Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T16:02:52.792Z Has data issue: false hasContentIssue false

Carbon Cycling and Organic Radiocarbon Reservoir Effect in a Meromictic Crater Lake (Lac Pavin, Puy-de-Dôme, France)

Published online by Cambridge University Press:  09 February 2016

Patrick Albéric*
Affiliation:
ISTO (Institut des Sciences de la Terre d'Orléans), Université d'Orléans CNRS UMR 7327, 1A rue de la férollerie, 45071 Orléans Cedex 2, France
Didier Jézéquel
Affiliation:
LGE (Laboratoire de Géochimie des Eaux), Université Paris-Diderot & IPGP CNRS UMR 7154, 75205 Paris Cedex 13, France
Laurent Bergonzini
Affiliation:
IDES (Interactions et Dynamique des Environnements de Surface), Université d'Orsay-Paris Sud CNRS UMR 8148, Bâtiment 504 rue du Belvédère, 91405 Orsay Cedex, France
Emmanuel Chapron
Affiliation:
ISTO (Institut des Sciences de la Terre d'Orléans), Université d'Orléans CNRS UMR 7327, 1A rue de la férollerie, 45071 Orléans Cedex 2, France
Eric Viollier
Affiliation:
LGE (Laboratoire de Géochimie des Eaux), Université Paris-Diderot & IPGP CNRS UMR 7154, 75205 Paris Cedex 13, France
Marc Massault
Affiliation:
IDES (Interactions et Dynamique des Environnements de Surface), Université d'Orsay-Paris Sud CNRS UMR 8148, Bâtiment 504 rue du Belvédère, 91405 Orsay Cedex, France
Gil Michard
Affiliation:
LGE (Laboratoire de Géochimie des Eaux), Université Paris-Diderot & IPGP CNRS UMR 7154, 75205 Paris Cedex 13, France
*
2Corresponding author. Email: patrick.alberic@univ-orleans.fr.

Abstract

Lac Pavin is a meromictic maar lake for which the interpretation of sediment radiocarbon dates is complicated by the existence of a largely undefined reservoir effect resulting from degradation of carbon stored in the bottom layer of the water column. A data set of the contemporary 14C distribution of dissolved and particulate organic pools in the water column is presented to address this issue. Dissolved inorganic carbon (DIC) and organic carbon (DOC), plankton, suspended particulate organic carbon (POCsusp), sinking POC (POCsink), and bottom sediment organic carbon (SOC) were analyzed. Present-day Δ14C values of DIC were measured ranging from −750′ in the monimolimnion to atmospheric values in lake surface waters and in spring inlet waters. A range of Δ14C values between −200 and −300′ was observed for superficial POCsusp, POCsink, SOC, and DOC. This relatively uniform 14C offset of the exported organic production from the surface waters to the bottom represents a contemporary reservoir effect of ∼2500 yr. Laminated buried sediment samples and terrestrial vegetal macro-remains were used to evaluate temporal reservoir effect variations since the formation of the crater lake (7 ka cal BP). Buried sediment layers presented a similar offset or showed larger differences between Δ14C values of bulk sediment and terrestrial plant remains (–400 to −500′). Furthermore, an almost 0-yr reservoir effect was inferred from the sediment layers deposited just above the volcanic bedrock at the early flooding of the crater, and increasing slightly within the first centuries of the lake's history. A second objective was to tentatively model a defined scenario of the cycling of carbon in the lake capable of predicting a modern reservoir effect. Alternative scenarios were then tested for which a larger contribution of deeper DIC would provide a model compatible with larger past reservoir effects. It is concluded that using Δ14C SOC variation in laminated lake sediments as a proxy of paleolimnological conditions may be valuable provided that more data on the dynamics of the 14C composition of plankton and more detailed sampling of laminated sediment layers are available.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschbach-Hertig, W, Hofer, M, Schmid, M, Kipfer, R, Imboden, DM. 2002. The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France). Hydrobiologia 487:111–36.CrossRefGoogle Scholar
Albéric, P, Viollier, E, Jezequel, D, Grosbois, C, Michard, G. 2000. Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnology and Oceanography 45:1088–96.CrossRefGoogle Scholar
Amblard, C, Bourdier, G. 1990. The spring bloom of the diatom Melosira italica subsp. subarctica in lake Pavin: biochemical, energetic and metabolic aspects during sedimentation. Journal of Plankton Research 12:645–60.CrossRefGoogle Scholar
Ascough, PL, Cook, GT, Church, MJ, Dunbar, E, Einarsson, A, McGovern, TH, Dugmore, AJ, Perdikaris, S, Hastie, A, Fridriksson, A, Gestsdottir, H. 2010. Temporal and spatial variations in freshwater 14C reservoir effects: Lake Myvatn, northern Iceland. Radiocarbon 52(3):1098–112.CrossRefGoogle Scholar
Assayag, N, Jézéquel, D, Ader, M, Viollier, E, Michard, G, Prévot, F, Agrinier, P. 2008. Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from δ18O of water and δ13C of dissolved inorganic carbon. Applied Geochemistry 23:2800–16.Google Scholar
Biderre-Petit, C, Boucher, D, Kuever, J, Albéric, P, Jézéquel, D, Chebance, B, Borrel, G, Fonty, G, Peyret, P. 2011. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers. Microbial Ecology 61:313–27.CrossRefGoogle Scholar
Caracausi, A, Nuccio, M, Favara, R, Nicolosi, M, Paternoster, M. 2009. Gas hazard assessment at the Monticchio crater lakes of Mt. Vulture, a volcano in southern Italy. Terra Nova 21:83–7.Google Scholar
Carrias, J-F, Amblard, C, Bourdier, G. 1998. Seasonal dynamics and vertical distribution of planktonic ciliates and their relationship to microbial food resources in the oligomesotrophic Lake Pavin. Archiv für Hydrobiologie 143:227–55.Google Scholar
Chapron, E, Albéric, P, Jézéquel, D, Versteeg, W, Bourdier, J-L, Sitbon, J. 2010. Multidisciplinary characterisation of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central) and implication for natural hazards. Natural Hazards and Earth System Sciences 10:1815–27.Google Scholar
Chapron, E, Albéric, P, Jézéquel, D, Ledoux, G, Massault, M. 2012. Les archives sédimentaires de l'histoire du lac Pavin. In: Le Lac Pavin. Revue des Sciences Naturelles d'Auvergne 74–75:5765.Google Scholar
De Benedetti, AA, Funiciello, R, Giordano, G, Diano, G, Caprilli, E, Paterne, M. 2008. Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy). Journal of Volcanology and Geothermal Research 176:387–406.CrossRefGoogle Scholar
Delibrias, G, Guillier, MT, Labeyrie, J. 1972. Gif natural radiocarbon measurements VII. Radiocarbon 14(2):280–320.Google Scholar
Fernandes, R, Bergemann, S, Hartz, S, Grootes, PM, Nadeau, M-J, Melzner, F, Rakowski, A, Hüls, M. 2012. Mussels with meat: bivalve tissue-shell radiocarbon age differences and archaeological implications. Radiocarbon 54(3–4):953–65.CrossRefGoogle Scholar
Fernandes, R, Dreves, A, Grootes, PM, Nadeau, MJ. 2013. A freshwater lake saga: carbon routing within the aquatic food web of Lake Schwerin. Radiocarbon, these proceedings, doi:10.2458/azu_js_rc.55.16357.Google Scholar
Geyh, MA, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921–31.Google Scholar
Goslar, T, Czernik, J. 2000. Sample preparation in the Gliwice Radiocarbon Laboratory for AMS 14C dating of sediments. Geochronometria 18:18.Google Scholar
Jézéquel, D, Sarazin, G, Prévot, F, Viollier, E, Groleau, A, Michard, G, Agrinier, P, Albéric, P, Binet, S, Bergonzini, L. 2012a. Bilan hydrique du lac Pavin. In: Le Lac Pavin. Revue des Sciences Naturelles d'Auvergne 74–75:6790.Google Scholar
Jézéquel, D, Michard, G, Viollier, E, Prévot, F, Groleau, A, Sarazin, G, Lopes, F, Agrinier, P, Albéric, P, Bergonzini, L. 2012b. Le cycle du carbone et les risques d'éruption gazeuse au Pavin. In: Le Lac Pavin. Revue des Sciences Naturelles d'Auvergne 74–75:91110.Google Scholar
Juvigné, E. 1992. Distribution of widespread late glacial and holocene tephra beds in the French Central Massif. Quaternary International 14:181–5.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):1306–16.Google Scholar
Keaveney, EM, Barry, CD, Reamer, PJ, Foy, RH. 2012. 14C as a tool to trace terrestrial carbon in a complex lake system: implications for food-web structure and carbon cycling. Poster presented at 21 st International Radiocarbon Conference 2012, Paris.Google Scholar
Lehours, AC, Bardot, C, Thenot, A, Debroas, D, Fonty, G. 2005. Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France. Applied Environmental Microbiology 71:7389–400.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.CrossRefGoogle Scholar
Lopes, F, Viollier, E, Thiam, A, Michard, G, Abril, G, Groleau, A, Prévot, F, Carrias, J-F, Albéric, P, Jézéquel, D. 2011. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Applied Geochemistry 26:1919–32.CrossRefGoogle Scholar
Louvat, D. 1987. Géochimie isotopique du soufre et du carbone et circulation aquifères en roches cristallines de Suède centrale (STRIPA) et de Finlande. Thèse Université Paris-Sud.Google Scholar
Martin, J-M, Meybeck, M, Nijampurkar, VN, Somayajulu, BLK. 1992. 210Pb, 226Ra and 32Si in Pavin lake (Massif Central, France). Chemical Geology 94:73181.Google Scholar
Maurin, N, Amblard, C, Bourdier, G. 1997. Phytoplanktonic excretion and bacterial reassimilation in an oligomesotrophic lake: molecular weight fractionation. Journal of Plankton Research 19:1045–68.CrossRefGoogle Scholar
Mayorga, E, Aufdenkampe, AK, Masiello, CA, Krusche, AV, Hedges, JI, Quay, PD, Richey, JE, Brown, TA. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436(7050):538–41.CrossRefGoogle ScholarPubMed
McNichol, AP, Aluwihare, LI. 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC). Chemical Review 107:443–66.CrossRefGoogle ScholarPubMed
Michard, G, Viollier, E, Jezequel, D, Sarazin, G. 1994. Geochemical study of a crater lake: the Lake Pavin, France – identification, location and quantification of chemical reactions in the lake. Chemical Geology 115:103–15.CrossRefGoogle Scholar
Moreira, S, Boehrer, B, Schultze, M, Dietz, S, Samper, J. 2011. Modeling geochemically caused permanent stratification in Lake Waldsee (Germany). Aquatic Geochemistry 17:265–80.CrossRefGoogle Scholar
Olsson, IU. 2009. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51(1):143.Google Scholar
Pazdur, A, Fontugne, MR, Goslar, T, Pazdur, MF. 1995. Late Glacial and Holocene water-level changes of the Gosciaz lake, central Poland, derived from carbon isotope studies of laminated sediment. Quaternary Science Reviews 14:125–35.Google Scholar
Reichert, P. 1994. Aquasim - a tool for simulation and data analysis of aquatic systems. Water Science and Technology 30:2130.Google Scholar
Reichert, P. 1998. AQUASIM 2.0 Computer Program for the Identification and Simulation of Aquatic Systems. User Manual. EAWAG Report. ISBN 3-906484-19–5.Google Scholar
Schettler, G, Schwab, MJ, Stebich, M. 2007. A 700-year record of climate change based on geochemical and palynological data from varved sediments (Lac Pavin, France). Chemical Geology 240:1135.CrossRefGoogle Scholar
Schwab, MJ, Schettler, G, Bruchmann, C, Acksel, D, Negendank, JFW, Brauer, A. 2009. Stratigraphy, chronology and paleoenvironment information of the sediment record from Lac Pavin, Massif Central (France). International Meeting-Lake Pavin and Other Meromictic Lakes, May 14–16, Besse et St Anastaise, France, Abstract. p 30.Google Scholar
Stebich, M, Brüchmann, C, Kulbe, T, Negendank, JFW. 2005. Vegetation history, human impact and climate change during the last 700 years recorded in annually laminated sediments of Lac Pavin, France. Review of Palaeobotany and Palynology 133:115–33.Google Scholar
Stuiver, M. 1980. Workshop on 14C data reporting. Radiocarbon 22(3):964–6.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Thiam, A. 2009. Biogéochimie du molybdène dans un lac de cratère: processus permanents et transitoires, contraintes isotopiques , aris: Diderot University.Google Scholar
Viollier, E, Albéric, P, Jézéquel, D, Michard, G, Pèpe, M, Sarazin, G. 1995. Geochemical study of a crater lake: the Lake Pavin, France - trace element behaviour in the monimolimnion. Chemical Geology 125:161–72.CrossRefGoogle Scholar
Zigah, PK, Minor, EC, Werne, JP, McCallister, SL. 2012a. An isotopic Δ14C, δ13C, and δ15N investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems. Biogeosciences 9(9):3663–78.Google Scholar
Zigah, PK, Minor, EC, Werne, JP. 2012b. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior. Global Biogeochemical Cycles 26: GB1023, doi: 10.1029/2011GB004132.Google Scholar