Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T01:21:13.928Z Has data issue: false hasContentIssue false

Assessment of Interlaboratory Pretreatment Protocols by Radiocarbon Dating an Elk Bone Found Below Laacher See Tephra at Miesenheim IV (Rhineland, Germany)

Published online by Cambridge University Press:  09 February 2016

Stuart J Fiedel*
Affiliation:
Louis Berger Group, Richmond, Virginia, USA
John R Southon
Affiliation:
Keck Carbon Cycle AMS Laboratory, University of California-Irvine, Irvine, California, USA
R E Taylor
Affiliation:
Department of Anthropology, University of California-Riverside, Riverside, California, USA; also: Cotsen Institute of Archaeology, University of California-Los Angeles, Los Angeles, California, USA
Yaroslav V Kuzmin
Affiliation:
Institute of Geology & Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Martin Street
Affiliation:
MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, RGZM, Schloß Monrepos, D-56567 Neuwied, Germany
Thomas F G Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, United Kingdom
Johannes van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, Groningen, the Netherlands; also: Faculty of Archaeology, Leiden University, Leiden, the Netherlands
Marie-Josée Nadeau
Affiliation:
Leibniz-Labor, Christian-Albrechts University, Kiel, Germany
Shweta Nalawade-Chavan
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, United Kingdom
*
Corresponding author. Email: sfiedel@louisberger.com.

Abstract

Four accelerator mass spectrometry (AMS) facilities undertook an interlaboratory exercise designed to examine the reliability and reproducibility of radiocarbon determinations on bone by dating a sample of elk (Alces alces) from Miesenheim IV. This specimen is derived from a secure geological context directly beneath the Laacher See tephra, which provides a precise terminus ante quern of ∼11,060 yr BP (∼13,050 cal yr BP). Regrettably, the results of the intercomparison exercise were complicated by evident contamination of the bone sample by exogenous organic material. This contaminant, probably humic acid, resulted in a wide span of ages (10,010 ± 30 to 11,100 ± 45 BP). The only method that yielded an accurate determination, consistent with the age of the tephra, was Oxford's single amino acid technique, which targets hydroxyproline. An acid hydrolysis step seems to have been crucial in breaking the bonds between the bone collagen and the contaminant.

Type
Radiocarbon Dating and the Paleolithic
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts-Bijma, AT, van der Plicht, J, Meijer, HAJ. 2001. Automatic AMS sample combustion and CO2 collection. Radiocarbon 43(2A):293–8.Google Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431–51.Google Scholar
Baales, M, Bittmann, F, Kromer, B. 1998. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken). Ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archdälogisches Korrespondenzblatt 28:191204.Google Scholar
Baales, M, Jöris, O, Street, M, Bittmann, F, Weninger, B, Wiethold, J. 2002. Impact of the Late Glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quaternary Research 58(3):273–88.Google Scholar
Beaumont, W, Beverly, R, Southon, JR, Taylor, RE. 2010. Bone preparation at the KCCAMS Laboratory. Nuclear Instruments and Methods in Physics Research B 268(7–8):906–9.CrossRefGoogle Scholar
Beverly, RK, Beaumont, W, Tauz, D, Ormsby, KM, von Reden, KF, Santos, GM, Southon, JR. 2010. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: status report. Radiocarbon 52(2):301–9.Google Scholar
Bittmann, F. 2007. Reconstruction of the Allerød vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900 cal B.P. Vegetation History and Archaeobotany 16(2–3):139–56.Google Scholar
Brauer, A, Endres, C, Gunter, C, Litt, T, Stebich, M, Negendank, FFW. 1999. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews 18(3):321–9.CrossRefGoogle Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187–92.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.Google Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155–63.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.Google Scholar
Brunnacker, K, Fruth, H-J, Juvigné, E, Urban, B. 1982. Spätpaläolithische Funde aus Thür, Kreis Mayen-Koblenz. Archäologisches Korrespondenzblatt 16:417–27.Google Scholar
Fiedel, SJ, Kuzmin, YV. 2010. Is more precise dating of Paleoindian expansion feasible? Radiocarbon 52(2):337–45.CrossRefGoogle Scholar
Frechen, J. 1959. Die Tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschritte der Geologie in Rheinland und Westfalen 4:363–70.Google Scholar
Friedrich, M, Kromer, B, Spurk, M, Hofmann, J, Kaiser, KF. 1999. Paleo-environment and radiocarbon calibration as derived from Lateglacial/early Holocene tree-ring chronologies. Quaternary International 61 (1):2739.Google Scholar
Gillespie, R, Hedges, REM. 1983. Sample chemistry for the Oxford high energy mass spectrometer. Radiocarbon 25(2):771–4.CrossRefGoogle Scholar
Grootes, PM, Nadeau, MJ, Rieck, A. 2004. 14C-AMS at the Leibniz-Labor: radiometric dating and isotope research. Nuclear Instruments and Methods in Physics Research B 223–224:5561.CrossRefGoogle Scholar
Hajdas, I, Ivy-Ochs, SD, Bonani, G, Lotter, AF, Zolitschka, B, Schluchter, C. 1995. Radiocarbon age of the Laacher See Tephra: 11,230 ± 40 BP. Radiocarbon 37(2):149–54.Google Scholar
Hedges, REM, van Klinken, GJ. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34(3):279–91.Google Scholar
Hedges, REM, Housley, RA, Bronk Ramsey, C, van Klinken, GJ. 1993. Radiocarbon dates from the Oxford AMS System: Archaeometry Datelist 16. Archaeometry 35(1):147–67.Google Scholar
Heine, K. 1993. Warmzeitliche Bodenbildung im Bølling/Allerød im Mittelrheingebiet. Decheniana 146:315–24.Google Scholar
Higham, TFG, Jacobi, RM, Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2):179–95.CrossRefGoogle Scholar
Kromer, B, Spurk, M, Remmele, S, Barbetti, M, Toniello, V. 1998. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring-series. Radiocarbon 40(1):351–8.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
Marom, A, McCullagh, J, Higham, T, Sinitsyn, A, Hedges, R. 2012. Single amino acid radiocarbon dating of Upper Palaeolithic modern humans. Proceedings of the National Academy of Sciences of the USA 109(18):6878–81.CrossRefGoogle Scholar
McCullagh, JSO, Marom, A, Hedges, REM. 2010. Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52(2):620–34.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.Google Scholar
Ovodov, ND, Crockford, SJ, Kuzmin, YV, Higham, TFG, Hodgins, GWL, van der Plicht, J. 2011. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum. PLoS ONE 6(7):e22821, doi:10.1371/journal.pone.0022821.Google Scholar
Potter, BA, Reuther, J. 2012. High resolution radiocarbon dating at the Gerstle River Site, central Alaska. American Antiquity 77(1):7198.Google Scholar
Scharf, BW, Bittmann, F, Boettger, T. 2005. Freshwater ostracods (Crustacea) from the Lateglacial site at Miesenheim, Germany, and temperature reconstruction during the Meiendorf Interstadial. Palaeogeography, Palaeoclimatology, Palaeoecology 225(1–4):203–15.Google Scholar
Schirmer, U. 1999. Pollenstratigraphische Gliederung des Spätglazials im Rheinland. Eiszeitalter und Gegenwart 49:132–43.Google Scholar
Schweitzer, HJ. 1958. Entstehung und Flora des Trasses im nördlichen Laacher Seegebiet. Eiszeitalter and Gegenwart 9(1):2848.Google Scholar
Street, M. 1995. Evidence for late Allerød ecology conserved by Laacher See tephra: Miesenheim 2, Miesenheim 4, Thür, Brohl Valley sites, Glees, Krufter Ofen, Wingertsberg. In: Schirmer, W, editor. Quaternary Field Trips in Central Europe. Volume 2. Munich: Pfeil. p 928–34.Google Scholar
Street, M, Baales, M, Weninger, B. 1994. Absolute Chronologic des späten Paläolithikums und Frühmesolithikums im nördlichen Rheinland. Archäologisches Korrespondenzblatt 24(1):128.Google Scholar
van der Plicht, J, Wijma, S, Aerts, AT, Pertuisot, MH, Meijer, HAJ. 2000. The Groningen AMS facility: status report. Nuclear Instruments and Methods in Physics Research B 172(1–4):5865.Google Scholar
van Raden, UJ, Colombaroli, D, Gilli, A, Schwander, J, Bernasconi, SM, van Leeuwen, J, Leuenberger, M, Eicher, U. 2013. High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeography, Palaeoclimatology, Palaeoecology (in press), doi: 10.1016/j.palaeo.2012.05.017.CrossRefGoogle Scholar
von den Bogaard, P, Schmincke, H-U. 1985. Laacher See tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96(12):1554–71.Google Scholar
Wood, RE, Bronk Ramsey, C, Higham, TFG. 2010. Refining the ultrafiltration bone pretreatment background for radiocarbon dating at ORAU. Radiocarbon 52(2–3):600–11.Google Scholar