The University of Arizona

Dating Recent Peat Accumulation in European Ombrotrophic Bogs

Johannes van der Plicht, Dan Yeloff, Marjolein van der Linden, Bas van Geel, Sally Brain, Frank M Chambers, Julia Webb, Phillip Toms


This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed) bogs produced using the 14C bomb peak, 210Pb, 137Cs, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the results of the different dating methods agree well. In 5 cores, there is a clear discrepancy between the 14C bomb peak and 210Pb age estimates. In the upper layers of the profiles, the age estimates of 14C and 210Pb are in agreement. However, with increasing depth, the difference between the age estimates appears to become progressively greater. The evidence from the sites featured in the study suggests that, provided aboveground plant material (seeds, leaves) is selected for dating, the 14C bomb peak is a reliable dating method, and is not significantly affected by the incorporation of old carbon with low 14C content originating from sources including air pollution deposition or methane produced by peat decomposition. 210Pb age estimates that are too old may be explained by the enrichment of 210Pb activity in the surface layers of peat resulting from a hypothesized mechanism where rapidly infilling hollows, rich in binding sites, may scavenge 210Pb associated with dissolved organic matter passing through the hollow, as part of the surface drainage network. Until further research identifies and resolves the cause of the inaccuracy in 210Pb dating, age estimates of peat samples based only on 210Pb should be used with caution.

DOI: 10.2458/azu_js_rc.55.16057


dating, peat, Europe, bomb peak

Full Text: