DK and SNM sites, the
difference in age estimates between the 14C and 210Pb methods is as much as ~31 yr and ~65 yr in
the lower part of the sequences, respectively.

The 137Cs 1963 bomb peak generally agrees with the other dating methods. In the DK and LPM
sites, where there is a discrepancy between the 210Pb and 14C results, the 137Cs 1963 peak falls within
the distribution of the 210Pb age estimates.

The relatively few SCP and pollen marker horizons available generally agree with the other dating
methods. At the DK site, where there is a discrepancy between the 210Pb and 14C results, the SCP
marker horizon falls within the distribution of the 14C age estimates. 

Figure 2-9: Saxnäs Mosse (SNM); Figure 2-10: Fischbruch (FBR)
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DISCUSSION

The key issue arising from the results of this study is the discrepancy between 210Pb and 14C age esti-
mates. The age estimates produced by one (or both) of these methods are prone to significant inac-
curacy. Goodsite et al. (2001) also found a discrepancy between 210Pb and 14C age estimates of peat
profiles from Greenland and Denmark, where the 14C dates were much younger than 210Pb age esti-
mates in the pre-1963 section of the core. In this study, the FI and SP cores also have a few 14C dates
before 1963 that are much younger than the 210Pb age estimates. However, the DK, SP, LPM, FBR,
and SNM sites (Figure 2) clearly have numerous 14C dates younger than the 210Pb age curve, which
are above the 1963 bomb peak. Incorporation of older carbon from lower levels in the samples has
been proposed by Goslar et al. (2005) to be a cause of problematic 14C age estimates. This phenom-
enon has also been reported in studies of long-term peat accumulation by Kilian et al. (1995), who
reported a reservoir effect in AMS measurements of plant remains from Holocene raised bog depos-
its, where “older” carbon was proposed to have been incorporated into plant remains through micro-
bial activity. The shift in age estimates resulting from the incorporation of older carbon may be
related to the shape of the atmospheric 14C curve. The 1963 peak itself was very rapid and short
lived, and 14CO2 and 14CH4 resulting from the decomposition of the relatively thin layers containing
the 1963 peak may not have been consistently incorporated into peat accumulated after 1963. There-
fore, the more likely incorporation of older (pre-bomb) carbon into the plant remains could conceiv-
ably have resulted in significantly lower 14C content (“dampening”). Based on estimated integration
times ranging from 0.7 to 8 yr for peat profiles from a variety of European sites, Goslar et al. (2005)
suggested that before and shortly after the 1963 atmospheric peak, integration resulted in dampened
14C values of samples, and a shift towards age estimates that were too old. After 1963, dampened
14C values resulted in age estimates that were too young.

In addition to the fixing of carbon produced by the decomposition of older plant tissue, Charman and
Garnett (2005), following Chambers et al. (1979), suggested the dampening of 14C values may result
from contamination with the “old” carbon of industrial pollution deposition. Figure 3 shows the
spheroidal carbonaceous particle (SCP) concentrations for sites where there is a discrepancy
between 210Pb and 14C age estimates (SCPs were not measured in the LPM and SNM cores). In the
DK profile, increased levels of SCPs below 5 cm depth coincide with the divergence between the
14C and 210Pb age estimates. The SP site does not show any clear coincidence between soot particle
deposition and the divergence between the 14C and 210Pb age estimates. Also, it must be noted that
in the GB core where the results of the different dating methods agree with each other (Figure 3),
SCP concentrations reach very high values, with a maximum of about 63 × 103 g–1.

However, if the incorporation of older carbon does have a significant effect, and 210Pb age estimates
are more accurate, a number of the samples with 210Pb ages before 1950 (and in some cases in the
19th century) would have an anomalously high 14C content—the source of which is difficult to
explain. Furthermore, if the incorporation of older carbon is a significant factor, many of the sam-
ples in the layers of peat closest to the surface should have F14C values lower than 1 (i.e. a pre-1950
14C age), but this did not occur at any of the 10 sites featured in this study. This suggests that 14C
bomb peak dating is a reliable method, and 210Pb dating of peat is problematic. 210Pb dating of peat
has been suggested to be unreliable in previous studies, owing to postdepositional mobility—the
downward migration of 210Pb through the peat profile (e.g. Urban et al. 1990). However, downward
migration would produce age estimates that are too young (i.e. greater activity at lower levels), and
cannot explain the results of this study where 210Pb age estimates may be too old. Oldfield et al.
(1995) hypothesized a mechanism where rapidly infilling hollows, rich in binding sites, may scav-
enge 210Pb associated with dissolved organic matter passing through the hollow, as part of the sur-
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face drainage network. The enrichment of 210Pb activity by this mechanism would invariably result
in age estimates that are too old. Oldfield et al. cited evidence from excessive 210Pb inventories of
“lawns” at Ellergower Moss, a raised bog in Scotland (Clymo et al. 1990) to support this hypothesis.
At the DK and LPM sites, the 137Cs bomb peak falls within the distribution of 210Pb age estimates,
suggesting that 137Cs may also be providing age estimates that are too old.

The mechanism by which the 137Cs profiles were disturbed may be different to that of 210Pb, as stud-
ies of ombrotrophic bogs from northern England and Northern Ireland by Oldfield et al. (1979) sug-
gested that the active uptake of 137Cs by living plants on the bog surface was the most likely expla-
nation for the problematic results.

Whatever the reason(s) for the unreliability of the 210Pb age estimates, it must be related to the
occurrence of specific local environmental conditions, as 3 sites out of the 10 featured in this study
showed good agreement between the results of the different dating methods. Until further research
identifies and resolves the cause of the inaccuracy in 210Pb dating, age estimates of peat samples
based only on 210Pb should be used with caution.
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Figure 3 Spheroidal carbonaceous particle (SCP) concentrations (solid black line), 210Pb and 14C age estimates. Symbols
for 210Pb and 14C age estimates are according to the key in Figure 2.
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APPENDICES

Appendix 1 Pollen and SCP marker horizons. The dates of the SCP horizons are based on histories
of local industrial emissions. The pollen markers in both the GB and DK cores are the increases in
Picea and Pinus pollen resulting from the documented planting of these trees in the areas of the 2
sites.

Site Type of stratigraphic marker (reference) Depth (cm) Date (year AD)

GB Pollen (Yeloff et al. 2007a) 16.5 ± 2.5 1953 ± 7
SCP (Odgaard 1993) 14.5 ± 0.5 1980 ± 5

DK Pollen (Yeloff et al. 2007b) 31 ± 1 1850 ± 10
ES SCP (Nõges et al. 2006) 14.5 ± 0.5 1955 ± 5

11.5 ± 0.5 1985 ± 5

Appendix 2 AMS 14C measurements (expressed as F14C). Calibrated using CALIBomb (Reimer et
al. 2004) and the NH1 data set (Hua and Barbetti 2004). 

Lab nr
(GrA-) Site Sample composition

Mid-point
sample
depth (cm)

14C activity
(F14C)

13C
(‰)

Calibrated
age ranges
2(yr AD)1

26623 ARM Sphagnum fuscum stems and leaves 3.5 1.0976 ± 0.0046 –27.25 1997–1998
26624 ARM Sphagnum fuscum stems and leaves 6.5 1.1079 ± 0.0044 –27.28 1995–1998
25968 ARM Sphagnum fuscum stems and leaves 9.5 1.1116 ± 0.0062 –27.09 1995–1998
26626 ARM Sphagnum fuscum stems and leaves 13.5 1.1352 ± 0.0045 –26.97 1991–1994
29024 ARM Sphagnum fuscum stems and leaves 14.5 1.1289 ± 0.0048 –27.87 1993–1996
29010 ARM Sphagnum fuscum stems and leaves 15.5 1.1405 ± 0.0050 –27.05 1991–1994
26627 ARM Sphagnum fuscum stems and leaves 16.5 1.1964 ± 0.0046 –24.59 1985–1988
31252 ARM Sphagnum fuscum stems and leaves 17.5 1.1697 ± 0.0036 –28.86 1958–1959
29013 ARM Sphagnum fuscum stems and leaves 18.5 1.0027 ± 0.0044 –28.42 1951–1957
29762 DK Sphagnum magellanicum stems, 

leaves and branches
4.5 1.0980 ± 0.0045 –28.16 1997–1998

29764 DK Sphagnum magellanicum stems, 
leaves and branches

9.5 1.1095 ± 0.0048 –31.22 1995–1998

30600 DK Sphagnum stems and leaves 12.5 1.1232 ± 0.0044 –28.12 1993–1996
30959 DK Sphagnum stems and leaves and Cal-

luna wood
16.5 1.2713 ± 0.0055 –27.21 1980–1981

30989 DK Sphagnum stems 18.5 1.5115 ± 0.0146 –25.92 1970–1973
29757 DK Sphagnum stems 19.5 1.4778 ± 0.0060 –22.58 1963–1963; 

1972–1973
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30990 DK Sphagnum stems 21.5 1.4525 ± 0.0064 –24.67 1963–1963; 
1973–1974

29974 ES Sphagnum stems 4.5 1.1074 ± 0.0044 –24.72 1995–1998
29976 ES Sphagnum stems 9.5 1.1864 ± 0.0047 –24.56 1986–1989
30497 FBR Sphagnum angustifolium stems 3.5 1.1431 ± 0.0045 –28.07 1990–1994
30498 FBR Sphagnum angustifolium stems 6.5 1.1598 ± 0.0046 –27.80 1989–1991
26007 FBR Polytrichum strictum stems and 

leaves
9.5 1.1671 ± 0.0060 –27.27 1988–1991

30500 FBR Sphagnum angustifolium stems 13.5 1.2680 ± 0.0048 –27.35 1980–1982
30501 FBR Sphagnum angustifolium stems 16.5 1.3341 ± 0.0051 –27.45 1977–1979
30502 FBR Sphagnum angustifolium stems and 

Calliergon cordifolium stems and 
leaves

17.5 1.5002 ± 0.0056 –26.62 1971–1972

30504 FBR Sphagnum angustifolium stems 18.5 1.4474 ± 0.0054 –27.66 1973–1974
26008 FBR Sphagnum angustifolium stems, Oxy-

coccus palustris branch with flower, 
1 Rhynchospora alba fruit

19.5 1.5665 ± 0.0071 –26.47 1968–1970

30506 FBR Sphagnum angustifolium stems 20.5 1.6504 ± 0.0059 –28.63 1967–1968
30507 FBR Sphagnum angustifolium stems 21.5 1.7905 ± 0.0065 –26.16 1965–1966
30508 FBR Sphagnum angustifolium stems 22.5 1.7702 ± 0.0064 –27.43 1965–1966
30510 FBR Sphagnum angustifolium stems 23.5 1.4366 ± 0.0055 –26.81 1963–1963; 

1973–1975
30511 FBR Sphagnum angustifolium stems 25.5 1.2472 ± 0.0048 –27.81 1959–1960; 

1981–1983
29769 FI Sphagnum section Acutifolia stems, 

branches and leaves
4.5 1.1074 ± 0.0044 –26.88 1995–1998

29768 FI Sphagnum section Acutifolia stems, 
branches and leaves

9.5 1.1810 ± 0.0047 –25.50 1985–1986

29771 FI Sphagnum section Acutifolia stems, 
branches and leaves

14.5 1.2791 ± 0.0049 –26.90 1979–1981

30856 FI Sphagnum section Acutifolia stems, 
branches and leaves

16.5 1.5679 ± 0.0059 –25.42 1968–1970

31030 FI Sphagnum section Acutifolia stems, 
branches and leaves

18.5 1.6051 ± 0.0051 –25.95 1968–1969

29772 FI Sphagnum section Acutifolia stems, 
branches and leaves

19.5 1.3412 ± 0.0052 –24.60 1962–1962; 
1977–1978

30858 FI Sphagnum section Acutifolia stems, 
branches and leaves

20.5 1.1617 ± 0.0046 –27.14 1958–1959

30859 FI Sphagnum section Acutifolia stems, 
branches and leaves

21.5 1.1046 ± 0.0044 –24.84 1957–1958

29859 GB Sphagnum papillosum stems, leaves 
and branches

4.5 1.1272 ± 0.0054 –29.57 1993–1996

29775 GB Sphagnum papillosum stems, leaves 
and branches

9.5 1.2464 ± 0.0050 –28.19 1981–1984

30987 GB Sphagnum stems and leaves 12.5 1.2450 ± 0.0059 –27.13 1981–1984
29776 GB Sphagnum papillosum stems, leaves 

and branches
14.5 1.5003 ± 0.0058 –25.86 1971–1972

30792 GB Sphagnum stems and leaves 14.5 1.4231 ± 0.0053 –26.29 1974–1975
30794 GB Sphagnum stems and leaves 16.5 1.5731 ± 0.0059 –26.01 1968–1970
30595 GB Sphagnum stems and leaves 17.5 1.0186 ± 0.0040 –25.86 1953–1957
30140 IR Sphagnum papillosum, Sphagnum 

capillifolium stems
5.5 1.0897 ± 0.0046 –29.23 1996–1996; 

1957–1958

Appendix 2 AMS 14C measurements (expressed as F14C). Calibrated using CALIBomb (Reimer et
al. 2004) and the NH1 data set (Hua and Barbetti 2004).  (Continued)

Lab nr
(GrA-) Site Sample composition

Mid-point
sample
depth (cm)

14C activity
(F14C)

13C
(‰)

Calibrated
age ranges
2(yr AD)1
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30142 IR Sphagnum papillosum, Sphagnum 
capillifolium leaved stems

10.5 1.0981 ± 0.0044 –28.29 1995–1995

30143 IR Sphagnum papillosum, Sphagnum 
cuspidatum, Calluna leaves

15.5 1.1619 ± 0.0049 –30.74 1989–1991

30144 IR Sphagnum papillosum, Sphagnum 
capillifolium leaved stems

20.5 1.5328 ± 0.0058 –26.23 1969–1971

28725 IR Sphagnum cuspidatum stems 25.5 1.1595 ± 0.0046 –30.81 1958–1958; 
1989–1991

26368 LPM Sphagnum fuscum stems and leaves 3.5 1.1069 ± 0.0040 –29.10 1996–1998
26369 LPM Sphagnum fuscum stems and leaves 6.5 1.1115 ± 0.0040 –27.80 1995–1998
25369 LPM Sphagnum fuscum stems and leaves 9.5 1.1317 ± 0.0059 –26.97 1991–1996
26371 LPM Sphagnum fuscum stems and leaves 13.5 1.1738 ± 0.0042 –28.40 1988–1990
27755 LPM Sphagnum fuscum stems and leaves 15.5 1.2232 ± 0.0050 –27.10 1983–1985
26372 LPM Sphagnum fuscum stems and leaves 16.5 1.2927 ± 0.0045 –26.90 1979–1980
27756 LPM Sphagnum fuscum stems and leaves 17.5 1.2598 ± 0.0051 –27.50 1981–1982
25371 LPM Sphagnum fuscum stems and leaves 19.5 1.3454 ± 0.0068 –25.34 1976–1978
27757 LPM Sphagnum fuscum stems and leaves 21.5 1.5275 ± 0.0061 –23.90 1970–1971
26381 LPM Sphagnum fuscum stems and leaves 23.5 1.2593 ± 0.0044 –24.90 1962–1962
27759 LPM Sphagnum fuscum stems and leaves 24.5 1.2223 ± 0.0051 –24.00 1959–1959
26501 SNM Sphagnum magellanicum stem and 

leaves
3.5 1.0927 ± 0.0054 –28.20 1997–1998

26395 SNM Sphagnum magellanicum stem and 
leaves

6.5 1.1028 ± 0.0043 –27.10 1996–1998

24430 SNM Sphagnum magellanicum stems and 
leaves

9.5 1.1299 ± 0.0060 –25.92 1992–1996

27752 SNM Sphagnum magellanicum stems and 
leaves

13.5 1.1589 ± 0.0049 –25.50 1989–1991

26397 SNM Sphagnum magellanicum stem and 
leaves

16.5 1.1602 ± 0.0045 –27.20 1989–1991

24431 SNM Sphagnum magellanicum stems and 
leaves

19.5 1.2016 ± 0.0074 –26.05 1984–1988

26399 SNM Sphagnum magellanicum stem and 
leaves

23.5 1.1832 ± 0.0047 –26.50 1986–1989

26400 SNM Sphagnum stems 25.5 1.2783 ± 0.0049 –26.30 1980–1981
27754 SNM Sphagnum magellanicum stems and 

leaves and Sphagnum stems
26.5 1.4181 ± 0.0059 –25.80 1974–1975

26621 SNM Sphagnum stems and opercula 27.5 1.5058 ± 0.0056 –26.35 1971–1972
27683 SNM Sphagnum stems and Erica tetralix 

branch
28.5 1.1360 ± 0.0076 –26.40 1958–1958; 

1991–1995
30145 SP Molinia stems and leaves, Campylo-

pus leaved stems
5.5 1.1417 ± 0.0045 –27.73 1991–1994

30383 SP Eriophorum, Molinia stems, Androm-
eda seeds

10.5 1.0161 ± 0.0059 –25.24 1952–1956

30384 SP Campylopus, Hypnum, Eriophorum, 
Molinia

14.5 1.1163 ± 0.0066 –25.81 1957–1958; 
1994–1998

Appendix 2 AMS 14C measurements (expressed as F14C). Calibrated using CALIBomb (Reimer et
al. 2004) and the NH1 data set (Hua and Barbetti 2004).  (Continued)

Lab nr
(GrA-) Site Sample composition

Mid-point
sample
depth (cm)

14C activity
(F14C)

13C
(‰)

Calibrated
age ranges
2(yr AD)1
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