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THE STATISTICS OF LOW-LEVEL COUNTING USING THE NEW GENERATION OF 
PACKARD LIQUID SCINTILLATION COUNTERS 

G. T. COOK1, E. M. SCOTT2, E. M. WRIGHT' and ROBERT ANDERSON1 

ABSTRACT. We consider the suitability of commonly used Poisson counting statistics applied to background count rates 
measured in the new generation of low-background Packard liquid scintillation spectrometers. We also investigate the 
stability of these systems over long time intervals. Undetected instability will result in an underestimation of the precision 
of any result (i.e., the calculated error will be too small), and, in the presence of a systematic source, could lead to 
inaccurate results. The work described here forms only a small part of a project to investigate the statistical criteria that 
should be applied to the performance of such counters. The procedures to be discussed here include the Poisson index of 
dispersion, x and s control charts and the MSSD test for detection of drift. These are illustrated on background count rates 
derived from the Packard 2260XL and 2000CA/LL. 

INTRODUCTION 

The current generation of liquid scintillation counters, e.g., LKB-Pharmacia Quantulus, Packard 
2000 series counters employing burst-counting circuitry and others, offers considerable reductions 
in background count rates. The burst-counting circuitry technique used in the Packard instruments 
enables background count-rate reductions to be achieved through the examination of individual 
pulse shapes. Non-quenchable background events generally have a fast prompt pulse followed by 
a burst of after-pulses, whereas true (3-events have fewer or no after-pulses. 

Noakes & Valenta (1989) take advantage of this difference in pulse shape to remove most of this 
unquenchable component of background. This enables both smaller and older samples to be dated 
with improved precision. It is important to establish that these count rates are stable, because 
excess variability will undoubtedly lead to reduced precision and possible measurement inaccura- 
cies. Similarly, it is important to establish the suitability of Poisson statistics for such low count 
rates. We have considered results from both the Packard 2000CA/LL and Packard 2260XL counters 
for different counting geometries to: 1) investigate the appropriateness of Poisson counting 
statistics; 2) estimate, where required, excess variability in the data; 3) establish the background 
stability of these counting systems. We concentrate here on characterizing the background behavior. 

We studied 12 background samples (both commercially purchased scintillation-grade benzene and 
benzene synthesized from 'infinite-age' material). Sample counting in this laboratory follows the 
quasi-simultaneous batch-counting technique. Each vial undergoes 50-min counts. 

The 12 samples comprise 3 groups of 4 (Table 1) as follows: 

1. 2 g benzene + 0.42 g of a toluene-based cocktail containing 12 and 6 g liter"' of butyl- 
PBD and bis-MSB, respectively, counted in a Packard 2000CA/LL; we made 100 
measurements in 4 months. 

2. 2 g of benzene + 6 mg of both butyl-PBD and bis-MSB counted in a Packard 2260XL; 
we made 100 measurements in 4 months. 

3. 0.5 g benzene + 1.5 mg of both butyl-PBD and bis-MSB counted in a Packard 2260XL; 
we made 50 measurements in 1 month. 

Figures 1A and 1B show a subset of results of 50-min counts sequentially plotted against the 
observation number (we show the first and last 20 counts for illustration). 
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TABLE 1. Summary of Counting Experiments 

Group 

1 

2 
3 

1.80 + 

1.50 4- 

M 

L)0 1.201 

0.904 

1.80 4- 

1.50 

0.90 4- 

Counter 
No. of 

samples geometry 
of 

results 

2000CA/LL 
2260XL 
2260XL 

4 

4 

4 

g C6H6 

2 g C6H6 

0.59 C6H6 

100 

50 

5 

85 

10 

Count Index 

90 

Count Index 

15 

95 

20 

100 

Fig. IA. Time series plots for 4 back- 
grounds from 2000CA/LL (first 20 x 50- 
min counting periods) 

Fig. 1B. Time series plots for 4 back- 
grounds from 2000CA/LL (last 20 x 50- 
min counting periods) 

THE APPLICABILITY OF POISSON COUNTING STATISTICS 

The precision of the counting experiment is frequently assumed to be governed by Poisson 
counting statistics; commonly, however, the Poisson counting statistic may yield only a lower limit. 
Currie (1972) writes that the proper evaluation of any excess `random error' is important for 
detection of sources of instability and for estimation of realistic experimental precision. Detailed 
work on a high-precision liquid scintillation system (Pearson 1979) has indicated that additional 
sources of variability include benzene purity, vial reproducibility and the effect of atmospheric 
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pressure on background. The basic assumption underlying Poisson counting statistics is that the 

variance is taken to be equal to the average of the counts observed; in other than counting 

experiments, the variance is typically estimated from deviations based on replicates. To evaluate 

the Poisson nature of each of the background samples in turn, we have considered the Poisson 

index of dispersion, P (Kotz, Johnston & Read 1986), where 

n 

1: (xi-X)2 
P 

i-i 

x 

where xi is the individual count and x is the overall mean, i.e., 

Exi 
= 

1 

n 

(1) 

(2) 

If the data are distributed as a Poisson, then P will have an approximate chi-squared distribution. 

The index given in Equation (1) is an empirical form of the dispersion statistic given by Cox and 

Lewis (1966). The numerator is the sample variance; the denominator is the sample mean. 

Typically, we would conclude that the data are not Poisson-distributed if P exceeded a typical 

value, given in the x2(n-1) table. This would be interpreted as indicating overdispersion, i.e., more 

variability than expected. For the 12 samples considered in this experiment, only one did not 

exhibit Poisson properties. This may have occurred by chance or may reflect an effect of the vial 

itself or changes in the chemistry of the vial contents. 

Figure 2 is a typical plot of the ratio of the Poisson error to the standard deviation about the mean 

for blocks of 10 counts in a single batch, where there is no evidence of extra Poisson variation. 

We show the line, ratio = 1, and we see the scatter of points around this ideal value. An extreme 

observation is observed at subgroup 9, which would then result in a re-examination of the original 

set of 10 counts. 
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STABILITY OF THE COUNTING SYSTEM 

As technology pushes background levels lower and lower, stability of the system must also be 
guaranteed. Random fluctuations, of approximately equal size to the expected count rates, cannot 
be tolerated, and sensitive, simple procedures are required to continually monitor system stability. 

The recently published Quality Assurance protocol (Long & Kalin 1990) acknowledges the impor- 
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tance of system instability, about which several papers have been published (Switsur 1990a, b). We 
discuss the techniques available and illustrate from other experiments their application to the 
counting data. Specifically, we discuss the detection of drift using the mean square successive 
difference (MSSD) method (Hooton & Parsons 1973) and quality control charts. 

Quality Control Charts 

We use two control charts (Switsur 1990b), the x chart, to assess the process mean level, and the 
s chart, to assess the process variability. The charts are produced by defining a number of 
subgroups. In this instance, a sensible definition is linked to the quasi-simultaneous batch-counting 
technique, i.e., based on sequences of 10 counts, which were previously used in the assessment of 
the Poisson nature of the data. 

For the s-chart, we plot the standard deviation of each subgroup against the subgroup number, 
superimpose a horizontal line representing the average standard deviation, and draw two lines of 
upper and lower control limits, defined below. 

LCL = 
s x2(n-1,0.025) 

C4 n-1 

UCL = 
s x2(n-1,0.975) 

C4 n-1 

C4 is tabulated (Ryan 1989). 

(3) 

Figure 3 shows a typical s chart, indicating that the process variability is in control, since none of 
the plotted (3) points lie outside the control limits. 

I 

0.00 
4 6 8 10 

Subgroup Number 

UCL=0.198 

95X UCL=0.173 

s=0.116 

95% LCL=0.065 

Fig. 3. S chart for Sample 8 

LCL=0.033 

The x chart is constructed in a similar manner, with subgroup means now being plotted against 
subgroup number, the overall mean x, being superimposed, and control limits of x ± A3s being 
plotted (again A3 values are tabulated (Ryan 1989)). Figure 4 shows the R chart for the same 
sample as Figure 3. Again, the process mean appears in control. Overall, control charts were 
produced for all samples used in this experiment and indicate stable instrumentation. However, 
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Fig. 4. X chart for Sample 8 

these charts are intended to demonstrate substantial oscillations or large-scale drift, but any sig- 

nificant small-scale drift within the defined control limits may not be detectable. 

Detection of Drift 

The MSSD can be used to detect drift in a sequence of counts (Hooton & Parsons 1973). This 
method takes account of the order of the measurements and is calculated from 

n-1 

E (xl}1 - x) 2 

v2 = 
i=1 

(xi - x )2 

s 2 = 
i-1 

(n-1) 

(4) 

(5) 

v2 will be affected by rapid oscillations but less by gradual drift than s2. The statistic, M = v2/s2, 

is used in the construction of T, where 

(n-1)(n+1)(1- M 
T = 

(n-2) 

(6) 

This follows a t(n-1) distribution under the assumption of no drift. Although we found no 
significant deviations using the control charts, in several samples we did find evidence for signifi- 
cant small drifts in the results. Figure 5 shows an s chart demonstrating significant, small-scale 
drift, although no value exceeded the control limits. Consideration of all the control charts high- 
lighted a small number showing such patterns. When combined, these techniques are then sensitive 
to substantial oscillations and small-scale drifts, and provide useful laboratory procedures for 
routine quality assurance checking. We interpret these diagrams to mean that there is instrumental 
stability with occasional particular features associated with specific samples. 
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DISCUSSION AND CONCLUSIONS 
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Fig. 5. S chart for Sample 6 

We have investigated long sequences of background counts collected to study the nature of the 
counting system. Of particular interest has been the appropriateness of Poisson statistics and the 
stability of the counting systems. Using the Poisson index of dispersion and ratio of error, we 
found no evidence that Poisson counting statistics are inappropriate. 

Using both the x and s control charts, we found evidence of behavior inconsistent with a stable 
system in only one sample. For the question of small incremental drift, we used MSSD statistics, 
and, in several situations, found evidence of small drifts that would not be detected using control 
charts. However, these were not consistent within counting batches, and would tend to suggest that 
they are not instrument-related. This paper has provided illustrations of existing statistical 
techniques applied to 14C counting data, which may be used routinely in laboratory quality 
assurance procedures. 
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