DETERMINATION OF RADON BY LIQUID SCINTILLATION α/β PARTICLE SPECTROMETRY: Towards the Resolution of a ¹⁴C Dating Problem

HENRY POLACH

Australian National University, GPO Box 4, Canberra 2601, Australia

and

LAURI KAIHOLA

Wallac Oy, PO Box 10, 20101 Turku 10, Finland

ABSTRACT. Traces of uranium and radium within the ¹⁴C sample generate radon (Rn) which gets occluded during the benzene synthesis, thus generating false (extra) counts within the ¹⁴C counting window. This, if undetected, gives rise to erroneous ¹⁴C age determinations. The application of simultaneous α and β liquid scintillation spectrometry will enable a mathematical evaluation of the ¹⁴C signal unaffected by α and β particle emissions from radon decay daughters.

INTRODUCTION

Samples such as charcoal, bone, shell, and soil organic matter, can incorporate uranium (²³⁸U, hence radium (²²⁶Ra), while stored in the archives of nature. The first radioactive daughter element of ²²⁶Ra is ²²²Rn, a noble gas of relatively high abundance in nature. It is, for all practical purposes, ubiquitous. It was discovered, early in the history of radiocarbon dating by gas proportional counting (de Vries, 1957), that CO_2 prepared from a ²²⁶Ra containing sample by combustion of organic matter or acid hydrolysis of carbonates will occlude radon but not its parent ²²⁶Ra. Thus, gas purification techniques involving cryogenic distillation, chromatographic separation, or decay of radon prior to counting are practiced by all gas proportional ¹⁴C daters.

The effect on gas proportional counting was detailed by Nydal (1983) who endorses the common method of storing the counting gas for several weeks (or months if necessary) until radon naturally decays to ²¹⁰Pb. However, Nydal includes the warning that, when severe contamination has occurred, the residual activity of ²¹⁰Pb may be significant and adversely affect the ¹⁴C age determination.

Early experiments relating to liquid scintillation (LS) counting gave rise to the generally accepted notion that radon is eliminated quantitatively during the rigorous heating, under vacuum, of lithium carbide to ca 900°C prior to its hydrolysis to acetylene, which is the precursor of all modern benzene syntheses (Barker, 1953; Noakes, Kim & Stipp, 1965; Tamers, 1965). Nevertheless, checking for the presence of radon and/or storing the sample benzene for several weeks prior to counting is the normal procedure in all ¹⁴C laboratories using the LS counting method.

The delay in counting a sample is not always acceptable and it was determined at the ANU Radiocarbon Laboratory, early in the 1970s that, in the presence of a significant sample contamination by radon, neither the heating of lithium carbide nor the delay of 2–3 weeks after synthesis and prior to counting, eliminated the radon contaminant. Thus, a suspect sample was often recounted after a 2-3 month delay and, if this was not possible, a mathematical correction was applied based on the observed decrease in count rate of a sample over a period of several weeks, involving 10^3 minute weekly counting times (Gupta & Polach, 1985, p 109).

This paper deals with the recognition of radon and its decay daughters by simultaneous α and β particle liquid scintillation spectrometry.

EXPERIMENTAL

Uranium Decay Series

When a CO₂ sample contains radon (²²²Rn), short lived daughter elements are produced. Two of these are α -emitting elements, ²¹⁸Po and ²¹⁴Po, and two are β -emitting elements, ²¹⁴Pb and ²¹⁴Bi. Since the radon daughters all have considerably shorter half-lives they are found in secular equilibrium with their parent after several hours. The decay series ends, from the radiocarbon dating point of view, with β -emitting element ²¹⁰Pb with a 22.3 yr half-life (Table 1).

In gas proportional counting, the counts generated by α particles can be independently determined and, thus, subtracted from the observed ¹⁴C

		, , , , , , , , , , , , , , , , , , ,		
Element	Half-life	Particle	Energy MeV	Comment
²³⁸ U	4.468×10^9 y	α	4.196	77%, Decays via ²³⁴ Th, ²³⁴ U and ²³⁰ Th
		α	4.149	23%
		γ	0.496	~0.3%
²²⁶ Ra	1600 y	α	4.785	and 5% 4.6 MeV; deemed not to be present in CO ₂ pre- pared for ¹⁴ C dating
000		γ	0.186	~0.5%
222Rn	3.824 d	α	5.489	Equilibrates with its daughters in 3.3 h
918-		γ	0.51	<0.1%
21ºPo	3.05 m	α	6.002	RaA
91 4 DI	00.0	β_{-}	0.33 - 1.03	~6%
PD	26.8 m	$\beta -$	0.73	RaB, β – spectrum overlaps ${}^{14}C$
²¹⁴ Bi	19.7 m	α	5.61	0.02%, RaC
		eta-	0.4-3.3	~100%, β – spectrum overlaps ${}^{14}C$
914 -		γ	~0.61	
214Po	163.7 μs	α	7.69	$RaC^{1}, 99 + \%$
210.01		γ	0.8	<0.1%
торь	22.26 y	$\beta -$	0.015 - 0.061	RaD, 99+%
210 0:	F 01 J	γ	8.04	
DI	5.01 d	α	~4.7	RaE
210 Do	19994	$\rho -$	1.16	99+%
ru	130.0 U	α	5.305	Kar, 100%
²⁰⁶ Pb	Stable	Ŷ	0.08	

 TABLE 1

 Uranium decay series of significance to ¹⁴C dating

Structure based on: Ivanovich and Harmon (1982, Table 1.2, p 22) with data from Lederer and Shirley (1978)

count rate. However, the counts generated by the β particles cannot be distinguished from ¹⁴C β pulses nor can a detailed spectral analysis be performed. Nydal (1983) thus concludes that the count rate contribution to ¹⁴C, due to the presence of radon and its daughters in the counting gas, cannot be determined.

Liquid scintillation counting, on the other hand, enables a full spectral resolution of β isotopes in terms of pulse height (PH), and therefore energy. The recently developed LS pulse shape (PS) analysis (Oikari, Kojola, Nurmi & Kaihola, 1987) enables the counting of α particles in the presence of β particle emissions and an important application could be the resolution of a ¹⁴C signal in the presence of ²²²Rn.

Equipment and Procedure

A commercial high resolution low-level LS spectrometer (LKB-Wallac, QuantulusTM) capable of both α and β particle simultaneous energy spectra definition was used for the experiment at Wallac Oy. The same type of counter, without the α particle detection facility was used at ANU.²²²Rn was injected into a ¹⁴C-free benzene sample containing 15g/L butyl-PBD scintillant and the resulting spectrum determined after the equilibrium with radon daughters was reached. Then two differential energy spectra were plotted: one, PH spectrum only (at ANU) and two, simultaneous alpha/beta (PH/PS) determinations resulting in discrete β and α emission spectra (Figs 1 & 2). Superimposed onto these were, for interpretation purposes, pure ¹⁴C (no radon contaminant) spectra determined in a separate run at ANU.

For the experiment, a 100% ¹⁴C modern (~65 dpm for 5mL of benzene) and approximately equivalent radon count rate were selected. The signal to noise (modern/background) for ¹⁴C at ~75% efficiency is 210 in the low-level laboratory of Wallac Oy and 135 in a normal environment at

Fig 1. Pulse height spectra of ¹⁴C and ²²²Rn superimposed, showing good resolution of ²²²Rn daughters and significant overlap with ¹⁴C (shaded area).

Fig 2. ¹⁴C β emission spectrum superimposed on simultaneous radon α and radon β emission spectra. In practice, if ²²²Rn is present, the ¹⁴C β and ²¹⁴Pb and ²¹⁴Bi β spectra would merge. Simultaneous α/β emission spectra analysis will enable a more precise multi-isotope resolution.

ANU (Polach, 1987, Table 1). The background thus does not enter our considerations.

Results

We can confirm Nydal's experiment showing that 99.3% equilibrium with daughters of 222 Rn was reached in 3.3 hours (Nydal, 1983, p 504). Natural decay of daughters then occurred and can be monitored in the PH spectrum (Fig 1) and the simultaneous and separate α and β emission spectra (Fig 2).

The relative contribution of α -producing particles can be resolved in the PH (pulse height) mode alone (Fig 1) but the spectrum is attenuated (most likely due to the different counters used), in relation to PS (α) spectrum in Figure 2, as well as pooled with the expected β particle producing elements and the Compton electron scatter due to γ emitting daughters. The latter contribution however cannot be very significant as γ particles are of minor abundance (Table 1). The overlap with ¹⁴C spectrum (free of ²²²Rn) is seen to be significant and radon count rate dependent. In practice, under the worst conditions at ANU, this resulted in a contamination equivalent to 2% modern (160 yr) which, as we will demonstrate in a later paper, was negligible (within statistics) after 3 weeks delay in counting. This is essentially due to the fact that ²¹⁰Pb emits low energy β particles and X-rays, the emission spectra of which fall outside the ¹⁴C region of interest in radiocarbon dating by LS spectrometry.

The relative contribution of α -producing particles of ²²²Rn and of their β -producing daughters can be resolved by simultaneously acquiring an independent α and β energy emission spectrum, here superimposed in Figure 2. The α and corresponding β daughters (Table 1) are well resolved. Both of these are seen to overlap, in the expected manner, the ¹⁴C spectrum (free of ²²²Rn), which was determined during another experimental run.

CONCLUSION

Liquid scintillation multiparameter spectrometry is capable of resolving spectral contributions of multi-labelled samples, in this case, 14C, 222Rn and its daughters. In the absence of simultaneous and separate α particle emission spectra the contribution to ¹⁴C must be judged in terms of the observed total count rate in the region of interest above the ¹⁴C spectrum. Thus, the precision of determination of the interference (additional ¹⁴C counts) will be count rate dependent in both the ¹⁴C and ²²²Rn window. Thus, subject not only to Poisson counting errors but also to errors associated with the assessment of the β contribution from ²¹⁴Pb and ²¹⁴Bi and associated β and γ particle transitions.

In the presence of a pure α particle emission spectrum, the contribution of the β -emitting daughters, ²¹⁴Pb and ²¹⁴Bi, can be quantitatively determined from the sharp and 100% detection efficiency α particle emission spectral peaks. This will enable a spectral subtraction to be carried out in the multi-isotope, software based analysis mode. It is anticipated that while still subject to count rate defined Poisson errors, the simultaneous α/β particle emission resolution will give more precise results than is presently possible.

It is not clear, from the spectral evidence presented, what count rate is induced by the γ Compton scatter. Some events involve β and γ particle transitions in prompt succession. Therefore, some β energy is added to the Compton electron energy which is variable and smaller than the true γ particle transition energy. As some γ particles will escape the counting vial without producing fluorescence we predict that multi-isotope resolution will be vial specific and not general.

We will pursue the collaborative development of software and propose to test the applicability of a mathematical correction on precisely determined ¹⁴C samples prior to their contamination with radon as well as on contaminated field samples prior to and after radon decay.

ACKNOWLEDGMENTS

Steve Robertson has critically read the text and Robert Leidl prepared the figures for publication. Their assistance is gratefully acknowledged.

REFERENCES

- Barker, H, 1953, Radiocarbon dating: large scale preparation of acetylene: Nature, v 172, p 631-632.
- Gupta, S K and Polach, H A, 1985, Radiocarbon dating practices at ANU: Australian National University, Canberra, 176 p. Ivanovich, M and Harmon, R S, eds, 1982, Uranium series disequilibrium: applications to
- environmental problems: Oxford, Clarendon Press, 571 p.
- Lederer, C M and Shirley, V S, eds, 1978, Table of isotopes (7th ed): New York, John Wiley & Sons, 870 p.
- Oikari, T, Kojola, H, Nurmi, J and Kaihola, L, 1987, Simultaneous counting of low alpha and beta particle activity with liquid scintillation spectrometry and pulse shape analysis: Internatl Jour Appl Radiation Isotopes, v 38, no. 9, in press.
- Noakes, J E, Kim, S M and Stipp, J J, 1965, Chemical and counting advances in liquid scintilla-tion age dating, *in* Chatters, R M and Olson, E A, eds, Internatl conf on radiocarbon and tritium dating, 6th, Proc: Clearing House for Fed Sci & Tech Inf, NBS, Washington DC, USAEC, CONF-650652, p 53-67.

- Nydal, R, 1983, The radon problem in ¹⁴C dating, *in* Stuiver, M and Kra, R S, Internatl ¹⁴C conf, 11th, Proc: Radiocarbon, v 25, no. 2, p 501–510.
 Polach, H A, 1987, Perspectives in radiocarbon dating by radiometry, *in* AMS '87, Anno Decimo: Nuclear Instruments & Methods, sec B, in press.
 Tamers, M, 1965, Routine carbon-14 dating using liquid scintillation techniques, *in* Chatters, R M and Olson, E A, eds, Internatl conf on radiocarbon and tritium dating, 6th, Proc: Clearing House for Fed Sci & Tech Inf, NBS, Washington DC, USAEC, CONF-650652, p 68–92.
 Vries, H de, 1957, The removal of radon from CO₂ for use in ¹⁴C age measurements: Appl Sci Research, sec B, v 6, p 461–470.