INVESTIGATING GAS-WATER-ROCK CARBON ISOTOPE EXCHANGE IN THE FIELD

LORENZ EICHINGER

Hydroisotop GmbH, 8053 Attenkirchen, West Germany

ABSTRACT. Extensive investigations of isotope content and hydrochemical parameters in soil gas, soil material, groundwater and seepage water from a Quaternary aquifer show a good correlation between ¹⁴C concentration of the groundwater and its mean residence time in the unsaturated zone. The initial ¹⁴C concentration varies between 100 and 50% modern. It decreases through solution and dissolution of carbonates to 50% of the ¹⁴C concentration of atmospheric CO₂.

INTRODUCTION

The carbon isotope concentration of groundwater samples from carbonatic aquifers with a short mean residence time (MRT), is mainly determined in the unsaturated zone. In very old groundwater, however, carbon isotope concentration of dissolved inorganic carbon (DIC) is mainly influenced by the carbon isotope concentration of rock carbonates.

To evaluate the initial ¹⁴C concentration of groundwater (A_0), several hydrochemical correction models have been developed which, however, when applied to the same groundwater, differ greatly (eg, Fontes & Garnier, 1979; Eichinger, 1983). A_0 is the ¹⁴C concentration of groundwater samples without radioactive decay.

From 1978 to 1987 detailed studies were carried out in the field to study the origin of the DIC in groundwater. We analyzed carbon and oxygen isotope concentrations of soil gas, rock material, seepage water and groundwater as well as organic matter.

FIELD STUDIES

The area of investigation was the Munich Gravel Plain, a Quaternary carbonate gravel aquifer, 1–10m thick. The mean groundwater flow velocities are in the range of 10–30m a day. The unsaturated zone overlying the groundwater surface is 10–50m thick. The Pleistocene carbonate gravels are covered with 30–50cm of soil; 90% of the gravel consists of calcite and dolomite; the remainder are sandstones and crystalline rock with interstitial lenses of sand and cemented gravel. There are study areas here, where gas samples can be taken from different depths down to groundwater and one field is used for sampling seepage waters. Core samples of soil were also collected.

¹⁴C/¹³C DIC of Groundwater

The measured ¹⁴C concentrations of our groundwater samples (¹⁴C DIC) lie between 70 and 122% modern. MRTs were estimated from ³H concentrations between 1 and 15 yr. Due to the similar hydrochemical compos-

ition of the groundwater samples, and their similar ¹³C DIC concentrations from -14.5 to -12.2‰, a comparable initial ¹⁴C concentration (A₀) would be expected for all groundwater samples. Since the ¹⁴C concentration of atmospheric CO₂ increases with an increase in the MRT (Fig 1), the ¹⁴C DIC is thus expected to increase, assuming comparable A₀ values. Figure 1 shows the contrary. The ¹⁴C DIC decreases with an increase in the MRT. By comparing the ¹⁴C concentration of atmospheric CO₂ with the ¹⁴C DIC in groundwater (Fig 1), A₀ values of 50–100% of the atmospheric ¹⁴C CO₂ concentration can be deduced.

Fig 1.¹⁴C concentration of groundwater samples as a function of mean residence time (MRT) in comparison with the ¹⁴C-concentration of atmospheric CO₂. Sampling time: 1984/85

$^{14}C CO_2$ of Soil Gas

Figure 2 shows the ¹⁴C depth profiles of soil gas CO_2 in two different fields. The "forest" profiles measured in 1979/80 and 1983–1985 show decreasing ¹⁴C CO₂ concentration with increasing sampling depth. The differences between the two profiles can be explained by the decrease of the ¹⁴C concentration in atmospheric CO₂.

The differences of the ¹⁴C CO₂ concentration measured from 1983–1985 in the "forest" and "grass" areas, may be explained by different seepage velocities of water in the two fields. Measurements of the ³H concentration of soil moisture in the forest site gave seepage velocities of 1.5-2m/a in contrast to the grass site, where 5-10m/a were obtained. Measurements of the ⁸⁵Kr concentration in soil gas gave "seepage velocities for gas" in the forest site of 2-3m/a (Eichinger *et al*, 1984). Transferring the results of the

Fig 2. Averaged measured ¹⁴C concentration of soil gas CO₂, seepage water (SW) and groundwater (GW). A. Forest study area. Study period: 1979/80, 1983–1985. B. Grass study area. Study period: 1983–1985.

Fig 3. ¹⁴C concentration of groundwater samples and soil gas CO_2 as a function of mean residence time (MRT). The soil gas samples are from different depths of the unsaturated zone. The MRT are calculated for various seepage velocities (V_s). The lines are calculated by exponential functions; dotted lines by the values of (×) resp (\circ) and full line by (\bullet).

¹⁴C measurements in soil gas CO_2 (Fig 2) and of the MRT of the seepage water, as deduced from ³H and ⁸⁵Kr measurements in relation to their sampling depths, we get the correlation shown in Figure 3 between seepage velocity and ¹⁴C concentration of soil gas CO_2 . A good correlation is seen, if a seepage velocity of 4m/a is assumed.

We can conclude from these results that the initial ¹⁴C concentration of groundwater samples strongly depends on the mean residence time in the unsaturated zone.

Carbon Isotope Exchange

In the study areas calcite saturation of the seepage water is in a depth of 0.5 m. We can assume that the ¹⁴C concentration of the soil gas CO_2 is in isotope equilibrium with the DIC of seepage water. The decrease in the ¹⁴C concentration of soil gas CO_2 (Fig 2) is caused by processes of solution and precipitation of carbonates in the unsaturated zone (Hoppe *et al*, 1987). Variations of the CO_2 partial pressure, which were measured down to a depth of 23m, cause seepage waters to become oversaturated and undersaturated with respect to calcite. This is the reason for dilution of the ¹⁴C in DIC.

The process of precipitation of carbonates should be measurable, by analyzing carbon and oxygen isotope concentrations on rock surfaces. Thus, we tried to dissolve chemically and mechanically the surfaces of rock and binding material. As can be seen from the measurements of ¹³C and ¹⁸O concentration, the results represent a mixing line (Fig 4). One endpoint represents the primary component ($\delta^{13}C = +1.0\%$; $\delta^{18}O = -4.0\%$) and the other the precipitated component. The ¹³C and ¹⁸O concentration of this com-

Fig 4. ¹³C and ¹⁸O concentrations of carbonates. The hatched area marks the δ^{13} C and δ^{18} O values of carbonates precipitating under equilibrium with the seepage water respectively under kinetic fractionation.

ponent can be deduced from the results of isotope analyses of seepage water and are near $-10 \delta^{13}$ C-‰ and $-10 \delta^{18}$ O-‰.

Samples of cemented gravel from boreholes at the forest site were prepared for measuring ¹⁴C concentration in a special preparation line. Weak acid was added at a rate of 10ml/day to the rock material in a closed system. The reaction vessel was filled with 10L of distilled water and ca 5kg of sample. The CO₂ produced was flushed with N₂ as carrier gas. In 3 of 6 samples, ¹⁴C could be detected.

From the measurements of the ¹⁴C concentration of soil gas CO₂, of the mean DIC concentration of seepage water (5.5mmol/L) and of the CO₂ concentration (0.5 vol-%) of soil gas as well as the water content (4.5 vol-%) and the porosity (30 vol-%), the amount of carbon can be estimated, which precipitates out from DIC in the forest site between depths of 6 - 22m. The precipitation rate of carbonate is near 30g CaCO₃/m²a at a seepage velocity of 2m/a and 15g CaCO₃/m²a at a velocity of 4m/a. Thus, assuming boundary conditions for the last 10,000 yr were similar to those of today, only 0.5 - 2 mass-% of the total amount of carbonate has been precipitated from seepage water.

Open and Closed System

¹³C concentrations of soil gas CO_2 , seepage water, and groundwater show that, with respect to the gaseous phase in each level of the unsaturated zone, the system is open (Eichinger, 1987). Measurements of the ¹⁴C concentrations show that, in the unsaturated zone, almost no CO_2 exchange occurs between the soil zone and deeper layers of the unsaturated zone.

CONCLUSION

In carbonate aquifers of the type investigated, the initial ¹⁴C concentration of groundwater samples is a function of the mean residence time of the seepage water in the unsaturated zone. The measured decrease of ¹⁴C concentration in young groundwater, in comparison to the ¹⁴C CO₂ concentration in the soil zone, is due to carbon isotope exchange between soil gas CO₂, DIC and rock carbonate. The exchange is caused by carbonate solution and precipitation processes.

ACKNOWLEDGMENTS

Thanks go to Heribert Moser, GSF-Institut für Hydrologie, München, who made this work possible. I want to express my gratitude for the financial support by the Deutsche Forschungsgemeinschaft.

REFERENCES

- Eichinger, L, 1983, A contribution to the interpretation of ¹⁴C groundwater ages considering the example of a partially confined sandstone aquifer, *in* Stuiver, M and Kra, RS, eds, Internatl ¹⁴C conf, 12th, Proc: Radiocarbon, v 25, no. 2A, p 347–356.
 - 1987, Isotopic and geochemical studies investigating the genesis of carbon isotope content in young groundwaters, *in* Isotope techniques in water resources development, Proc: Vienna, IAEA, p 89–100.

- Eichinger, L, Salvamoser, J, Stichler, W, Merkel, B and Nemeth, G, 1984, Seepage velocity determination in unsaturated quaternary gravel, *in* Udluff, P, Merkel, B and Proesl, K H, eds, Recent investigation in the zone of aeration, Internatl symposium, Recent investigations in the zone of aeration, Proc: Tech Univ Munich, v 1, p 303–313.
- tions in the zone of aeration, Proc: Tech Univ Munich, v 1, p 303–313. Fontes, J C and Garnier, J M, 1979, Determination of the initial ¹⁴C activity of the total dissolved carbon: a review of the existing models and a new approach: Water Research, v 15, p 399–413.
- Hoope, J. Merkel, B. Eichinger, L and Hofmann, M. 1987, Nachweis von Carbonatausfällung im Boden mit Hilfe von Isotopenuntersuchungen: Zeitschr Wasser-Abwasser-Forsch, v 20, p 16–21.

.