Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T11:50:08.369Z Has data issue: false hasContentIssue false

Assessing Groundwater Residence Time in a Highly Anthropized Unconfined Aquifer Using Bomb Peak 14C and Reconstructed Irrigation Water 3H

Published online by Cambridge University Press:  09 February 2016

Paul Baudron*
Affiliation:
Fundación Instituto Euromediterráneo del Agua, Murcia, Spain Institut de Recherche pour le Développement, UMR G-EAU, Montpellier, France Université Paris Sud, UMR CNRS-UPS 8148 IDES, Orsay, France
Florent Barbecot
Affiliation:
GEOTOP-UQAM, Département des Sciences de la Terre et de l'Atmosphère, Montréal, Québec, Canada
Marina Gillon
Affiliation:
Université Avignon Pays de Vaucluse, UMR1114 EMMAH, Avignon, France
José Luis García Aróstegui
Affiliation:
Instituto Geológico y Minero de España, Murcia, Spain
Yves Travi
Affiliation:
Université Avignon Pays de Vaucluse, UMR1114 EMMAH, Avignon, France
Christian Leduc
Affiliation:
Institut de Recherche pour le Développement, UMR G-EAU, Montpellier, France
Francisco Gomariz Castillo
Affiliation:
Fundación Instituto Euromediterráneo del Agua, Murcia, Spain Universidad de Alicante, Departamento de Ciencias Marinas y Biología Aplicada, Alicante, Spain
David Martinez-Vicente
Affiliation:
Fundación Instituto Euromediterráneo del Agua, Murcia, Spain Universidad de Murcia, Instituto Universitario del Agua y del Medio Ambiente, Murcia, Spain
*
Corresponding author. Email: paul.baudron@baudron.com.

Abstract

Radiocarbon decay is rarely used to assess the residence time of modern groundwater due to the low resolution of its long half-life in comparison to the expected range of ages. Nonetheless, the modern 14C peak induced by the nuclear bomb tests traces efficiently the impacts of recent human activities on groundwater recharge, as well as for tritium. A simple lumped parameter model (LPM) was implemented in order to assess the interest of 14C and 3H nuclear peaks in a highly anthropized aquifer system of southeastern Spain under intense agricultural development. It required i) to assess a correction factor for modern 14C activities and ii) to reconstruct the 3H recharge input function, affected by irrigation. In such a complex hydrogeological context, an exponential model did not provide satisfying results for all samples. A better solution was reached by taking into account the qualitative recent variation of the recharge rates into a combined exponential flow and piston flow model. Apart from presenting an uncommon approach for 14C dating of modern groundwater, this study highlights the need of considering not only the variation of the tracer but also the variability of recharge rates in LPMs.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcón, FJ, Gomez Demiguel, MD, Fernandez-Zamudio, MA. 2006. Modelización de la difusión de la tecnología de riego localizado en el campo de Cartagena. Estudios Agrosociales y Pesqueros 8(1):227–45.Google Scholar
Alonso Sarria, F, Gomariz, F, Cánovas, F. 2007. Temporal analysis of land use changes in River Segura basin using remote sensing. Implications on desertification. Revista C&G 24:7388.Google Scholar
Alvarado, JAC, Purtschert, R, Barbecot, F, Chabault, C, Rueedi, J, Schneider, V, Aeschbach-Hertig, W, Kipfer, R, Loosli, HH. 2007. Constraining the age distribution of highly mixed groundwater using 39Ar: a multiple environmental tracer (3H/3He, 85Kr, 39Ar, and 14C) study in the semiconfined Fontainebleau Sands Aquifer (France). Water Resources Research 43: W03427, doi: 10.1029/2006WR005096.Google Scholar
Barbecot, F, Marlin, C, Gibert, E, Dever, L. 2000. Hydro-chemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Applied Geochemistry 15(6):791–805.CrossRefGoogle Scholar
Baudron, P, Barbecot, F, García-Aróstegui, JL, Leduc, C, Travi, Y, Martinez-Vicente, D. 2013a. Impacts of human activities on recharge in a multilayered semiarid aquifer (Camp de Cartagena, SE Spain). Hydrological Processes, in press. doi: 10.1002/hyp.9771.CrossRefGoogle Scholar
Baudron, P, Alonso-Sarria, F, García-Aróstegui, JL, Cánovas-García, F, Gomariz-Castillo, F, Martinez-Vicente, D, Moreno Brotóns, J. 2013b. Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification. Journal of Hydrology 499:303–15.CrossRefGoogle Scholar
Brouwer, C, Goffeau, A, Heibloem, M. 1985. Introduction to Irrigation. Rome: FAO.Google Scholar
Bruce, D, Friedman, GM, Kaufman, A, Yechieli, Y. 2006. Spatial variations of radiocarbon in the coastal aquifer of Israel—indicators of open and closed systems. Radiocarbon 43(2B):783–91.Google Scholar
Bruce, DL, Yechieli, Y, Zilberbrand, M, Kaufman, A, Friedman, GM. 2007. Delineation of the coastal aquifer of Israel based on repetitive analysis of 14C and tritium. Journal of Hydrology 343:5670.CrossRefGoogle Scholar
Carmi, I, Kronfeld, J, Yechieli, Y, Yakir, D, Boaretto, E, Stiller, M. 2009. Carbon isotopes in pore water of the unsaturated zone and their relevance for initial 14C activity in groundwater in the coastal aquifer of Israel. Chemical Geology 268:189–96.CrossRefGoogle Scholar
Conesa, C. 1990. El campo de Cartagena. Clima e Hidrología de un medio semiárido. 1st edition. Murcia: EDITUM Universidad de Murcia. 450 p.Google Scholar
Darling, WG, Gooddy, DC, MacDonald, AM, Morris, BL. 2012. The practicalities of using CFCs and SF6 for groundwater dating and tracing. Applied Geochemistry 27(9):1688–97.CrossRefGoogle Scholar
DePablo San Martin, MA. 2008. Vigilancia radiológica del agua (I). Ingeniería Civil 151:7783.Google Scholar
Fontes, JC. 1992. Chemical and isotopic constraints on 14C dating of groundwater. In: Taylor, ER, Long, A, Kra, RS, editors. Radiocarbon After Four Decades. New York: Springer-Verlag. p 242–61.Google Scholar
Geyh, MA. 2000. An overview of 14C analysis in the study of groundwater. Radiocarbon 42(1):99114.CrossRefGoogle Scholar
Gillon, M, Barbecot, F, Gibert, E, Corcho Alvarado, JA, Marlin, C, Massault, M. 2009. Open to closed system transition traced through the TDIC isotopic signature at the aquifer recharge stage, implications for groundwater 14C dating. Geochimica et Cosmochimica Acta 73(21):6488–501.CrossRefGoogle Scholar
Gillon, M, Barbecot, F, Gibert, E, Plain, C, Corcho-Alvarado, J-A, Massault, M. 2012. Controls on 13C and 14C variability in soil CO2 . Geoderma 189–190:431–41.CrossRefGoogle Scholar
Goslar, T, van der Knaap, WO, Hicks, S, Andric, M, Czernik, J, Goslar, E, Rasanen, S, Hyotyla, H. 2005. Radiocarbon dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age-depth models. Radiocarbon 47(1):115–34.CrossRefGoogle Scholar
Hodge, E, McDonald, J, Fischer, M, Redwood, D, Hua, Q, Levchenko, V, Drysdale, R, Waring, C, Fink, D. 2011. Using the 14C bomb pulse to date young speleothems. Radiocarbon 53(2):345–57.CrossRefGoogle Scholar
Jiménez-Martínez, J, Skaggs, TH, Van Genuchten, MT, Candela, L. 2009. A root zone modeling approach to estimating groundwater recharge from irrigated areas. Journal of Hydrology 367:138–49.CrossRefGoogle Scholar
Jiménez-Martínez, J, Candela, L, Molinero, J, Tamoh, K. 2010. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modeling and sensitivity analysis. Hydrogeology Journal 18:1811–24.CrossRefGoogle Scholar
Jiménez-Martínez, J, Candela, L, García-Aróstegui, JL, Aragón, R. 2012. A 3D geological model of Campo de Cartagena, SE Spain: hydrogeological implications. Geologica Acta 10:4962.Google Scholar
Jurgens, BC, Bohlke, JK, Eberts, SM. 2012. TracerLPM (Version 1): an Excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geological Survey Techniques and Methods Report 4–F3. 60 p.CrossRefGoogle Scholar
Kalin, RM. 2000. Radiocarbon dating of groundwater systems. In: Cook, PG, Herczeg, AL, editors. Environmental Tracers in Subsurface Hydrology. Boston: Kluwer Academic Publishers. p 111–44.Google Scholar
Liu, H-L, Chen, X, Bao, A-M, Wang, L, Pan, X, He, X-L. 2012. Effect of irrigation methods on groundwater recharge in alluvial fan area. Journal of Irrigation and Drainage Engineering 138:266–73.CrossRefGoogle Scholar
Mook, WG. 1980. Carbon-14 in hydrogeological studies. In: Fritz, P, Fontes, JC, editors. Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment. Volume 1. New York: Elsevier Scientific Publishers. p 4974.Google Scholar
Massmann, G, Sueltenfuss, J, Pekdeger, A. 2009. Analysis of long-term dispersion in a river-recharged aquifer using tritium/helium data. Water Resources Research 45: W02431, doi:10.1029/2007WR006746.CrossRefGoogle Scholar
Ndembo Longo, J, Plummer, LN, Travi, Y, Vitvar, T. 2011. The use of multiple environmental tracers in age interpretation of the Mont Amba Aquifer, Kinshasa, Democratic Republic of Congo. Proceedings of the International IAEA Symposium on Isotopes in Hydrology, Marine Ecosystems, and Climate Change Studies. 27 March–1 April 2011, Monaco.Google Scholar
Plummer, LN, Busenberg, E. 1999. Chlorofluorocarbons. In: Cook, PG, Herczeg, AL, editors. Environmental Tracers in Subsurface Hydrology. Boston: Kluwer Academic Publishers. p 441–78.Google Scholar
Scanlon, BR, Keese, KE, Flint, AL, Flint, LE, Gaye, CB, Edmunds, WM, Simmers, I. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes 20:3335–70.CrossRefGoogle Scholar
Stewart, MK. 2012. A 40-year record of carbon-14 and tritium in the Christchurch groundwater system, New Zealand: dating of young samples with carbon-14. Journal of Hydrology 430–431:5068.CrossRefGoogle Scholar
Zuber, A. 1986. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fritz, P, Fontes, JC, editors. Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment. Volume 1. New York: Elsevier Scientific Publishers. p 159.Google Scholar
Zuber, A, Maloszewski, P. 2001. Lumped-parameter models. In: Environmental Isotopes in the Hydrological Cycle. Volume 6. Modelling. UNESCO/IAEA, Technical Document Hydrology 39. p 535.Google Scholar