Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T14:27:00.377Z Has data issue: false hasContentIssue false

Decadal Changes in Bomb-Produced Radiocarbon in the Pacific Ocean from the 1990s to 2000s

Published online by Cambridge University Press:  09 February 2016

Yuichiro Kumamoto*
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natushima-cho, Yokosuka, Kanagawa 237-0061, Japan
Akihiko Murata
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natushima-cho, Yokosuka, Kanagawa 237-0061, Japan
Takeshi Kawano
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natushima-cho, Yokosuka, Kanagawa 237-0061, Japan
Shuichi Watanabe
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natushima-cho, Yokosuka, Kanagawa 237-0061, Japan
Masao Fukasawa
Affiliation:
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natushima-cho, Yokosuka, Kanagawa 237-0061, Japan
*
1Corresponding author: Email: kumamoto@jamstec.go.jp.

Abstract

In the 2000s, radiocarbon in dissolved inorganic carbon was measured during 7 revisit cruises along the lines of the World Ocean Circulation Experiment in the Pacific Ocean. Comparison of 14C data along these lines from the 1990s and 2000s revealed decadal changes of 14C concentration in the thermocline, most of which were due to temporal changes in the bomb-produced 14C. Vertical profiles and vertical-integrated inventories of the bomb 14C in the subarctic and equatorial regions did not change appreciably. In the southern subtropical region, 14C decreased in the upper thermocline from the surface to ∼500 m depth. In contrast, 14C increased in the lower thermocline below ∼500 m depth. The opposing directions in 14C change resulted in small temporal changes in the total inventory of bomb 14C. On the other hand, the water-column inventory significantly decreased in the northwestern subtropical region due to the 14C decrease in the upper thermocline. These decadal changes in bomb 14C indicate that the turnover time of thermocline circulation in the northwestern subtropical region is faster than that in the southern subtropical region, and imply an interbasin transport of bomb 14C from the North Pacific to other basins.

Type
Oceanic Carbon Cycle
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Broecker, WS, Peng, TH, Östlund, GH, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90(C4):6953–70.CrossRefGoogle Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, T-H, Östlund, GH. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochemical Cycles 9(2):263–88.Google Scholar
Deutsch, C, Emerson, S, Thompson, L. 2006. Physical-biological interactions in North Pacific oxygen variability. Journal of Geophysical Research 111: C09S90, doi:10.1029/2005JC003179.Google Scholar
Fine, RA, Maillet, KA, Sullivan, KF, Willey, D. 2001. Circulation and ventilation flux of the Pacific Ocean. Journal of Geophysical Research 106(C10):22,15978.CrossRefGoogle Scholar
Graven, HD, Gruber, N, Key, R, Khatiwala, S, Giraud, X. 2012. Changing controls on oceanic radiocarbon: new insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. Journal of Geophysical Research 117: C10005, doi:10.1029/2012JC008074.CrossRefGoogle Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201–3.CrossRefGoogle Scholar
Jenkins, WJ, Elder, KL, McNichol, AP, von Reden, K. 2010. The passage of the bomb radiocarbon pulse into the Pacific Ocean. Radiocarbon 52(3):1182–90.Google Scholar
Key, RM, Kozyr, A, Sabine, CL, Lee, K, Wanninkhof, R, Bullister, JL, Feely, RA, Millero, FJ, Mordy, C, Peng, TH. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18: GB4031, doi:101029/2004GB002247.Google Scholar
Kouketsu, S, Fukasawa, M, Sasano, D, Kumamoto, Y, Kawano, T, Uchida, H, Doi, T. 2010. Changes in water properties around North Pacific intermediate water between the 1980s, 1990s and 2000s. Deep-Sea Research II 57(13–14):1177–87.Google Scholar
Kumamoto, Y, Murata, A, Saito, C, Honda, MC, Kusakabe, M. 2002. Bomb radiocarbon invasion into the northwestern North Pacific. Deep-Sea Research II 49(24–25):5339–51.Google Scholar
Kumamoto, Y, Murata, A, Watanabe, S, Fukasawa, M, Yoneda, M, Shibata, Y, Morita, M. 2004. Preliminary results of radiocarbon measurement during the WHP P17N re-visit cruise in 2001. Nuclear Instruments and Methods in Physics Research B 223–224:441–5.Google Scholar
Kumamoto, Y, Murata, A, Watanabe, S, Fukasawa, M. 2007. Decadal changes of bomb radiocarbon in the subtropical South Pacific Ocean between 1992 and 2003. Radiocarbon 49(2):937–45.Google Scholar
Kumamoto, Y, Murata, A, Watanabe, S, Fukasawa, M. 2011. Temporal and spatial variations in bomb radiocarbon along BEAGLE2003 lines—revisits of WHP P06, A10, and 103/104 in the Southern Hemisphere oceans. Progress in Oceanography 89(1–4):4960.Google Scholar
McKinley, GA, Takahashi, T, Buitenhuis, E, Chai, F, Christian, JR, Doney, SC, Jiang, MS, Lindsay, K, Moore, JK, Le Quéré, C, Lima, I, Murtugudde, R, Shi, L, Wetzel, P. 2006. North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. Journal of Geophysical Research 111: C07S06, doi:10.1029/2005JC003173.Google Scholar
McPhaden, MJ, Zhang, D. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415(6872):603–8.Google Scholar
McPhaden, MJ, Zhang, D. 2004. Pacific Ocean circulation rebounds. Geophysical Research Letters 31: L18301, doi:10.1029/2004GL020727.Google Scholar
Naegler, T. 2009. Reconciliation of excess 14C-constrained global CO2 piston velocity estimates. Tellus B 61(2):372–84.Google Scholar
Naegler, T, Levin, I. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research 111: D12311, doi:10.1029/2005JD006758.Google Scholar
Östlund, HG, Stuiver, M. 1980. GEOSECS Pacific radiocarbon. Radiocarbon 22(1):2553.CrossRefGoogle Scholar
Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochemical Cycles 18: GB2202, doi:10.1029/2003GB002211.Google Scholar
Rodgers, KB, Schrag, DP, Cane, MA, Naik, NH. 2000. The bomb 14C transient in the Pacific Ocean. Journal Geophysical Research 105(C4):8489–512.Google Scholar
Schlitzer, R. 2012. Ocean Data View. URL: <http://odv.awi.de/en/home/>..>Google Scholar
Stuiver, M. 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon 25(2):793–5.Google Scholar
Stuiver, M, Östlund, HG. 1980. GEOSECS Atlantic radiocarbon. Radiocarbon 22(1):124.Google Scholar
Stuiver, M, Östlund, HG. 1983. GEOSECS Indian Ocean and Mediterranean radiocarbon. Radiocarbon 25(1):129.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Sweeney, C, Gloor, E, Jacobson, AJ, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21: GB2015, doi:101029/2006GB002784.Google Scholar
Warner, MJ, Bullister, JL, Wisegarver, DP, Gammon, RH, Weiss, RF. 1996. Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989. Journal Geophysical Research 101(C9):20,52542.Google Scholar
Watanabe, YW, Ono, T, Harada, K, Fukasawa, M. 1999. A preliminary study of oceanic bomb radiocarbon inventory in the North Pacific during the last two decades. Journal of Oceanography 55(6):705–16.Google Scholar