Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T09:33:38.563Z Has data issue: false hasContentIssue false

Status of Sample Combustion and Graphitization Lines at INFN-LABEC, Florence

Published online by Cambridge University Press:  09 February 2016

M E Fedi*
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
V Bernardoni
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, e INFN Sezione di Milano, via Celoria 16, 20133 Milan, Italy
L Caforio
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
G Calzolai
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
L Carraresi
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
M Manetti
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
F Taccetti
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
P A Mandò
Affiliation:
INFN Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy
*
2Corresponding author: Email: fedi@fi.infn.it.

Abstract

Since installation of the new accelerator at INFN-LABEC in Florence in 2004, the workload has progressively increased in the radiocarbon dating laboratory, requiring a faster sample preparation throughput and greater versatility to allow for a larger variety of treated materials. The “standard” sample preparation line is based on an elemental analyzer (EA) for the combustion of the pretreated samples, and a vacuum line where the CO2 is collected and then converted to graphite. This line has been recently redesigned while maintaining the EA, since this instrument provides us reliable and fast sample combustion and separation of gases. The volumes were optimized and all the mechanical parts (e.g. the fittings) were changed in order to improve the vacuum level, thus decreasing the possibility of contamination; finally, the number of graphitization reactors was doubled (from 4 to 8). In those rare cases involving samples characterized by a complex nearly graphitic structure (e.g. burnt residues), the EA might not guarantee a complete combustion. For these samples, we successfully tested the new sample preparation line that has been recently installed at LABEC and especially dedicated to aerosol samples. This line is equipped with a custom-made combustion oven able to heat to 1000 °C. The subsequent gas separation is accomplished by chemical and thermal traps. As an example, the dating of organic matter collected from an Etruscan bronze statue will be presented and discussed.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernardoni, V, Calzolai, G, Chiari, M, Fedi, M, Lucarelli, F, Nava, S, Piazzalunga, A, Riccobono, F, Taccetti, F, Valli, G, Vecchi, R. 2013. Radiocarbon analysis on organic and elemental carbon in aerosol samples and source apportionment at an urban site in Northern Italy. Journal of Aerosol Science 56:8899.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Calzolai, G, Bernardoni, V, Chiari, M, Fedi, ME, Lucarelli, F, Nava, S, Riccobono, F, Taccetti, F, Valli, G, Vecchi, R. 2011. The new sample preparation line for radiocarbon measurements on atmospheric aerosol at LABEC. Nuclear Instruments and Methods in Physics Research B 269(3):203–8.Google Scholar
Chiari, M, Migliori, A, Mandò, PA. 2002. Measurement of low currents in an external beam set-up. Nuclear Instruments and Methods in Physics Research B 188(1–4):162–5.CrossRefGoogle Scholar
Chiari, M, Lucarelli, F, Mazzei, F, Nava, S, Paperetti, L, Prati, P, Valli, G, Vecchi, R. 2005. Characterization of airborne particulate matter in an industrial district near Florence by PIXE and PESA. X-Ray Spectrometry 34:323–9.Google Scholar
Fedi, ME, Cartocci, A, Manetti, M, Taccetti, F, Mandò, PA. 2007. The 14C AMS facility at LABEC, Florence. Nuclear Instruments and Methods in Physics Research B 259(1): 1822.Google Scholar
Fedi, ME, Alvarez-Iglesias, P, Caforio, L, Calzolai, G, Bernardoni, V, Chiari, M, Nava, S, Taccetti, F, Vecchi, R. 2012. Applications of radiocarbon measurements in environmental studies at INFN-LABEC, Florence. EPJ Web of Conferences 24:07002, doi:10.1051/epj-conf/20122407002.Google Scholar
Giuntini, L, Massi, M, Calusi, S. 2007. The external scanning proton microprobe of Firenze: a comprehensive description. Nuclear Instruments and Methods in Physics Research A 576(2–3):266–73.Google Scholar
Giuntini, L, Lucarelli, F, Mando, PA, Hooper, W, Barker, PH. 1995. Galileo's writings: chronology by PIXE. Nuclear Instruments and Methods in Physics Research B 95(3):389–92.Google Scholar
Lucarelli, F, Nava, S, Calzolai, G, Chiari, M, Udisti, R, Marino, F. 2011. Is PIXE still a useful technique for the analysis of atmospheric aerosols? The LABEC experience. X-Ray Spectrometry 40(3): 162–7.CrossRefGoogle Scholar
Massi, M, Giuntini, L, Chiari, M, Gelli, N, Mando, PA. 2002. The external beam microprobe facility in Florence: set-up and performance. Nuclear Instruments and Methods in Physics Research B 190(1–4):276–82.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–50.CrossRefGoogle Scholar
Sciré Calabrisotto, C, Fedi, ME, Caforio, L, Bombardieri, L, Mandò, PA. 2013. Collagen quality indicators for radiocarbon dating of bones: new data on Bronze Age Cyprus. Radiocarbon, these proceedings, doi: 10.2458/azu_js_rc.55.16353.Google Scholar
Szidat, S, Jenk, TM, Synal, H-A, Kalberer, M, Wacker, L, Hajdas, I, Kasper-Giebl, A, Baltensperger, U. 2006. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. Journal of Geophysical Research: Atmospheres 111 : D07206, doi: 10.1029/2005JD006590.CrossRefGoogle Scholar
Szidat, S, Bench, G, Bernardoni, V, Calzolai, G, Czimczik, C, Derendorp, L, Dusek, U, Elder, K, Fedi, ME, Genberg, J, Gustafsson, Ö, Kirillova, E, McNichol, AP, Perron, N, Santos, GM, Stenström, K, Swietlicki, E, Ushida, M, Vecchi, R, Wacker, L, Zhang, YL, Prévôt, ASH. 2013. Intercomparison of 14C analysis of carbonaceous aerosols: Exercise 2009. Radiocarbon, these proceedings, doi:10.2458/azu_js_rc.55.16314.Google Scholar
Taccetti, N, Giuntini, L, Casini, G, Stefanini, AA, Chiari, M, Fedi, ME, Mando, PA. 2002. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: overview and examples of applications. Nuclear Instruments and Methods in Physics Research B 188 (1–4):255–60.Google Scholar
Taccetti, F, Carraresi, L, Fedi, ME, Manetti, M, Mariani, P, Tobia, G, Mandò, PA. 2010. A beam profile monitor for rare isotopes in accelerator mass spectrometry: preliminary measurements. Radiocarbon 52(2):272–7.CrossRefGoogle Scholar