Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T10:19:56.962Z Has data issue: false hasContentIssue false

The Ocean Bomb Radiocarbon Inventory Revisited

Published online by Cambridge University Press:  09 February 2016

Anne Mouchet*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS/UVSQ/IPSL, Orme des Merisiers, Gif-sur-Yvette, France. Also: Université de Liège, Astrophysics, Geophysics and Oceanology Department, 17 Allée du Six-Août, 4000 Liège, Belgium. Email: A.Mouchet@ulg.ac.be

Abstract

Large discrepancies exist among data-based estimates and model reconstructions of the ocean bomb radiocarbon inventory. In order to resolve this gap, it has been proposed that the CO2 piston velocity should be revised downward (Sweeney et al. 2007; Müller et al. 2008). This article compares the transient 14C distributions in the ocean obtained with different formulations of the isotopic ratio commonly used in modeling studies. It is found that both the CO2 increase and the air-sea CO2 flux significantly contribute to the 1990 ocean bomb 14C inventory, by around 10% each. Moreover, these 2 processes explain more than 25% of the inventory difference between 1974 and 1990. These results imply that, as already argued by Naegler (2009), inventories based on observations that lack information about CO2 invasion are underestimated. Further, this work provides insight into the reasons for discrepancies among model results. It suggests that while a comprehensive isotopic formulation is needed when addressing the global 14C cycle, a simplified form is more relevant for model calibration and piston velocity assessment based on currently available bomb 14C inventories.

Type
Oceanic Carbon Cycle
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacastow, R, Maier-Reimer, E. 1990. Ocean-circulation model of the carbon cycle. Climate Dynamics 4:95125.CrossRefGoogle Scholar
Broecker, WS, Peng, T-H. 1974. Gas exchange rates between air and sea. Tellus 26:2135.Google Scholar
Broecker, WS, Gerard, RD, Ewing, M, Heezen, BC. 1961. Geochemistry and physics of ocean circulation. In: Sears, M, editor. Oceanography. Washington: AAAS. Publication 67. p 301–22.Google Scholar
Broecker, WS, Peng, T-H, Ostlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90:6953–70.CrossRefGoogle Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, T-H, Ostlund, G. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochemical Cycles 9:263–88.CrossRefGoogle Scholar
Bryan, F. 1987. Parameter sensitivity of primitive equation OGCMs. Journal of Physical Oceanography 17: 970–85.2.0.CO;2>CrossRefGoogle Scholar
Butzin, M, Prange, M, Lohmann, G. 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth and Planetary Science Letters 235:4561.CrossRefGoogle Scholar
Campin, J-M, Goosse, H. 1999. Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus A 51:412–30.CrossRefGoogle Scholar
Campin, J-M, Fichefet, T, Duplessy, J-C. 1999. Problems with using radiocarbon to infer ocean ventilation rates for past and present climates. Earth and Planetary Science Letters 165:1724.CrossRefGoogle Scholar
Craig, H. 1969. Abyssal carbon and radiocarbon in the Pacific. Journal of Geophysical Research 74:5491–506.Google Scholar
Deleersnijder, E, Campin, J-M. 1995. On the computation of the barotropic mode of a free-surface world ocean model. Annates Geophysicae 13:675–88.Google Scholar
Doney, SC, Lindsay, K, Caldeira, K, Campin, J-M, Drange, H, Dutay, J-C, Follows, M, Gao, Y, Gnanadesikan, A, Gruber, N, Ishida, A, Joos, F, Madec, G, Maier-Reimer, E, Marshall, J, Matear, R, Monfray, P, Mouchet, A, Najjar, R, Orr, J, Plattner, G-K, Sarmiento, J, Schlitzer, R, Slater, R, Totterdell, I, Weirig, M-F, Yamanaka, Y, Yool, A. 2004. Evaluating global ocean carbon models: the importance of realistic physics. Global Biogeochemical Cycles 18: GB3017, doi:10.1029/2003GB00215.CrossRefGoogle Scholar
Druffel, ER, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88:1271–80.CrossRefGoogle Scholar
Duffy, PB, Caldeira, K. 1995. Three-dimensional model calculation of ocean uptake of bomb 14C and implications for the global budget of bomb 14C. Global Biogeochemical Cycles 9:373–5.CrossRefGoogle Scholar
Duffy, PB, Caldeira, K, Selvaggi, J, Hoffert, MI. 1997. Effect of subgridscale mixing parameterizations on simulated distributions of natural 14C, temperature, and salinity in a three-dimensional ocean general circulation model. Journal of Physical Oceanography 27: 498523.2.0.CO;2>CrossRefGoogle Scholar
England, MH, Rahmstorf, S. 1999. Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models. Journal of Physical Oceanography 29:2802–27.2.0.CO;2>CrossRefGoogle Scholar
Enting, IG, Wigley, TML, Heimann, M. 1994. Future emissions and concentrations of carbon dioxide: Key Ocean/Atmosphere/Land Analyses. Technical Report 31. CSIRO.Google Scholar
Francey, RJ, Allison, C, Etheridge, D, Trudinger, CM, Enting, IG, Leuenberger, M, Langenfelds, RK, Michel, E, Steele, LP. 1999. A 1000 year high precision record of δ13C in atmospheric CO2 . Tellus B 51:170–93.CrossRefGoogle Scholar
Goosse, H, Brovkin, V, Fichefet, T, Haarsma, R, Huybrechts, P, Jongma, J, Mouchet, A, Selten, F, Barriat, P-Y, Campin, J-M, Deleersnijder, E, Driesschaert, E, Goelzer, H, Janssens, Y, Loutre, M-F, Morales Maqueda, MA, Opsteegh, T, Mathieu, P-P, Munhoven, G, Petterson, E, Renssen, H, Roche, D, Schaeffer, M, Tartinville, B, Timmermann, A, Weber, SL. 2010. Description of the earth system model of intermediate complexity LOVE-CLIM version 1.2. Geoscientific Model Development 3:603–33.CrossRefGoogle Scholar
Gruber, N, Gloor, M, Doney, SC, Fletcher, SEM, Dutkiewicz, S, Follows, MJ, Gerber, M, Jacobson, AR, Joos, F, Lindsay, K, Menemenlis, D, Mouchet, A, Mueller, SA, Sarmiento, JL, Takahashi, T. 2009. Oceanic sources, sinks, and transport of atmospheric CO2 . Global Biogeochemical Cycles 23: GB1005, doi:10.1029/2008GB003349.CrossRefGoogle Scholar
Heimann, M, Maier-Reimer, E. 1996. On the relations between the oceanic uptake of CO2 and its carbon isotopes. Global Biogeochemical Cycles 10:89110.CrossRefGoogle Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201–3.CrossRefGoogle Scholar
Ito, T, Marshall, JC, Follows, MJ. 2004. What controls the uptake of transient tracers in the Southern Ocean? Global Biogeochemical Cycles 18: GB2021, doi:10.1029/2003GB002103.CrossRefGoogle Scholar
Jain, AK, Kheshgi, HS, Hoffert, MI, Wuebbles, DJ. 1995. Distribution of radiocarbon as a test of global carbon cycle models. Global Biogeochemical Cycles 9:153–66.CrossRefGoogle Scholar
Joos, F. 1994. Imbalance in the budget. Nature 370(6486): 181–2.CrossRefGoogle Scholar
Joos, F, Bruno, M. 1998. Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of carbon isotopes 13C and 14C. Global Biogeochemical Cycles 12:277–95.CrossRefGoogle Scholar
Joos, F, Orr, JC, Siegenthaler, U. 1997. Ocean carbon transport in a box-diffusion versus a general circulation model. Journal of Geophysical Research 102: 12,36788.CrossRefGoogle Scholar
Keeling, CD. 1981. Standardization of notations and procedures. 3.3 The modelling of rare isotopic carbon with regards to notation. In: Bolin, B, editor. Carbon Cycle Modelling. New York: John Wiley & Sons. p 89101.Google Scholar
Keeling, RF, Piper, S, Bollenbacher, A, Walker, S. 2010. Monthly atmospheric 13C/12C isotopic ratios. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA.Google Scholar
Key, RM, Kozyr, A, Sabine, C, Lee, K, Wanninkhof, R, Bullister, J, Feely, R, Millero, F, Mordy, C, Peng, T-H. 2004. A global ocean carbon climatology: results from GLODAP. Global Biogeochemical Cycles 18: GB4031, doi:10.1029/2004GB002247.CrossRefGoogle Scholar
Krakauer, NY, Randerson, JT, Primeau, FW, Gruber, N, Menemenlis, D. 2006. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus B 58:390417.CrossRefGoogle Scholar
Lassey, KR, Enting, IG, Trudinger, CM. 1996. The earth's radiocarbon budget. Tellus B 48:487501.CrossRefGoogle Scholar
Leboucher, V, Orr, J, Jean-Baptiste, P, Arnold, M, Monfray, P, Tisnerat-Laborde, N, Poisson, A, Duplessy, J-C. 1999. New accelerator mass spectrometry radiocarbon measurements on WOCE I6 section between Antarctica and South Africa. Radiocarbon 41(1):5173.CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, R, Gomez-Pelaez, A, Steele, L, Wagenbach, D, Weller, R, Worthy, D. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62:2646.CrossRefGoogle Scholar
Lynch-Stieglitz, J, Stocker, TF, Broecker, WS, Fairbanks, RG. 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling, Global Biogeochemical Cycles 9:653–65.CrossRefGoogle Scholar
Mahadevan, A. 2001. An analysis of surface trends of bomb radiocarbon in the pacific. Marine Chemistry 73:273–90.CrossRefGoogle Scholar
Maier-Reimer, E. 1993. Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochemical Cycles 7:645–77.CrossRefGoogle Scholar
Maier-Reimer, E, Mikolajewicz, U, Hasselmann, K. 1993. Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. Journal of Physical Oceanography 23:731–57.2.0.CO;2>CrossRefGoogle Scholar
Matsumoto, K, Sarmiento, JL, Key, RM, Aumont, O, Bullister, JL, Caldeira, K, Campin, J-M, Doney, SC, Drange, H, Dutay, J-C, Follows, M, Gao, Y, Gnanadesikan, A, Gruber, N, Ishida, A, Joos, F, Lindsay, K, Maier-Reimer, E, Marshall, JC, Matear, RJ, Monfray, P, Mouchet, A, Najjar, R, Plattner, G-K, Schlitzer, R, Slater, R, Swathi, PS, Totterdell, IJ, Weirig, M-F, Yamanaka, Y, Yool, A, Orr, JC. 2004. Evaluation of ocean carbon cycle models with data-based metrics. Geophysical Research Letters 31: L07303, doi:10.1029/2003GL018970.CrossRefGoogle Scholar
Mikolajewicz, U, Maier-Reimer, E, Crowley, JT, Kim, K. 1993. Effect of Drake and Panamanian Gateways on the circulation of an ocean model. Palaeoceanography 8:4. doi:10.1029/93PA00893.CrossRefGoogle Scholar
Mook, WG, Bommerson, JC, Staverman, WH. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22:169–76.CrossRefGoogle Scholar
Mouchet, A. 2011. A 3D model of ocean biogeochemical cycles and climate sensitivity studies [PhD thesis]. Université de Liège, Liège, Belgium.Google Scholar
Mouchet, A, François, L. 1996. Sensitivity of a global ocean carbon cycle model to the circulation and to the fate of organic matter: preliminary results. Physics and Chemistry of the Earth 21:511–6.CrossRefGoogle Scholar
Mouchet, A, Deleersnijder, E, Primeau, F. 2012. The leaky funnel model revisited. Tellus A 64:19131, doi:10.3402/tellusa.v64i0.19131.CrossRefGoogle Scholar
Müller, SA, Joos, F, Edwards, NR, Stacker, TF. 2006. Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model. Journal of Climate 19/21:5479–99.Google Scholar
Müller, SA, Joos, F, Plattner, G-K, Edwards, NR, Stacker, TF. 2008. Modeled natural and excess radiocarbon: sensitivities to the gas exchange formulation and ocean transport strength. Global Biogeochemical Cycles 22: GB3011, doi:10.1029/2007GB003065.CrossRefGoogle Scholar
Naegler, T. 2009. Reconciliation of excess 14C-constrained global CO2 piston velocity estimates. Tellus B 61:372–84.CrossRefGoogle Scholar
Naegler, T, Ciais, P, Rodgers, K, Levin, I. 2006. Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophysical Research Letters 33: L11802, doi:10.1029/2005GL025408.CrossRefGoogle Scholar
Orr, J, Najjar, R, Sabine, C, Joos, F. 2000. Abiotic-HOWTO. Ocean-Carbon Cycle Model Intercomparison Project (OCMIP). Internal OCMIP Report, LSCE/ CEA Saclay, Gif-sur-Yvette, France. 25 p.Google Scholar
Orr, JC, Maier-Reimer, E, Mikolajewicz, U, Monfray, P, Sarmiento, JL, Toggweiler, JR, Taylor, NK, Palmer, J, Gruber, N, Sabine, CL, Le Quéré, C, Key, RM, Boutin, J. 2001. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochemical Cycles 15:4360.CrossRefGoogle Scholar
Oschlies, A. 2000. Equatorial nutrient trapping in biogeochemical ocean models: the role of advection numerics. Global Biogeochemical Cycles 14:655–67.CrossRefGoogle Scholar
Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochemical Cycles 18: GB2022, doi:10.1029/2003GB002211.CrossRefGoogle Scholar
Rodgers, KB, Schrag, DP, Cane, MA, Naik, NH. 2000. The bomb 14C transient in the Pacific Ocean. Journal of Geophysical Research 105:8489–512.CrossRefGoogle Scholar
Rubin, SI, Key, RM. 2002. Separating natural and bomb-produced radiocarbon in the ocean: the potential alkalinity method. Global Biogeochemical Cycles 16:1105, doi:10.1029/2001GB001432.CrossRefGoogle Scholar
Sabine, CL, Feely, RA, Gruber, N, Key, RM, Lee, K, Bullister, JL, Wanninkhof, R, Wong, CS, Wallace, DWR, Tilbrook, B, Millero, FJ, Peng, TH, Kozyr, A, Ono, T, Rios, AF. 2004. The oceanic sink for anthropogenic CO2 . Science 305(5682):367–71.CrossRefGoogle ScholarPubMed
Schmittner, A, Urban, NM, Keller, K, Matthews, D. 2009. Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate carbon cycle projections. Global Biogeochemical Cycles 23: GB4009, doi:10.1029/2008GB003421.CrossRefGoogle Scholar
Siegenthaler, U. 1986. Carbon dioxide: its natural cycle and anthropogenic perturbation. In: Buat-Ménard, P, editor. The Role of Air-Sea Exchange in Geochemical Cycling. NATO ASI Series, volume C185. Dordrecht: D. Reidel Publishing Company. p 209–47.Google Scholar
Siegenthaler, U, Münnich, KO. 1981. 13C/12C fractionation during CO2 transfer from air to sea. In: Bolin, B, editor. Carbon Cycle Modelling. New York: John Wiley & Sons. p 249257.Google Scholar
Stacker, TF, Broecker, WS, Wright, DG. 1994. Carbon uptake experiments with a zonally-averaged global ocean circulation model. Tellus B 46:103–22.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Ostlund, H, McConnaughey, T. 1981. GEOSECS Atlantic and Pacific 14C distribution. In: Bolin, B, editor. Carbon Cycle Modelling. New York: John Wiley & Sons. p 201–21.Google Scholar
Sweeney, C, Gloor, E, Jacobson, AR, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21: GB2015, doi:10.1029/2006GB002784.CrossRefGoogle Scholar
Takahashi, T, Sutherland, SC, Wanninkhof, R, Sweeney, C, Feely, RA, Chipman, DW, Hales, B, Friederich, G, Chavez, F, Watson, A, Bakker, DCE, Schuster, U, Metzl, N, Yoshikawa-Inoue, H, Ishii, M, Midorikawa, T, Nojiri, Y, Sabine, C, Olafsson, J, Arnarson, TS, Tilbrook, B, Johannessen, T, Olsen, A, Bellerby, R, Körtzinger, A, Steinhoff, T, Hoppema, M, de Baar, HJW, Wong, CS, Delille, B, Bates, NR. 2009. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research II 56:554–77.Google Scholar
Toggweiler, JR, Samuels, B. 1993. New radiocarbon constraints on the upwelling of abyssal water to the ocean's surface. In: Heimann, M, editor. The Global Carbon Cycle. NATO ASI Series, volume 115. Berlin: Springer Verlag. p 333–66.Google Scholar
Toggweiler, JR, Dixon, K, Bryan, K. 1989a. Simulations of radiocarbon in a coarse-resolution world ocean model. 1. Steady state prebomb distributions. Journal of Geophysical Research 94:8217–42.Google Scholar
Toggweiler, JR, Dixon, K, Bryan, K. 1989b. Simulations of radiocarbon in a coarse-resolution world ocean model. 2. Distributions of bomb-produced carbon 14. Journal of Geophysical Research 94:8243–64.Google Scholar
Trenberth, KE, Olson, JG, Large, WG. 1989. A global ocean wind stress climatology based on ECMWF analyses. Technical Report NCAR/TN-338+STR. National Center for Atmospheric Research, Boulder, Colorado, USA.Google Scholar
Vogel, JC, Grootes, PM, Mook, WG. 1970. Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift für Physik 230:225–38.Google Scholar
Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97:7373–82.CrossRefGoogle Scholar
Watson, AJ, Liss, PS. 1998. Marine biological controls on climate via the carbon and sulfur geochemical cycles. Philosophical Transactions of the Royal Society of London 353:4151.CrossRefGoogle Scholar
Weiss, R. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2: 203–15.CrossRefGoogle Scholar