Radiocarbon

1993

HIGH-PRECISION BIDECADAL CALIBRATION OF THE RADIOCARBON TIME SCALE, AD 1950-500 BC AND 2500-6000 BC

MINZE STUIVER

Department of Geological Sciences and Quaternary Research Center, University of Washington Seattle, Washington 98195 USA

and

GORDON W. PEARSON

Retired from Palaeoecology Centre, The Queen's University of Belfast, Belfast, BT71NN, Northern Ireland

INTRODUCTION

The radiocarbon ages of dendrochronologically dated wood spanning the AD 1950-6000 BC interval are now available for Seattle (10-yr samples, Stuiver & Becker 1993) and Belfast (20-yr samples, Pearson, Becker & Qua 1993; Pearson & Qua 1993). The results of both laboratories were previously combined to generate a bidecadal calibration curve spanning nearly 4500 years (Stuiver & Pearson 1986; Pearson & Stuiver 1986). We now find that minor corrections must be applied to the published data sets, and therefore, give new bidecadal radiocarbon age information for 2500-6000 BC, as well as corrected radiocarbon age averages for AD 1950-500 BC. Corrected average ¹⁴C ages for the 500-2500 BC interval are given separately (Pearson & Stuiver 1993). The Seattle corrections (in the 10-30 ¹⁴C-yr range) are discussed in Stuiver and Becker (1993), whereas Pearson and Qua (1993) provide information on Belfast corrections (averaging 16 yr). All dates reported here are conventional radiocarbon dates, as defined in Stuiver and Polach (1977). Belfast ¹⁴C ages back to 5210 BC were obtained on wood from the Irish oak chronology (Pearson et al. 1986). Wood from the German oak chronology (Becker 1993) was used by Belfast for the 5000-6000 BC interval. For the overlapping interval (5000-5210 BC), Belfast reports weighted Irish wood/German wood ¹⁴C age averages. The Seattle ¹⁴C ages for the AD interval were either on Douglas fir wood from the US Pacific Northwest, or Sequoia wood from California (Stuiver 1982). The BC materials measured in Seattle were mostly part of the German oak chronology. Thirteen samples (5680-5810 BC) from the US bristlecone pine chronology (Ferguson & Graybill 1983) were measured in Seattle as well. Here, the final Seattle decadal ¹⁴C ages resulted from averaging German oak and bristlecone pine ages.

Several factors contribute to the uncertainty in the calibration curve for bidecadal cellulose samples. The precision and accuracy of the ¹⁴C measuring process is limited, and dendrochronological errors (if any) may result in ¹⁴C age differences when materials of different chronologies (and "identical" AD or BC age) are used. And although relatively fast transport in the troposphere causes atmospheric ¹⁴CO₂ to be fairly uniformly mixed near the earth surface, small regional differences remain. General circulation and carbon reservoir model calculations (Braziunas, Fung & Stuiver 1991) predict regional "age" differences of maximally 20 ¹⁴C years within the northern hemisphere.

2 Minze Stuiver and G. W. Pearson

Such inhomogeneity in atmospheric ${}^{14}CO_2$ alone can induce ${}^{14}C$ age offsets on the order of a decade between individual northern hemisphere dendrochronologies.

The Seattle and Belfast results on wood of the same calibrated (cal) age, but not necessarily of the same region, give consistent replication for most of the 8000-yr record. Marginal replication is only encountered for the 5180-5500 BC interval. We first discuss the aspects of replication; detailed calibration curves follow.

SAMPLE AVAILABILITY AND PRETREATMENT

During the earlier phases of the Seattle calibration project, many of the wood samples of AD age were treated with dilute NaOH and HCl solutions to remove resins, sugars and a portion of the lignin (de Vries method, Stuiver & Quay 1980). The samples from the German chronology (and part of our single-year AD Pacific Northwest chronology) were subjected to a more rigorous extraction, yielding alpha cellulose. The cellulose preparation procedure is similar to the ¹³C sample treatment given in Stuiver, Burk & Quay (1984), with slight modifications due to the bulk of the ¹⁴C samples. The de Vries method is less efficient in removing components added after the year of growth, but the influence of the incomplete removal on the ¹⁴C ages of the Seattle samples is limited to 2 or 3 ¹⁴C years (Stuiver & Quay 1981). All Belfast samples were pretreated to reduce the wood to cellulose (Pearson & Stuiver 1986).

To cover identical bidecades for Belfast and Seattle, we combined pairs of Seattle decadal ¹⁴C (weighted mean) to produce appropriate bidecadal results. The sequence is not entirely a rhythmic flow of numbers because there are a few 10-yr gaps in the Belfast bidecadal sequence, some overlapping bidecadal measurements with a 10-yr difference at midpoint, and some missing Seattle and Belfast measurements. Many samples had to be processed, and occasionally, wood was either not available in sufficient quantities (thin rings) for the high-precision ¹⁴C measurement, or was lost during sample processing. There are also small differences in midpoint age of the "contemporaneous" 20-yr blocks used for ¹⁴C age averaging of up to 2 cal yr. Thus, the listed midpoint cal ages (which are multiples of 10, with exceptions listed below) can differ by up to 1 cal yr from the actual cal age. The following exceptions apply (dates given are midpoints):

ad 1940–1860	Seattle bidecadal data only
ad 1825/ad 1275/ad 1245	Seattle decadal points inserted in Belfast data
ad 1212/ad 1192/ad 952	gaps Averages of bidecades with midpoints 5 yr
	apart
2450 вс/4150 вс/5150 вс	Belfast data only, as in each case one of the Seattle decadal measurements was missing.

TECHNIQUE AND LABORATORY REPRODUCIBILITY

The radiocarbon community tends to under-report the standard error in a 14 C age determination (International Study Group 1982; Scott, Long & Kra 1990). Age errors solely based on the Poisson error in the number of counts accumulated during the 14 C activity measurement are lower limits only, and an "error multiplier" K (defined as the actual standard error/quoted standard error) must be applied (*e.g.*, Stuiver 1982). The error multiplier of a specific laboratory may range from 1 to 2 (Scott, Long & Kra 1990). Although the sources of variance are additive (causing K to increase with sample age), K is a convenient expression of the degree to which the quoted error is representative of the overall error in a 14 C date.

The quoted standard errors of the Belfast laboratory are based on a study of the parameters contributing to the error in ¹⁴C measurements of the liquid scintillation counting system employed (Pearson *et al.* 1986), whereas for Seattle's CO₂ gas counting system, the quoted errors are based on the Poisson standard deviation in the sample count and the largest of 1) the Poisson deviation in the average of multiple standard runs, and 2) the standard deviation from the observed scatter in these multiple runs. Previous replicate analysis of 55 determinations on pairs of wood of the same age yielded K_{Belfast} = 1.23 (Pearson *et al.* 1986), whereas the upper limit for K_{Seatule} was estimated at 1.6 (Stuiver & Pearson 1986; Stuiver & Becker 1993).

SYSTEMATIC DIFFERENCES BETWEEN LABORATORIES

Interlaboratory comparisons are needed to identify any offsets, and these lead to independent K information as well. We compared the ¹⁴C age results (Kromer *et al.* 1986; Kromer & Becker 1993; de Jong, Becker & Mook 1986; Linick *et al.* 1986; Pearson, Becker & Qua 1993; Pearson & Qua 1993; Stuiver & Becker 1993, Vogel *et al.* 1993) of dendrochronologically dated wood of the same age and different origin, as well as those of the same age and same chronology.

Of the six laboratories involved, three measured either decadal (Tucson and Seattle) or bidecadal samples (Belfast). Groningen, Heidelberg and La Jolla measured samples grown over shorter time intervals (usually 1–3 yr). For comparison purposes, we choose to average the published results over decades or bidecades. Usually only part of the 10 or 20 years will have been measured, and the "decadal" or "bidecadal" ¹⁴C ages calculated in this manner need not be identical to the ¹⁴C ages that would have been obtained by measuring decadal or bidecadal samples directly. An error multiplier, $K_{Lab A-Lab B}$, for interlaboratory comparisons was derived by taking the quotient of the standard deviation, σ_{tot} , in the observed differences and the average standard deviation, σ , of the differences calculated from the quoted errors in the ¹⁴C determinations.

A test of internal consistency of ¹⁴C data of laboratories measuring wood of the same tree chronology provides insight into the sum total uncertainty tied to procedures of wood allocation, dendro-age determination, sample pretreatment, laboratory ¹⁴C determination, regional ¹⁴C distribution and ¹⁴C differences between individual trees of the same chronology. Often the splitting of samples from wood sections in the dendrochronology laboratories took place several years apart, and wood from identical trees was not necessarily supplied for the same chronology to different ¹⁴C laboratories. Here, even the region may be uncertain, because the area of original growth is not well defined for trees collected from alluvial sediments.

Good interlaboratory ¹⁴C age agreement (n = number of comparisons, offset = "a" with positive values when Lab A dates are older) is found, *e.g.*, for decadal or bidecadal wood (in some instances, "decadal" or "bidecadal", see above) of the German chronology (Becker 1993) with K_{Seattle-Groningen} = 1.8 and a = -4 ± 2 yr (3210–3910 BC, n = 36), K_{Seattle-Pretoria} = 1.2 and a = 4 ± 2 yr (1930–3350 BC, n = 72), K_{Seattle-La Jolla} = 1.3 and a = -4 ± 3 yr (2500–5000 BC, n = 97), and K_{Seattle-Belfast} = 1.5 and a = -15 ± 4 yr (5500–6000 BC, n = 24). Less satisfactory agreement is found in K_{Seattle-Belfast} = 1.3 and a = -54 ± 5 yr (5180–5500 BC, n = 16) and K_{Seattle-Heidelberg} = 1.8 and a = -41 ± 4 yr (4075–5265 BC and 5805–5995 BC, n = 65). The reasons for the larger offsets are, as yet, not well understood.

Comparing decadal or bidecadal ¹⁴C dates from the German (measured in Seattle and Belfast) and bristlecone pine (measured in Tucson and Seattle) chronologies for the 5680–5810 BC interval yields excellent agreement with $K_{Seattle-Seattle} = 1.3$ and $a = -6 \pm 7$ yr (n = 13), $K_{Seattle-Tucson} = 1.8$ and $a = -3 \pm 7$ yr (n = 15; the 2 additional points are at 6475 and 6360 BC), and $K_{Belfast-Tucson} = 1.8$ and $a = 6 \pm 7$ (n = 7). A comparison of the joint Northwest Pacific and German chronology measured

in Seattle, and the Irish chronology measured in Belfast, yielded, for bidecadal samples covering the AD 1840-5180 BC interval $K_{\text{Seattle-Belfast}} = 1.56$ and $a = 2 \pm 1$ (n = 344). The majority of offsets are in the decade (or less) range, and error multipliers for the age differences are 1.8 maximally.

Of crucial importance for the construction of the bidecadal calibration curve are the systematic differences between Seattle and Belfast results for the AD 1840-6000 BC interval. The systematic difference, averaging only -0.8 ± 0.9 yr (K = 1.7, n = 386) for the full AD 1840-6000 BC interval, can be substantially larger for shorter time units. Systematic differences for successive millennia (first "millennium" is AD 1840-1000, last one 5001-6000 BC) are -0.4 ± 2.3 yr (K = 1.4), 0.9 ± 2.6 (K = 1.4), 9.9 ± 2.5 (K = 1.3), 16.6 ± 2.6 (K = 1.4), 2.4 ± 2.4 (K = 1.8), -4.3 ± 2.6 (K = 1.4), -12.1 ± 2.8 (K = 1.9) and -25.2 ± 2.7 (K = 1.7). These offsets (applying the corresponding K value) equal, respectively, 0.1, 0.2, 3.0, 4.6, 0.1, 1.2, 2.3 and 5.3 times the standard deviation in the mean. Clearly, the 9.9 (3.0 σ), 16.6 (4.6 σ) and -25.2 (5.3 σ) ¹⁴C year offsets are too large to be accounted for solely by statistical considerations of the reproducibility of the measurements. Measurements on four duplicate samples (3130 BC, 3190 BC, 3210 BC and 3230 BC) of the Irish chronology also yielded a substantial offset of 52 ± 8 yr, with Belfast results being older.

Closer inspection of the distribution of the actual ¹⁴C age differences of the 3 millennia with statistically unacceptable systematic offsets shows one interval (5180–5500 BC) with substantial Seattle and Belfast ¹⁴C age differences (a = -54 ± 5 yr). The offset for the remaining portion of the millennium (5001–5180 BC and 5500–6000 BC) is now -12.2 ± 3.3 yr (K = 1.5). This offset equals 2.4 standard deviations of the mean, which is not an abnormally large value. Significant systematic Seattle-Belfast differences are then 9.9 yr (1–1000 BC), 16.6 yr (1001–2000 BC) and -54 yr (5180–5500 BC). The standard deviation given with the calibration curve does not account for offsets. Therefore, for the above intervals, the calibration curve ¹⁴C age averages could be subject to systematic errors of, respectively, 5.0, 8.3 and 27 yr. The first two systematic errors are rather insignificant, as they are less than a decade and only a fraction of the curve standard deviation (which averages 12.9 yr). The 27-yr systematic error contribution to the radiocarbon ages of the 5180–5500 BC interval, however, is unacceptably large and warrants further calibration efforts.

CONSTRUCTION OF THE RADIOCARBON AGE CALIBRATION CURVES

When calculating the Seattle-Belfast bidecadal ¹⁴C age averages, and their errors, an error multiplier must be assigned to the quoted laboratory error. In our previous papers, we took $K_{Belfast} = 1.23$ and $K_{Seattle} = 1.6$ for results going back to 2500 BC. K tends to increase with sample age (*e.g.*, for the AD 1840–2500 BC interval, $K_{Seattle-Belfast} = 1.44$ (n = 212, a = 7 ± 1.2 yr), whereas for the 2500–5000 BC interval, $K_{Seattle-Belfast} = 1.75$ (n = 124, a = -7 ± 1.6)). Thus, we selected a larger K value of 1.7 for both Seattle and Belfast for samples older than 2500 BC. A more detailed discussion of this choice can be found elsewhere (Stuiver & Pearson 1992).

The above K values, multiplied with the quoted standard deviation, yield corrected standard deviations (σ) for the individual Belfast and Seattle ¹⁴C ages. Using these standard deviations, we find that the calculated standard deviations of the ¹⁴C age differences of contemporaneous bidecadal sample pairs of Seattle and Belfast account for 90–100% of the demonstrated standard deviations in ¹⁴C age differences of both laboratories for the AD 1940–5180 BC and 5500–6000 BC intervals. The standard deviations of the weighted average ¹⁴C ages (Table 1) of sample pairs that form the basis of the ¹⁴C calibration curve are based on the above K-corrected standard deviations.

The mean standard deviation of the bidecadal averages of Seattle and Belfast is 12.9 (± 1.6‰ for Δ^{14} C) ¹⁴C yr for the AD 1950–6000 BC interval. The standard deviations of the ¹⁴C ages associated

with the 5180-5500 BC interval do not fully account for the total uncertainty, as systematic error contributions play a role for this part of the calibration curve (see previous section).

CALIBRATION INSTRUCTIONS

We recommend that users of ¹⁴C dates obtain additional information on reproducibility (and systematic error, if any) from the laboratory reporting the ¹⁴C date. This information should lead to a realistic standard deviation in the reported age. A systematic error has to be deducted from, or added to, the reported radiocarbon age prior to age calibration.

Only the calibration curve is given in Figure 1; the one-sigma (1 σ ; standard deviation) uncertainty in the curve is not given. The actual standard deviation (averaging 12.9 ¹⁴C yr for the nearly 8000 cal yr bidecadal calibration curve of Seattle-Belfast ¹⁴C age averages) is tabulated in Table 1 for each bidecadal midpoint.

Cal BP ages are relative to the year AD 1950, with 0 cal BP equal to AD 1950. The relationship between cal AD/BC and cal BP ages is cal BP = 1950-cal AD, and cal BP = 1949 + cal BC. The switch from 1950 to 1949 when converting BC ages is caused by the absence of the year zero in the AD/BC chronology.

The conversion of a ¹⁴C age to a cal age is as follows: 1) draw line A parallel to the bottom axis through the ¹⁴C age to be converted; 2) draw vertical line(s) through the intercept(s) of line A and the calibration curve. The cal AD/BC ages can be read at the bottom axis, the cal BP ages at the top.

To convert the standard error in the ¹⁴C age into a range of cal AD/BC (BP) ages, determine the sample standard deviation, σ , by multiplying the quoted laboratory standard deviation with the "error multiplier." Unfortunately, information on error multipliers is often lacking. Here, the ¹⁴C age user should refer to K values given above, or to Scott, Long & Kra (1990).

Once the sample σ is known, the curve σ should be read from Table I. The curve σ and sample σ should then be used to calculate total $\sigma = ((\text{sample } \sigma)^2 + (\text{curve } \sigma)^2)^{\frac{1}{2}}$ (Stuiver 1982). Lines parallel to A should now be drawn through the ¹⁴C age + total σ , and ¹⁴C age - total σ value. The vertical lines drawn through the intercepts now yield the outer limits of possible cal AD/BC (cal BP) ages that are compatible with the sample standard deviation.

The conversion procedure yields 1) single or multiple cal AD/BC (BP) ages that are compatible with a certain ¹⁴C age, and 2) the range(s) of cal ages that correspond(s) to the standard deviation in the ¹⁴C age (and calibration curve). Here, the user must determine the calibrated ages from Figure 1 graphs by drawing lines, whereas an alternate approach would be to use the computerized calibration (CALIB) program discussed elsewhere in this issue (Stuiver & Reimer 1993).

The probability that a certain cal age is the actual sample age may be quite variable within the cal age range. Higher probabilities are encountered around the intercept ages. The non-linear transform of a near-Gaussian distribution around a ¹⁴C age into cal AD/BC (cal BP) age is not a simple matter, and computer programs are needed to derive the complex probability distribution. The CALIB program incorporates such probability distributions.

The calibration data presented here are valid for northern hemispheric samples that were formed in equilibrium with atmospheric ¹⁴CO₂. Systematic age differences are possible for the southern hemisphere, where ¹⁴C ages of wood samples tend to be about 40 yr older (Vogel *et al.* 1993). Thus, ¹⁴C ages of southern hemispheric samples preceding our era of fossil-fuel combustion should be reduced by 40 yr before conversion into cal AD/BC (BP) ages.

6 Minze Stuiver and G. W. Pearson

The Figure 1 calibration points are the midpoints of wood samples spanning 20 yr. Samples submitted for dating may cover shorter or longer intervals. The decadal calibration results of the Seattle laboratory (Stuiver & Becker 1993; Stuiver & Reimer 1993) provide a better time resolution, whereas the CALIB program also has an option to use Figure 1 moving averages (*e.g.*, a 5-point or 100-yr moving average of the bidecadal curve). The latter should be used for a sample grown over a 100-yr interval. Samples formed over intervals longer than a decade or bidecade are very desirable, as the ¹⁴C "wiggles" of the calibration curve have lesser influence on the (midpoint) cal age when a smoothed (moving average) calibration curve is used (Stuiver 1992).

The calibration curve is only valid for age conversion of samples that were formed in equilibrium with atmospheric CO_2 . Conventional ¹⁴C ages of materials not in equilibrium with atmospheric reservoirs do not take into account the offset in ¹⁴C age that may occur (Stuiver & Polach 1977). An offset, or reservoir deficiency, must be deducted from the reported ¹⁴C age before any attempt can be made to convert to cal AD/BC (BP) ages.

The reservoir deficiency is time dependent for the mixed (and deep) layer of the ocean. For the calibration of marine samples, the reader is referred to Stuiver and Braziunas (1993) and, of course, the CALIB program.

ACKNOWLEDGMENTS

The ¹⁴C research at Seattle and Belfast was supported, respectively, by a National Science Foundation grant BNS-9004492 and a SERC grant. We thank Dr. B. Becker of the University of Hohenheim, Stuttgart for providing German oak (unified Donau/Main series) samples, Drs. J. R. Pilcher and M. G. Baillie for wood samples of the Irish chronology, and F. Qua, P. J. Reimer and P. J. Wilkinson for crucial technical and analytical support.

REFERENCES

- Becker, B. 1993 A 11,000-year German oak and pine dendrochronology for radiocarbon calibration. *Radiocarbon*, this issue.
- Braziunas, T. F., Fung, I. Y. and Stuiver, M. 1991 Oceanic and solar forcing of natural geographic variations in atmospheric Δ^{14} C. Abstract. *Radiocar*bon 33(2): 180.
- de Jong, A. F. M., Becker, B. and Mook, W. G. 1986 High-precision calibration of the radiocarbon time scale. *In* Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. *Radiocarbon* 28(2B): 939-942.
- Ferguson, C. W. and Graybill, D. A. 1983 Dendrochronology of bristlecone pine: A progress report. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International Radiocarbon Conference. Radiocarbon 25(2): 287-288.
- International Study Group 1982 An inter-laboratory comparison of radiocarbon measurements in tree rings. *Nature* 298: 619–623.
- Kromer, B. and Becker, B. 1993 German oak and pine ¹⁴C calibration, 7200–9400 BC. *Radiocarbon*, this issue.
- Kromer, B., Rhein, M., Bruns, M., Schoch-Fischer, H., Münnich, K. O., Stuiver, M. and Becker, B. 1986 Radiocarbon calibration data for the 6th to the 8th

millennia BC. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 954–960.

- Linick, T. W., Long, A., Damon, P. E. and Ferguson, C. W. 1986 High-precision radiocarbon dating of bristlecone pine from 6554 to 5350 BC. *In Stuiver*, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. *Radiocarbon* 28(2B): 943-953.
- Pearson, G. W., Becker, B. and Qua, F. 1993 Highprecision ¹⁴C measurement of German and Irish oaks to show the natural ¹⁴C variations from 7890 to 5000 BC. *Radiocarbon*, this issue.
- Pearson, G. W., Pilcher, J. R., Baillie, M. G. L., Corbett, D. M. and Qua, F. 1986 High-precision ¹⁴C measurement of Irish Oaks to show the natural ¹⁴C variations from AD 1840-5210 BC. *In* Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. *Radiocarbon* 28(2B): 911-934.
- Pearson, G. W. and Qua, F. 1993 High-precision ¹⁴C measurement of Irish oaks to show the natural ¹⁴C variations from AD 1840-5000 BC A correction. *Radiocarbon*, this issue.
- Pearson, G. W. and Stuiver, M. 1986 High-precision calibration of the radiocarbon time scale, 500-2500

BC. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 839-862.

- Pearson, G. W. and Stuiver, M.1993 High-precision bidecadal calibration of the radiocarbon time scale, 500-2500 BC. *Radiocarbon*, this issue.
- Scott, E. M., Long, A. and Kra, R., eds., 1990 Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories. *Radiocarbon* 32(3): 253-397.
- Stuiver, M. 1982 A high-precision calibration of the AD radiocarbon time scale. *Radiocarbon* 24(1): 1-26.
- 1992 How accurate are our chronologies of the past? I: Time warps caused by the transformation of ¹⁴C ages. Proceedings of the Dahlem Workshop on Global Changes in the Perspective of the Past. Chichester, John Wiley & Sons, in press.
- Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale AD 1950-6000 BC. *Radiocarbon*, this issue.
- Stuiver, M. and Braziunas, T. F. 1993 Modeling radiocarbon ages of marine samples back to 10,000 BC. *Radiocarbon*, this issue.
- Stuiver, M., Burk, R. L. and Quay, P. D. 1984 ¹³C/¹²C ratios in tree rings and the transfer of biospheric carbon to the atmosphere. *Journal of Geophysical Research* 89: 11,731-11,748.

- Stuiver, M. and Pearson, G. W. 1986 High-precision calibration of the radiocarbon time scale, AD 1950– 500 BC. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 805-838.
- _____1992 Calibration of the radiocarbon time scale 2500-5000 BC. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York: Springer Verlag: 19-33.
- Stuiver, M. and Polach, H. 1977 Discussion: Reporting of ¹⁴C data. *Radiocarbon* 19(3): 355–363.
- Stuiver, M. and Quay, P. D. 1980 Changes in atmospheric carbon-14 attributed to a variable Sun. Science 207: 11-19.
- _____1981 Atmospheric ¹⁴C changes resulting from fossil fuel CO₂ release and cosmic ray flux variability. Earth and Planetary Science Letters 53: 349–362.
- Stuiver, M. and Reimer, P. J. 1993 Extended ¹⁴C data base and revised CALIB radiocarbon age calibration program. *Radiocarbon*, this issue.
- Vogel, J. C., Fuls, A., Visser, E. and Becker, B. 1993 Pretoria calibration curve for short-lived samples, 1930-3350 BC. *Radiocarbon*, this issue.

Fig. 1A-L. 14 C calibration curve derived from bidecadal samples, with single-year AD 1951-1954 data added to complete the pre-nuclear bomb era

Fig. 1B

Fig. 1C

Fig. 1D

Fig. 1E

Fig. 1F

Fig. 1G

Fig. 1H

Fig. 1J

Fig. 1K

Fig. 1L

20 Minze Stuiver and G. W. Pearson

TABLE 1. Weighted averages of University of Washington (Seattle) and the University of Belfast ¹⁴C age determinations. The cal AD/BC (or cal BP) ages represent the midpoints of bidecadal wood sections, except as noted in the text. The standard deviation in the ages and Δ^{14} C (defined in Stuiver and Polach (1977)) values includes lab error multipliers of 1.23 for Belfast and 1.6 for Seattle after 2500 BC, and 1.7 for both labs prior to 2500 BC.

Seattle all	er 2500 BC, an			T 10 2300 BC.		140	
		¹⁴ C			. 14	¹⁴ C	~ .
Cal AD/BC		age (BP)	Cal BP	Cal AD/BC	$\Delta^{14}C\%$	age (BP)	Cal BP
ad 1940	$-20.7 \pm .6$	178 ± 5	BP 10		-14.4 ± 1.3	914 ± 10	BP 820
ad 1920	$-11.9 \pm .5$	126 ± 4	вр 30		-16.4 ± 1.1	949 ± 9	BP 840
ad 1900	$-4.5 \pm .7$	85 ± 6	BP 50		-12.2 ± 1.0	935 ± 8	BP 860
ad 1880	$-5.6 \pm .5$	113 ± 4	вр 70	ad 1070	-7.4 ± .9	915 ± 7	BP 880
ad 1860	$-4.1 \pm .6$	120 ± 5	bp 90	ad 1050	-7.1 ± 1.1	932 ± 9	BP 900
ad 1840	$-1.3 \pm .5$	118 ± 4	вр 110	ad 1030	-9.9 ± 1.2	974 ± 10	BP 920
ad 1825	$2.5 \pm .6$	101 ± 5	BP 125		-16.0 ± 1.3	1043 ± 11	BP 940
ad 1810	$-1.4 \pm .5$	148 ± 4	BP 140		-16.8 ± 1.2	1069 ± 9	bp 960
ad 1790	$-7.8 \pm .6$	219 ± 5	BP 160		-18.9 ± 1.2	1105 ± 10	bp 980
ad 1770	$1 \pm .5$	176 ± 4	BP 180		-20.3 ± 1.5	1135 ± 12	BP 998
ad 1750	$3.1 \pm .5$	169 ± 4	BP 200		-19.4 ± 1.6	1139 ± 13	bp 1010
ad 1730	9.7 ± .5	136 ± 4	вр 220		-16.8 ± 1.3	1137 ± 11	bp 1030
ad 1710	$15.5 \pm .4$	110 ± 3	BP 240		-11.4 ± 1.2	1112 ± 10	bp 1050
ad 1690	$14.7 \pm .4$	136 ± 3	BP 260	ad 880	-18.9 ± 1.3	1193 ± 11	bp 1070
ad 1670	8.1 ± .5	207 ± 4	BP 280	ad 860	-18.5 ± 1.3	1210 ± 10	bp 1090
ad 1650	$2.4 \pm .5$	272 ± 4	BP 300	ad 850	-18.2 ± 1.3	1216 ± 10	bp 1100
ad 1630	$-2.8 \pm .5$	334 ± 4	BP 320	ad 830	-14.3 ± 1.4	1204 ± 11	bp 1120
ad 1610	$-5.0 \pm .5$	371 ± 4	BP 340	ad 810	-13.6 ± 1.4	1218 ± 11	bp 1140
ad 1590	.1 ± .6	349 ± 5	BP 360	ad 790	-11.2 ± 1.0	1218 ± 9	bp 1160
ad 1570	$3.5 \pm .6$	341 ± 5	BP 380	ad 770	-15.9 ± 1.2	1276 ± 10	bp 1180
ad 1550	8.3 ± .5	322 ± 4	BP 400	ad 750	-15.9 ± 1.0	1295 ± 8	BP 1200
ad 1530	11.1 ± .5	319 ± 4	BP 420	ad 730	-10.1 ± 1.0	1267 ± 8	BP 1220
ad 1510	8.2 ± .7	362 ± 5	BP 440	ad 710	-10.6 ± 1.2	1291 ± 9	bp 1240
ad 1490	10.3 ± 1.4	365 ± 11	вр 460	ad 690	-9.2 ± 1.8	1299 ± 15	bp 1260
ad 1470	7.7 ± 1.6	405 ± 13	BP 480	ad 670	-12.3 ± 1.8	1343 ± 14	BP 1280
ad 1460	8.7 ± 1.1	406 ± 9	BP 490	ad 650	-18.5 ± 1.4	1414 ± 12	BP 1300
ad 1450	7.6 ± 1.3	425 ± 11	BP 500	ad 630	-20.4 ± 1.5	1448 ± 13	BP 1320
ad 1430	.4 ± 1.6	502 ± 13	BP 520	ad 610	-20.6 ± 1.9	1469 ± 15	bp 1340
ad 1410	-1.9 ± 1.4	540 ± 12	BP 540	ad 590	-23.5 ± 1.7	1512 ± 14	bp 1360
ad 1390	-9.6 ± 1.3	622 ± 10	BP 560	ad 570	-20.0 ± 1.8	1503 ± 14	bp 1380
ad 1370	-11.2 ± 1.2	654 ± 10	BP 580	ad 550	-20.0 ± 1.5	1523 ± 13	bp 1400
ad 1350	-5.2 ± 1.4	625 ± 11	BP 600		-25.0 ± 1.4	1584 ± 12	bp 1420
ad 1330	.8 ± 1.2	596 ± 10	BP 620		-22.3 ± 1.6	1580 ± 13	bp 1440
ad 1310	9 ± 1.2	629 ± 9	BP 640	ad 490	-20.6 ± 1.6	1586 ± 13	bp 1460
ad 1290	-8.7 ± 1.4	711 ± 11	BP 660	ad 470	-17.0 ± 1.7	1576 ± 14	bp 1480
ad 1275	-15.6 ± 2.9	782 ± 24	BP 675	ad 450	-15.5 ± 1.7	1583 ± 14	bp 1500
ad 1260	-15.3 ± 1.2	794 ± 10	BP 690	ad 430	-16.8 ± 1.6	1613 ± 13	BP 1520
ad 1245	-15.4 ± 2.8	810 ± 23	BP 705		-20.7 ± 1.6	1664 ± 14	bp 1540
ad 1230	-14.6 ± 1.1	818 ± 9	BP 720	ad 390	-21.3 ± 1.4	1689 ± 11	BP 1560
ad 1212	-18.3 ± 1.6	865 ± 13	BP 738	ad 370	-22.1 ± 1.3	1715 ± 11	BP 1580
ad 1192	-16.6 ± 1.6	871 ± 13	BP 758	ad 350	-18.5 ± 1.7	1705 ± 14	bp 1600
ad 1170	-15.5 ± 1.0	883 ± 9	BP 780	ad 330	-20.1 ± 1.7	1737 ± 14	BP 1620
ad 1150	-21.3 ± 1.0	950 ± 9	BP 800	ad 310	-22.7 ± 1.7	1778 ± 14	bp 1640
				I			

TABLE 1. (Continued)

TABLE 1. (Continued)							
		¹⁴ C				¹⁴ C	
Cal AD/BC	$\Delta^{14}C \%$	age (BP)	Cal BP	Cal AD/BC	Δ ¹⁴ C ‰	age (BP)	Cal BP
ad 290	-17.1 ± 1.6	1752 ± 13	bp 1660	2670 вс	43.9 ± 1.6	4143 ± 12	BP 4619
ad 270	-11.4 ± 1.5	1724 ± 12	bp 1680	2690 вс	46.7 ± 1.7	4141 ± 13	BP 4639
ad 250	-15.4 ± 1.1	1777 ± 9	bp 1700	2710 вс	42.3 ± 1.6	4194 ± 12	BP 4659
ad 230	-18.3 ± 1.5	1820 ± 13	BP 1720	2730 вс	50.0 ± 1.6	4155 ± 12	bp 4679
ad 210	-19.1 ± 1.5	1846 ± 13	BP 1740	2750 вс	51.0 ± 2.0	4167 ± 15	BP 4699
ad 190	-17.2 ± 1.7	1850 ± 14	BP 1760	2770 вс	51.0 ± 2.2	4186 ± 17	bp 4719
ad 170	-14.8 ± 1.8	1849 ± 15	BP 1780	2790 вс	50.4 ± 1.6	4210 ± 13	bp 4739
ad 150	-11.6 ± 1.7	1843 ± 14	BP 1800	2810 вс	58.9 ± 1.8	4165 ± 14	bp 4759
ad 130	-13.6 ± 1.2	1879 ± 10	BP 1820	2830 вс	68.9 ± 1.5	4109 ± 12	BP 4779
ad 110	-16.2 ± 1.8	1919 ± 15	bp 1840	2850 вс	68.5 ± 1.8	4131 ± 14	bp 4799
ad 90	-12.0 ± 1.4	1904 ± 12	bp 1860	2870 вс	63.5 ± 1.8	4188 ± 13	bp 4819
ad 70	-15.7 ± 1.3	1954 ± 11	bp 1880	2890 вс	54.2 ± 2.0	4278 ± 15	BP 4839
ad 50	-16.9 ± 1.1	1984 ± 9	bp 1900	2910 вс	52.7 ± 1.9	4309 ± 15	BP 4859
ad 30	-13.3 ± 1.4	1974 ± 11	BP 1920	2930 вс	43.6 ± 2.1	4398 ± 16	bp 4879
ad 10	-14.6 ± 1.1	2003 ± 9	bp 1940	2950 вс	45.8 ± 1.7	4401 ± 13	bp 4899
10 BC	-15.8 ± 1.1	2032 ± 9	BP 1959	2970 вс	48.2 ± 2.3	4402 ± 17	bp 4919
30 BC	-12.9 ± 1.0	2027 ± 8	BP 1979	2990 вс	53.6 ± 1.8	4380 ± 14	bp 4939
50 BC	-15.9 ± 1.0	2071 ± 8	BP 1999	3010 вс	56.8 ± 2.1	4375 ± 16	BP 4959
70 BC	-16.2 ± 1.2	2093 ± 10	BP 2019	3030 вс	55.8 ± 2.0	4402 ± 15	bp 4979
90 BC	-13.4 ± 1.2	2090 ± 10	BP 2039	3050 вс	51.5 ± 1.6	4454 ± 12	bp 4999
110 вс	-13.1 ± 1.2	2107 ± 9	BP 2059	3070 вс	58.4 ± 1.6	4421 ± 12	bp 5019
130 вс	-12.8 ± 1.3	2124 ± 10	BP 2079	3090 вс	57.5 ± 2.2	4447 ± 17	bp 5039
150 BC	-9.0 ± 1.4	2112 ± 11	BP 2099	3110 вс	52.0 ± 2.1	4509 ± 16	BP 5059
170 BC	-9.5 ± 1.3	2136 ± 10	BP 2119	3130 вс	52.5 ± 2.1	4525 ± 16	bp 5079
190 вс	-10.2 ± 1.3	2161 ± 11	BP 2139	3150 вс	53.1 ± 2.1	4540 ± 16	bp 5099
210 вс	-16.0 ± 1.2	2228 ± 10	BP 2159	3170 вс	61.1 ± 2.0	4498 ± 15	bp 5119
230 вс	-13.3 ± 1.3	2225 ± 10	bp 2179	3190 вс	60.2 ± 1.7	4524 ± 13	bp 5139
250 вс	-11.6 ± 1.5	2230 ± 12	BP 2199	3210 вс	61.9 ± 1.8	4530 ± 14	BP 5159
270 вс	-12.6 ± 1.5	2258 ± 12	BP 2219	3230 вс	66.8 ± 2.0	4513 ± 15	BP 5179
290 вс	-6.4 ± 1.5	2227 ± 12	BP 2239	3250 вс	75.9 ± 2.1	4465 ± 15	BP 5199
310 вс	-2.7 ± 1.5	2217 ± 12	BP 2259	3270 вс	74.0 ± 2.3	4498 ± 17	BP 5219
330 вс	2.7 ± 1.5	2193 ± 12	BP 2279	3290 вс	78.2 ± 2.1	4486 ± 16	BP 5239
350 вс	2.6 ± 1.3	2213 ± 11	bp 2299	3310 вс	76.1 ± 1.9	4521 ± 14	BP 5259
370 вс	-1.4 ± 1.2	2264 ± 10	BP 2319	3330 вс	78.7 ± 1.7	4521 ± 12	BP 5279
390 вс	-5.0 ± 1.4	2313 ± 12	BP 2339	3350 вс	73.9 ± 1.8	4577 ± 14	BP 5299
410 BC	-15.3 ± 1.3	2416 ± 11	BP 2359	3370 вс	68.0 ± 2.4	4640 ± 18	BP 5319
430 вс	-16.2 ± 1.3	2443 ± 11	BP 2379	3390 вс	58.7 ± 2.0	4730 ± 15	BP 5339
450 вс	-12.2 ± 1.6	2430 ± 13	BP 2399	3410 вс	63.9 ± 2.4	4710 ± 18	BP 5359
470 BC	-9.1 ± 1.3	2424 ± 10	bp 2419	3430 вс	69.9 ± 1.9	4685 ± 15	BP 5379
490 вс	-8.3 ± 1.4	2437 ± 11	BP 2439	3450 вс	71.6 ± 2.5	4691 ± 19	BP 5399
2510 вс	34.9 ± 1.5	4058 ± 12	BP 4459	3470 вс	79.7 ± 1.9	4650 ± 14	bp 5419
2530 вс	42.9 ± 1.5	4015 ± 11	bp 4479	3490 вс	83.1 ± 1.9	4644 ± 14	bp 5439
2550 вс	46.5 ± 1.6	4007 ± 12	bp 4499	3510 вс	74.6 ± 1.9	4726 ± 14	BP 5459
2570 вс	43.7 ± 1.5	4048 ± 12	BP 4519	3530 вс	73.6 ± 1.9	4753 ± 14	BP 5479
2590 вс	40.9 ± 1.5	4088 ± 11	BP 4539	3550 вс	69.9 ± 1.9	4801 ± 14	BP 5499
2610 вс	43.7 ± 2.0	4087 ± 15	BP 4559	3570 вс	75.9 ± 1.9	4776 ± 14	BP 5519
2630 вс	39.7 ± 1.4	4137 ± 11	BP 4579	3590 вс	81.6 ± 1.7	4752 ± 13	BP 5539
2650 вс	44.5 ± 2.1	4119 ± 16	BP 4599	3610 вс	87.7 ± 1.6	4726 ± 12	BP 5559
				•			

TABLE 1.	(Continued)
----------	-------------

TABLE 1. (C	Continued)						
¹⁴ C				· · · · · · · · · · · · · · · · · · ·	¹⁴ C		
Cal AD/BC	Δ ¹⁴ C ‰	age (BP)	Cal BP	Cal AD/BC	Δ ¹⁴ C ‰	age (BP)	Cal BP
3630 вс	81.4 ± 2.1	4793 ± 16	BP 5579	4590 вс	77.1 ± 2.1	5757 ± 16	BP 6539
3650 вс	73.6 ± 1.9	4871 ± 14	BP 5599	4610 вс	78.2 ± 2.4	5769 ± 18	BP 6559
3670 вс	71.5 ± 1.7	4905 ± 13	BP 5619	4630 вс	76.7 ± 1.9	5799 ± 14	BP 6579
3690 вс	75.1 ± 1.8	4898 ± 14	BP 5639	4650 вс	83.2 ± 1.7	5770 ± 13	BP 6599
3710 вс	70.7 ± 1.8	4950 ± 14	BP 5659	4670 вс	86.2 ± 2.5	5768 ± 18	BP 6619
3730 вс	71.4 ± 2.1	4965 ± 16	BP 5679	4690 вс	83.7 ± 1.8	5806 ± 13	BP 6639
3750 вс	75.0 ± 1.8	4957 ± 13	BP 5699	4710 вс	84.2 ± 2.1	5821 ± 15	BP 6659
3770 вс	73.8 ± 1.8	4985 ± 14	BP 5719	4730 вс	80.0 ± 2.5	5872 ± 18	BP 6679
3790 вс	73.0 ± 1.7	5011 ± 13	BP 5739	4750 вс	86.6 ± 2.5	5842 ± 18	BP 6699
3810 вс	67.4 ± 2.0	5073 ± 15	BP 5759	4770 вс	84.7 ± 2.5	5876 ± 18	BP 6719
3830 вс	67.8 ± 2.2	5089 ± 16	BP 5779	4790 вс	82.5 ± 2.5	5912 ± 19	BP 6739
3850 вс	70.9 ± 1.6	5085 ± 12	BP 5799	4810 вс	81.3 ± 2.5	5940 ± 19	BP 6759
3870 вс	75.3 ± 1.4	5071 ± 10	BP 5819	4830 вс	82.7 ± 2.2	5949 ± 17	BP 6779
3890 вс	83.9 ± 1.7	5027 ± 13	BP 5839	4850 вс	80.0 ± 2.2	5989 ± 16	BP 6799
3910 вс	82.3 ± 1.6	5058 ± 12	BP 5859	4870 вс	80.1 ± 2.5	6007 ± 19	BP 6819
3930 вс	84.6 ± 1.9	5060 ± 14	bp 5879	4890 вс	89.3 ± 2.3	5959 ± 17	BP 6839
3950 вс	80.4 ± 1.7	5111 ± 13	BP 5899	4910 вс	85.3 ± 1.8	6008 ± 13	BP 6859
3970 вс	75.8 ± 1.3	5165 ± 10	BP 5919	4930 вс	85.4 ± 1.7	6026 ± 13	BP 6879
3990 вс	71.4 ± 1.7	5217 ± 13	BP 5939	4950 вс	82.3 ± 1.5	6069 ± 12	BP 6899
4010 вс	68.9 ± 1.9	5255 ± 15	BP 5959	4970 вс	82.7 ± 1.7	6085 ± 13	BP 6919
4030 вс	76.3 ± 1.7	5219 ± 13	BP 5979	4990 вс	84.6 ± 1.9	6091 ± 14	BP 6939
4050 вс	70.7 ± 2.0	5281 ± 15	BP 5999	5010 вс	84.6 ± 2.4	6110 ± 18	BP 6959
4070 вс	78.3 ± 1.9	5244 ± 15	BP 6019	5030 вс	87.8 ± 2.5	6106 ± 19	BP 6979
4090 вс	72.7 ± 1.8	5305 ± 14	BP 6039	5050 вс	88.4 ± 2.5	6121 ± 18	BP 6999
4110 вс	72.6 ± 2.1	5324 ± 16	BP 6059	5070 вс	84.6 ± 2.2	6168 ± 16	BP 7019
4130 вс	81.3 ± 2.1	5279 ± 16	BP 6079	5090 вс	82.4 ± 1.8	6204 ± 13	bp 7039
4150 вс	78.6 ± 4.8	5319 ± 36	BP 6099	5110 вс	85.7 ± 2.0	6199 ± 15	BP 7059
4170 вс	76.3 ± 2.3	5355 ± 17	BP 6119	5130 вс	91.9 ± 2.0	6172 ± 14	BP 7079
4190 вс	82.1 ± 2.1	5332 ± 16	BP 6139	5150 вс	85.0 ± 2.5	6243 ± 19	BP 7099
4210 вс	92.9 ± 2.4	5271 ± 18	BP 6159	5170 вс	93.8 ± 2.0	6197 ± 15	BP 7119
4230 вс	82.2 ± 1.8	5370 ± 14	BP 6179	5190 вс	103.0 ± 2.1	6150 ± 16	BP 7139
4250 вс	81.8 ± 2.1	5392 ± 16	BP 6199	5210 вс	98.5 ± 2.5	6202 ± 18	BP 7159
4270 вс	76.8 ± 2.2	5449 ± 16	BP 6219	5230 вс	92.2 ± 2.5	6268 ± 18	BP 7179
4290 вс	83.3 ± 2.1	5420 ± 16	BP 6239	5250 вс	94.1 ± 1.9	6273 ± 14	BP 7199
4310 вс	89.6 ± 2.3	5393 ± 17	BP 6259	5270 вс	88.7 ± 2.0	6332 ± 15	BP 7219
4330 вс	84.1 ± 2.1	5453 ± 15	BP 6279	5290 вс	84.7 ± 2.1	6381 ± 16	BP 7239
4350 вс	77.8 ± 2.0	5519 ± 15	BP 6299	5310 вс	87.6 ± 2.2	6379 ± 16	BP 7259
4370 вс	72.4 ± 1.9	5579 ± 15	BP 6319	5330 вс	86.2 ± 2.1	6409 ± 16	BP 7279
4390 вс	76.4 ± 2.4	5568 ± 18	BP 6339	5350 вс	82.4 ± 2.0	6457 ± 15	BP 7299
4410 вс	74.6 ± 2.4	5601 ± 18	BP 6359	5370 вс	90.5 ± 2.5	6416 ± 18	BP 7319
4430 вс	83.9 ± 2.4	5552 ± 18	BP 6379	5390 вс	86.9 ± 2.5	6462 ± 19	BP 7339
4450 вс	82.8 ± 2.4	5579 ± 18	BP 6399	5410 BC	95.4 ± 2.2	6419 ± 16	BP 7359
4470 вс	73.1 ± 2.0	5671 ± 15	BP 6419	5430 BC	92.8 ± 2.2	6457 ± 16	BP 7379
4490 вс	76.4 ± 2.4	5666 ± 18	BP 6439	5450 BC	78.3 ± 2.2	6585 ± 16	BP 7399
4510 вс	76.7 ± 2.4	5683 ± 18	BP 6459	5470 вс	82.8 ± 2.2	6570 ± 16	BP 7419
4530 BC	77.5 ± 2.5	5696 ± 18	BP 6479	5490 BC	81.4 ± 2.5	6600 ± 18	BP 7419 BP 7439
4550 BC	73.9 ± 2.5	5742 ± 18	BP 6499	5500 BC	82.1 ± 2.6	6605 ± 19	BP 7439 BP 7449
4570 BC	75.7 ± 1.9	5748 ± 14	BP 6519	5510 вс	82.8 ± 2.5	6609 ± 19	BP 7459

		¹⁴ C				¹⁴ C	
Cal AD/BC	Δ ¹⁴ C ‰	age (BP)	Cal BP	Cal AD/BC	Δ ¹⁴ C ‰	age (BP)	Cal BP
5520 вс	84.2 ± 2.6	6608 ± 19	BP 7469	5740 вс	69.8 ± 1.6	6930 ± 12	bp 7689
5530 вс	76.0 ± 2.4	6679 ± 18	BP 7479	5760 вс	70.9 ± 1.6	6941 ± 12	bp 7709
5540 вс	76.9 ± 2.6	6682 ± 19	BP 7489	5780 вс	70.2 ± 1.7	6966 ± 12	bp 7729
5550 вс	85.8 ± 2.2	6626 ± 16	BP 7499	5800 вс	72.1 ± 1.6	6971 ± 12	BP 7749
5560 вс	89.4 ± 2.2	6609 ± 17	BP 7509	5820 вс	72.0 ± 1.6	6991 ± 12	BP 7769
5570 вс	85.7 ± 1.8	6646 ± 13	BP 7519	5840 вс	74.2 ± 1.7	6994 ± 13	bp 7789
5580 вс	81.0 ± 1.8	6691 ± 13	BP 7529	5860 вс	72.8 ± 2.5	7024 ± 19	bp 7809
5590 вс	78.1 ± 2.0	6722 ± 15	BP 7539	5880 вс	72.1 ± 2.5	7049 ± 19	bp 7829
5600 вс	73.5 ± 1.9	6766 ± 14	BP 7549	5900 вс	70.0 ± 2.3	7084 ± 17	bp 7849
5620 вс	74.4 ± 1.6	6778 ± 12	BP 7569	5920 вс	83.3 ± 2.1	7004 ± 15	bp 7869
5640 вс	72.7 ± 1.7	6811 ± 13	BP 7589	5940 вс	79.3 ± 2.7	7053 ± 20	bp 7889
5660 вс	75.6 ± 1.6	6809 ± 12	BP 7609	5960 вс	74.1 ± 2.5	7111 ± 19	bp 7909
5680 вс	73.8 ± 1.8	6842 ± 14	BP 7629	5980 вс	69.5 ± 2.3	7165 ± 17	BP 7929
5700 вс	71.7 ± 1.7	6877 ± 13	BP 7649	6000 вс	69.3 ± 2.3	7186 ± 17	bp 7949
5720 вс	71.0 ± 2.0	6901 ± 15	bp 7669				

TABLE 1. (Continued)