Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-18T20:04:07.528Z Has data issue: false hasContentIssue false

From an Estuary to a Freshwater Lake: A Paleo-Estuary Evolution in the Context of Holocene Sea-Level Fluctuations, SE Brazil

Published online by Cambridge University Press:  09 February 2016

Antonio Alvaro Buso Junior*
Affiliation:
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Luiz Carlos Ruiz Pessenda
Affiliation:
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Paulo Eduardo de Oliveira
Affiliation:
SÃo Francisco University, Brazil
Paulo César Fonseca Giannini
Affiliation:
Instituto de Geociências da Universidade de SÃo Paulo, Brazil
Marcelo Cancela Lisboa Cohen
Affiliation:
Federal University of Pará, Brazil
Cecilia Volkmer-Ribeiro
Affiliation:
FundaçÃo Zoobotânica do Rio Grande do Sul, Brazil
Sonia Maria Barros de Oliveira
Affiliation:
Instituto de Geociências da Universidade de SÃo Paulo, Brazil
Deborah Ines Teixeira Favaro
Affiliation:
Instituto de Pesquisas Energéticas e Nucleares, Brazil
Dilce De Fátima Rossetti
Affiliation:
National Institute of Space Research, Brazil
Flávio Lima Lorente
Affiliation:
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Marcos Antonio Borotti Filho
Affiliation:
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Jolimar Antonio Schiavo
Affiliation:
Universidade Estadual de Mato Grosso do Sul, Brazil
José Albertino Bendassolli
Affiliation:
Center for Nuclear Energy in Agriculture (CENA/USP), Brazil
Marlon Carlos França
Affiliation:
Programa de Pós-GraduaçÃo em Geologia e Geoquímica, Instituto de Geociências, Univ. Federal do Pará (UFPA), Brazil
José Tasso Felix Guimarães
Affiliation:
Programa de Pós-GraduaçÃo em Geologia e Geoquímica, Instituto de Geociências, Univ. Federal do Pará (UFPA), Brazil
Geovane Souza Siqueira
Affiliation:
Vale Nature Reserve; Brazil
*
2Corresponding author. Email: alvaro.buso.jr@gmail.com.

Abstract

A sediment core was studied to characterize the influences of Holocene sea-level variations in the Barra Seca River valley, in the Atlantic rainforest, Linhares, Espírito Santo, southeastern Brazil. Biological proxies (pollen, spores, and sponge spicules), 14C dating, granulometry, δ13C, δ15N, C/N and major chemical elements revealed the establishment and the evolution of a paleo-estuary during the interval from ∼7700–585 cal BP. During the interval ∼7700–7000 cal BP, the study site was occupied by a bay-head delta, the inner portion of the paleo-estuary, presenting the most dense mangrove coverage of the entire record. In the interval ∼7000–3200 cal BP, the site was occupied by the central basin, possibly a consequence of the landward migration of the paleo-estuary. This interval presents reduced mangrove coverage, probably due to the permanent flooding of the valley. From ∼3200 cal BP, the marine influence at the site decreased probably as result of the seaward migration of the coast line. From ∼600 cal BP, the modern floodplain and freshwater lake were established. This interpretation is in agreement with the sea-level curves for the southeastern Brazilian coast, except for the fact that evidence of sea levels lower than the present at ∼4000 and ∼2500 cal BP as suggested by some authors were not found.

Type
Paleoclimatology and Paleohydrology
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, RJ, Lessa, GC, De Souza, MC. 2006. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.Google Scholar
Batista, TCA, Volkmer-Ribeiro, C, Melão, MGG. 2007. Espongofauna da Área de Proteção Ambiental Meandros do rio Araguaia (GO, MT, TO), Brasil, com descrição de Heteromeyenia cristalina sp. nov. (Porifera, Demospongiae). Revista Brasileira de Zoologia 24(3):608–30.Google Scholar
Bonetto, AA, Ezcurra de Drago, ID. 1973. Aportes al conocimiento de las esponjas del Orinoco. Physis 28(76):211–6.Google Scholar
Boutton, TW. 1991. Stable carbon isotope ratios of natural materials. II. Atmospheric, terrestrial, marine and freshwater environments. In: Coleman, DC, Fry, B, editors. Carbon Isotope Techniques. New York: Academic Press. p 155–71.Google Scholar
Bowerbank, JS. 1863. A monograph of the Spongillidae. Proceedings of the Zoological Society of London 1863:440–72.Google Scholar
Boyle, JF. 2002. Inorganic geochemical methods in palaeolimnology. In: Last, WM, Smol, JP, editors. Tracking Environmental Change Using Lake Sediments. Volume 2. Dordrecht: Springer. p 83141.Google Scholar
Brauer, A, Mingram, J, Frank, U, Günter, C, Schettler, G, Wulf, S, Zolitschka, B, Negendank, JFW. 2000. Abrupt environmental oscillations during the Early Weichselian recorded at Lago Grade di Monticchio, southern Italy. Quaternary International 73–74:7990.Google Scholar
Buso Junior, AA, Pessenda, LCR, De Oliveira, PE, Cohen, MCL, Giannini, PCF, Schiavo, JA, Rossetti, DF, Volkmer-Ribeiro, C, Oliveira, SMB, Lorente, FL, Borotti Filho, MA, Bendassolli, JA, Franca, MC, Guimarães, JTF, Siqueira, GS. 2013. Late Pleistocene and Holocene vegetation, climate dynamics, and Amazonian taxa in the Atlantic Forest, Linhares, SE Brazil. Radiocarbon, these proceedings, doi: 10.2458/azu_is_rc.55.16211.Google Scholar
Colinvaux, P, De Oliveira, PE, Patiño, JEM. 1999. Amazon Pollen Manual and Atlas. Manual e Atlas Palinológico da Amazonia. Amsterdam: Harwood Academic Publishers.Google Scholar
Dalrymple, WR, Zaitlin, BA, Boyd, R. 1992. Estuarine fades models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology 62(6): 1130–46.Google Scholar
Davis, MB, Deevey, ES Jr. 1964. Pollen accumulation rates: estimates from Late-Glacial sediment of Rogers Lake. Science 145(3638): 1293–95.Google Scholar
Dominguez, JML. 2009. The coastal zone of Brazil. In: Dillenburg, SR, Hesp, PA, editors. Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Berlin: Springer-Verlag. p 1746.Google Scholar
Grimm, EC. 1992. Tilia and Tilia-graph: pollen spreadsheet and graphics program. Program and Abstracts, 8th International Palynological Congress. Aix-en-Provence. p 56.Google Scholar
Hooper, JNA, van Soest, RWM. 2002. Systema Porifera. A Guide to the Classification of Sponges. Dordrecht: Kluwer Academic. 1756 p.Google Scholar
Macko, SA, Estep, MLF. 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions or organic matter. Organic Geochemistry 6:787–90.Google Scholar
Marnette, ECL, Van Breemen, N, Horduk, KA, Cappenberg, TE. 1993. Pyrite formation in two freshwater systems in the Netherlands. Geochimica et Cosmochimica Acta 57:4165–77.Google Scholar
Martin, L, Suguio, K. 1992. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeography, Palaeoclimatology, Palaeoecology 99:119–40.Google Scholar
Martin, L, Dominguez, JML, Bittencourt, ACSP. 2003. Fluctuating Holocene sea-levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. Journal of Coastal Research 19: 101–24.Google Scholar
Matsuura, Y, Wada, E. 1994. Carbon and nitrogen stable isotope ratios in marine organic matters of the coastal ecosystem in Ubatuba, southern Brazil. Ciência e Cultura 46:141–6.Google Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0-11.0 cal kyr BP. Radiocarbon 46(3):1087–92.Google Scholar
Megonigal, JP, Hines, ME, Visscher, PT. 2003. Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Holland, HD, Turekian, KK, editors. Treatise on Geochemistry. Volume 8. San Diego: Elsevier Ltd. p 317424.Google Scholar
Meyers, PA. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34:261–89.Google Scholar
Murray-Wallace, CV. 2007. Eustatic sea-level changes since the last glaciation. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 3034–43.Google Scholar
Oenema, O. 1990. Pyrite accumulation in salt marshes in the Eastern Scheldt, southwest Netherlands. Biochemistry 9:7598.Google Scholar
Owens, NJP. 1985. Variations in the natural abundance of 15N in estuarine suspended particulate matter: a specific indicator of biological processing. Estuarine, Coastal and Shelf Science 20(4):505–10.Google Scholar
Parker, AG, Goudie, AS, Stokes, S, White, K, Hodson, MJ, Manning, M, Kennet, D. 2006. A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quaternary Research 66(3): 465–76.Google Scholar
Pessenda, LCR, Saia, SEMG, Gouveia, SEM, Ledru, MP, Sifeddine, A, Amaral, PGC, Bendassolli, JA. 2010. Last millennium environmental changes and climate inferences in the Southeastern Atlantic forest, Brazil. Annals of the Brazilian Academy of Sciences 82(3):717–29.Google Scholar
Rau, GH, Takahashi, T, Des Marais, DJ. 1989. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341(6242):516–8.Google Scholar
Rossetti, DF. 2008. Ambientes estuarinos. In: Silva, AJCLP, Aragão, MANF, Magalhães, AJC, editors. Ambientes de Sedimentação Siliciclástica do Brasil. São Paulo: Beca/BALL edições Ltda. p 194211.Google Scholar
Sagemann, BB, Lyons, TW. 2003. Geochemistry of fine-grained sediments and sedimentary rocks. In: Holland, HD, Turekian, KK, editors. Treatise on Geochemistry. Volume 7. San Diego: Elsevier. p 115–58.Google Scholar
Tavares, MCM, Volkmer-Ribeiro, C, Rosa-Barbosa, R. 2003. Primeiro registro de Corvoheteromeyenia australis (Bonetto & Ezcurra de Drago) para o Brasil, com chave taxonômica para os poríferos do Parque Estadual Delta do Jacuí, Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia 20(2):169–82.Google Scholar
Traxler, L. 1895. Spikule vos Süsswasserschwämmen aus Brasilien. Foldtani Kozlony Colônia 25(62–64):238–40.Google Scholar
Volkmer-Ribeiro, C, Machado, VS. 2007. Freshwater sponges (Porifera, Demospongiae) indicators of some coastal habitats in South America: redescriptions and key to identification. Iheringia, Série Zoologia 97(2): 157–67.Google Scholar
Volkmer-Ribeiro, C, De Rosa-Barbosa, R, Tavares, MCM. 1988. Anheteromeyenia sheilae sp. n. e outras esponjas dulciaquícolas da região costeira do Rio Grande do Sul (Porifera, Spongillidae). Iheringia, Série Zoologia 68:8398.Google Scholar
Volkmer-Ribeiro, C, Motta Marques, D, Rosa-Barbosa, R, Machado, VS. 2006. Sponge spicules in sediments indicate evolution of coastal freshwater bodies. Journal of Coastal Research 39:469–72.Google Scholar
Wada, E, Kabaya, Y, Mitamura, O, Saijo, Y, Tundisi, JG. 1989. Stable isotopic studies on the Rio Doce Valley lake ecosystem in Brazil. In: Saijo, Y, Tundisi, JG, editors. Limnological Studies in Rio Doce Valley Lakes, Brazil. Nagoya: Nagoya University. p 71–6.Google Scholar
Weltner, W. 1895. Spongillidenstudien III. Katalog und Verbreitung der bekannten Süsswasserschswämme. Archiv für Naturgeschichte 61(1):114–44.Google Scholar
Wentworth, CK. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377–92.Google Scholar