Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T13:00:47.368Z Has data issue: false hasContentIssue false

Can we Use Calcined Bones for 14C Dating the Paleolithic?

Published online by Cambridge University Press:  09 February 2016

Antoine Zazzo*
Affiliation:
CNRS MNHN UMR 7209 “Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements,” Dept Ecologie et Gestion de la Biodiversité, 55, rue Buffon, 75231 Paris Cedex 05, France
Matthieu Lebon
Affiliation:
CNRS UMR 171, Laboratoire du Centre de Recherche et de Restauration des Musées de France (LC2RMF), Palais du Louvre, 14, quai François Mitterrand, 75001 Paris, France Present address: CNRS UMR 8220 UPMC “Laboratoire dArchéologie Moléculaire et Structurale,” 3, rue Galilée, 94200 Ivry-sur-Seine, France
Laurent Chiotti
Affiliation:
MNHN CNRS UMR 7194 “Histoire Naturelle de l'Homme Préhistorique,” Dept de Préhistoire, Musée de l'Abri Pataud, 20 rue du Moyen-Age, 24620 Les Eyzies-de-Tayac, France
Clothilde Comby
Affiliation:
LMC14 (UMS2572), CEA Saclay, CNRS, IRD, IRSN, Ministère de la Culture et de la Communication, 91191 Gif-sur-Yvette, France
Emmanuelle Delqué-Količ
Affiliation:
LMC14 (UMS2572), CEA Saclay, CNRS, IRD, IRSN, Ministère de la Culture et de la Communication, 91191 Gif-sur-Yvette, France
Roland Nespoulet
Affiliation:
MNHN CNRS UMR 7194 “Histoire Naturelle de l'Homme Préhistorique,” Dept de Préhistoire, Musée de l'Abri Pataud, 20 rue du Moyen-Age, 24620 Les Eyzies-de-Tayac, France
Ina Reiche
Affiliation:
CNRS UMR 171, Laboratoire du Centre de Recherche et de Restauration des Musées de France (LC2RMF), Palais du Louvre, 14, quai François Mitterrand, 75001 Paris, France Present address: CNRS UMR 8220 UPMC “Laboratoire dArchéologie Moléculaire et Structurale,” 3, rue Galilée, 94200 Ivry-sur-Seine, France
*
Corresponding author. Email: zazzo@mnhn.fr.

Abstract

This work aims to test the reliability of calcined bones for radiocarbon dating of the Paleolithic. Fifty-five calcined bone samples coming from Aurignacian and Gravettian layers at Abri Pataud (Dordogne, France) were selected based on their macroscopic features. For each sample, the heating state was estimated on the basis of bone crystallinity (splitting factor [SF] using FTIR) and δ13C value. Twenty-seven bone samples (3 unburnt and 24 calcined) from 5 different levels were prepared for 14C dating. The majority (15/24) of the calcined samples had to undergo a sulfix treatment prior to graphitization, probably due to the presence of cyanamide ion in these samples. The comparison between our results and recently published dates on bone collagen for the same levels shows that unburned bone apatite is systematically too young, while a third of the calcined bones fall within or very near the range of expected age. No clear correlation was found between 14C age offset and δ13C value or SF. Most of the sulfixed samples (14/16) yielded ages that were too young, while almost all of the non-sulfixed samples (8/9) gave ages similar or <0.2 pMC from the expected minimum age. Although preliminary, these results suggest that sulfix should be avoided if possible and that clean CO2 gas from well-calcined Paleolithic bones can provide reliable 14C ages.

Type
Radiocarbon Dating and the Paleolithic
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chadefaux, C, Reiche, I. 2009. Archaeological bone from the macro- to nanoscale: heat-induced modifications at low temperatures. Journal of Nano Research 8:157–72.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.CrossRefGoogle Scholar
De Mulder, G, Van Strydonck, M, Boudin, M, Leclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the Late Bronze Age and Early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.CrossRefGoogle Scholar
De Mulder, G, Van Strydonck, M, Boudin, M. 2009. The impact of cremated bone dating on archaeological chronology of the low countries Radiocarbon 51(2):579600.CrossRefGoogle Scholar
De Mulder, G, Van Strydonck, M, Annaert, R, Boudin, M. 2012. A Merovingian surprise: early Medieval radiocarbon dates on cremated bone (Borsbeek, Belgium). Radiocarbon 54(3–4):581–8CrossRefGoogle Scholar
Dowker, SEP, Elliott, JC. 1979. Infrared absorption bands from NCO and NCN2- in heated carbonate-containing apatites prepared in the presence of NH4 + ions. Calcified Tissue International 29(1):177–8.CrossRefGoogle ScholarPubMed
Habelitz, S, Pascual, L, Duran, A. 1999. Nitrogen-containing apatite. Journal of the European Ceramic Society 19(15):2685–94.CrossRefGoogle Scholar
Habelitz, S, Pascual, L, Duran, A. 2001. Transformation of tricalcium phosphate into apatite by ammonia treatment. Journal of Materials Science 36(17):4131–5.CrossRefGoogle Scholar
Hammer, Ø, Harper, DAT, Ryan, PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1). 9 p. URL: http://palaeo-electronica.org/2001_1/past/issuel_01.htm.Google Scholar
Henry-Gambier, D, Nespoulet, R Chiotti, L, Drucker, D, Lenoble, A. 2013. Chapitre 4 – Datations. In: Nespoulet, R, Chiotti, L, Henry-Gambier, D, editors. Le Gravettien Final de l'Abri Pataud (Dordogne, France). Fouilles et Etudes 2005–2009. BAR International Series 2458. Oxford: Archaeopress. p 4350.Google Scholar
Higham, TFG, Jacobi, R, Basell, L, Bronk Ramsey, C, Chiotti, L, Nespoulet, R. 2011. Precision dating of the Palaeolithic: a new radiocarbon chronology for the Abri Pataud (France), a key Aurignacian sequence. Journal of Human Evolution 61(5):549–63.CrossRefGoogle Scholar
Holden, JL, Phakey, PP, Clement, JG. 1995. Scanning electron microscope observations of incinerated human femoral bone: a case study. Forensic Science International 74(1–2):1728.CrossRefGoogle ScholarPubMed
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587–99.CrossRefGoogle Scholar
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating cremated bone. Radiocarbon 43(2A):249–54.CrossRefGoogle Scholar
Lebon, M, Reiche, I, Bahain, JJ, Chadefaux, C, Moigne, AM, Fröhlich, F, Sémah, F, Schwarcz, HP, Falguères, C. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. Journal of Archaeological Science 37(9):2265–76.CrossRefGoogle Scholar
Lenoble, A, Agsous, S. 2012. Abri Pataud – sédimentogenèse, paléopédologie, chronologie des dépôts. In: Bertran, P, Lenoble, A, editors. Quaternaire continental d'Aquitaine: un point sur les travaux récents. AFEQASF. 160 p.Google Scholar
Movius, HL. 1977. Excavation of the Abri Pataud, Les Eyzies (Dordogne): Stratigraphy. American School of Prehistoric Research, 31. Cambridge: Peabody Museum, Harvard University. 167 p.Google Scholar
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Hornstrup, KM, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.CrossRefGoogle Scholar
Pasteris, JD, Wopenka, B, Freeman, JJ, Rogers, K, Valsami-Jones, E, van der Houwen, JAM, Silva, MJ. 2004. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25(2):229–38.CrossRefGoogle Scholar
Person, A, Bocherens, H, Mariotti, A, Renard, M. 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126(1–2):135–49.CrossRefGoogle Scholar
Reiche, I. 2010. Heating and diagenesis-induced heterogeneiteis in the chemical composition and structure of archaeological bones from the Neolithic site of Chalain 10 (Jura, France). Palethnologie 2:129–44.Google Scholar
Rozanski, R, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506–19.CrossRefGoogle Scholar
Shipman, P, Foster, G, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11(4):307–25.CrossRefGoogle Scholar
Théry-Parisot, I. 1998. Économie du combustible et paléoécologie en contexte glaciaire et périglaciaire. Paléolithique moyen et supérieur du Sud de la France (expérimentation, anthracologie, taphonomie) [PhD thesis]. Lille: Atelier national de Reproduction des Thèses. 499 p.Google Scholar
Weiner, S, Bar-Yosef, O. 1990. States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17(2):187–96.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The origin of the carbon in bone apatite of cremated bones. Radiocarbon 52(2–3):578–86.Google Scholar
Veil, S, Breest, K, Grootes, P, Nadeau, M-J, Hüls, M. 2012. A 14 000-year-old amber elk and the origins of northern European art. Antiquity 86(333):660–73.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):5261.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F, Person, A, Boucher, H. 2009. Radiocarbon dating of cremated bones: Where does the carbon come from? Radiocarbon 51(2):601–11.CrossRefGoogle Scholar
Zazzo, A, Saliège, J-F, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855–66.CrossRefGoogle Scholar