COMPILATION OF ISOTOPIC DATES FROM ANTARCTICA

MINZE STUIVER AND THOMAS P. BRAZIUNAS

Quaternary Research Center and Department of Geological Sciences
University of Washington, Seattle, Washington 98195

This compilation of radiometric data from Antarctica contains abstracted information from 400 publications, resulting in nearly 2500 separate entries. Each entry, or "date listing", gives basic information of the sample site as well as the dating method and the age(s) of the sample analysed. The date list differs from those routinely published in Radiocarbon because we included not only radiocarbon but all dating methods.

Fifty-six percent of the entries describe potassium-argon dates whereas 18 percent are derived from radiocarbon determinations. Rubidium-strontium accounts for 15 percent of the total and all other dating methods comprise the remaining 11 percent.

Nature of contents

The date list consists of three parts:

1. A master list (LIST 1, which was completed through 1982 with partial coverage of 1983 and 1984) of published isotopic dates on rocks, minerals, sediments, organic remains and lake waters of Antarctica. The date listings are grouped into broad geographic areas (Figure 1; Table 1) and arranged systematically by latitude and longitude, as reported in the reference source(s) or as assigned by ourselves.

2. A separate list (LIST 2) of apparent radiocarbon "dates" on modern (known age) organisms, sea water, and lake water from the same geographic areas. This second list is arranged in the same order as the first list.

3. A bibliography of reference sources for the date lists.

LIST 1:

Ages were determined by one of the following dating methods: potassium-argon (40K-40Ar; 40Ar-39Ar total gas release, incremental heating and isochron methods); radiocarbon (14C); fission track (238U); lead isotopic methods (207Pb-206Pb common lead; 207Pb-204Pb, 206Pb-204Pb isochron approach; Pb-alpha); uranium-lead (238U-206Pb and 235U-207Pb and the associated 207Pb-206Pb independent dating, concordia and isochron methods); thorium-lead (232Th-208Pb); rubidium-strontium (87Rb-87Sr); samarium-neodymium (147Sm-143Nd) and uranium-thorium disequilibrium (234U-230Th). Additional details are given in Table 2. These methods were applied to a great variety of sample materials (Table 3).

Each mainland geographic area includes the smaller islands and ice shelves proximate to it, with the exception of islands and ice shelves which
define geographic areas in themselves. Ocean sites within approximately 250 kilometers of the Antarctic coast or its associated islands are also included in the compilation as distinct "geographic areas".

The specific form of each date listing depends on the information available in the reference source(s), and our approximations and inferences. For example, we have assigned approximate geographic coordinates to sample sites when this information is not reported in the reference source(s). Also, in the instances in which different references report divergent information on the same sample (e.g. different coordinates, locations, calculated dates, or sample material), we generally elected to list the information contained in the most recent publication source. We often include the alternative information presented by the other reference source(s) in parenthetical comments that follow the date listing.

In many instances, different publications report a date for what appears to be the same sample although no sample number is explicitly stated. Listing every unlabelled sample separately would greatly extend the length of the date lists. Our dilemma was to avoid a host of repetitions without assuming too much about the identity of the samples beyond the information reported in the reference source(s). We have tried to list each truly different sample only once. Our inferences are stated in the parenthetical comments at the end of each date listing (see format explanation below).

For references that are published in a language other than English, the included information depends on the extent of our translation efforts.

For these reasons and because even the data extracted directly and entirely from one reference source has often been greatly abbreviated to conform to the date list format, we feel that these listings should serve only as a guide to the original references. The reference source(s) should be consulted before referring to any of these listed dates, especially in the cases in which our inferences contributed to the date listing.

To limit the extent of the literature search, isotopic dating of ice and Antarctic meteorites is not included. The compilation does contain "unpublished data" cited in the literature, but dates reported only in unpublished masters and doctoral theses have not been included.

LIST 2:

The separate list of radiocarbon dates on modern (known age) Antarctic materials is pertinent to the question of the magnitude of the "correction factor" for radiocarbon reservoir deficiency. Such a factor must be applied to the conventional radiocarbon dates of Antarctic materials in the first list. Many radiocarbon analyses from outside the geographic extent of this compilation also apply to this problem, for example ERO58, GARS8, HAY75, OMD83, OST80, STI66, and STU69 (for an explanation of the bibliographic code, see the next paragraph).
BIBLIOGRAPHY:

The reference bibliography is arranged systematically by code. The first three letters of the code are from the primary author's last name, the two numbers reflect the year of publication, and the final letter (if any) distinguishes articles with otherwise identical codes. When a reference was originally published in a language other than English and an English translation was published in a later year, the earlier date is used in the reference code.

The bibliography generally lists only the references used in the compilation. However, other references with identical information or "preliminary" information occasionally are listed. References that have been used in place of some or all of the information presented in another reference are denoted in parenthetical comments after the listing of the latter reference in the bibliography.

Explanation of date list format

Each date listing has the following general form:

1 2 4 5 6 7 8 9 11
/ / / / / / / / /
70°S 167°E RM 363±2 MY (TS 2) Ra17 BT Granite;
Cape Moore Yule Batholith, Admiralty Intrusives. KRE81 TES81 (ages of diff. sieve fractions also in KRE81)

An asterisk following any information in the date list indicates that this information is further explained in the parenthetical comments (12) at the end of the date listing. Each numbered section of the date listing is explained below:

1. SAMPLE COORDINATES are listed in degrees and minutes unless otherwise noted. When more than one sample location is involved in an age determination (e.g. Rb-Sr whole-rock isochrons), either a range of coordinates is listed that encompasses all the sample sites or the average coordinates for the sample sites are listed. Samples with ranges of coordinates are usually entered into the date list sequence according to their average coordinates.

2. THE SOURCE FOR THE LISTED COORDINATES is one of the following codes:

 AR The reported coordinates are approximate.

 G We have approximated the coordinates for the reported sample location, using the 1981 gazetteer of "Geographic Names of the Antarctic" (see ALB81 in the bibliography).
We have approximated the coordinates for the reported sample location, using available U.S. Geological Survey maps, American Geographical Union Folio Series maps, or National Institute of Polar Research Antarctic Series maps.

The coordinates are listed as specifically reported.

We have approximated the coordinates using the map presented, or referred to, by the reference source(s). U.S. Geological Survey maps, American Geographical Union Folio Series maps, or National Institute of Polar Research Antarctic Series maps may have helped to assign more precise coordinates to a sample site.

3. **THE SAMPLE LOCATION** is listed as specifically reported, although often substantially abbreviated. Listed information is compressed as much as possible (e.g., "SW, Lake Henderson" means "southwest of Lake Henderson"). A list of abbreviations used for location names and other words in the date lists is presented in Table 4.

Locations which we have inferred are listed within parentheses. Names of locations are listed in quotations if they are not assigned specific coordinates by the reference source(s) and are not listed in the gazetteer of "Geographic Names of the Antarctic" (ALB81).

An "RM" following the sample location indicates that the sample is shown on a map (or photograph) in the reference source. We use this code when we have inferred the name of a sample location from a map (or photograph) in the reference source, or when the map (or photograph) shows a more precise location for the sample than denoted by the listed sample coordinates or sample location.

4. **THE SAMPLE AGE** is listed as stated in the reference source(s). Multiple dates may be listed, as explained for specific dating methods listed in Table 2.

5. **THE SCALE OF THE DATE AND OTHER TERMS** used in conjunction with the date are assigned one of the following codes:

- **BP** before present (AD 1950 for radiocarbon)
- **c.** circa
- **$\Delta^{14}C$** reported ^{14}C activity (symbols are defined in STU77A)
- **GT** greater than
- **KY** kiloyears (10^3 yr)
- **LT** less than
- **MY** megayears (10^6 yr)
6. THE SAMPLE LABEL AND/OR FIELD NUMBER is listed as stated in the reference source(s). When a publication contains two labels for one sample (such as a "lab" and a "field number"), both numbers are listed and set apart by a semicolon. If the listed date is based on several samples, the numbers of all samples are listed and set apart by commas. "(?)" indicates that no sample number is reported.

For Rb-Sr isochrons, U-Pb isochrons, and U-Pb concordia plots based on more than a few samples, no number designation is usually listed. However, if the isochron or chord is based on samples with sequential numbers, the number of the first sample may be listed in quotation marks.

7. THE REPORTED DATING METHOD, DECAY CONSTANTS (λ), HALF LIVES (T1/2), AND OTHER CONSTANTS are listed as one of the codes presented in Table 2.

8. THE DATED SAMPLE MATERIAL is listed as a two-letter code (Table 3).

9. THE SAMPLE DESCRIPTION is abridged from information presented in one reference source or from the combined information of more than one reference source.

10. STRATIGRAPHIC/GEOLGIC INFORMATION is listed as stated in the reference source(s). Stratigraphy inferred by the reference source(s) from the age-determination itself is listed in parentheses. A dash indicates that no stratigraphic or additional geologic information is reported in the reference source(s). This section is not included in a listing when inappropriate.

11. REFERENCE CODE(S) are listed for all references from which information was extracted. The earliest reference to report on the sample and any recent reference that contains a current interpretation of the sample date will also usually be listed.

12. PARENTHETICAL COMMENTS at the end of a date listing may state any discrepancies in the reported information on the sample. We have also used this section to specify when a date is from "unpublished data" or from "personal communication," as stated in the reference source(s).

The abbreviation "infer=" signifies that we have inferred that two or more pieces of non-identical information in the literature (relating to sample date, material, description, dating method, etc.) refer to the same sample and, therefore, are listed as one entry in the compilation. Conversely, the phrase "may be equal to" signifies that, although we suspect that samples presented by different reference sources may actually be the same, we have listed the samples separately in the compilation.
Fig. 1. "Geographic Areas" of the Antarctic Date Lists.
TABLE 1. LIST OF GEOGRAPHIC AREAS

1. Victoria Land, north of 73°00S, west of Rennick Glacier
2. Victoria Land, north of 73°00S, east of Rennick Glacier
3. Victoria Land, south of 73°00S to 78°00S, excluding some dry valley areas (see geographic areas 4-6)
4. Victoria Valley and associated dry valleys north of Olympus Range in Victoria Land
5. Wright Valley and Bull Pass, Victoria Land
6. Taylor Valley, Victoria Land, from Taylor Glacier to Gneiss Point
7. Transantarctic Mountain area, from 78°00S to Byrd Glacier
8. Transantarctic Mountain area, from Byrd Glacier to Nimrod Glacier
9. Transantarctic Mountain area, from Nimrod Glacier to Beardmore Glacier
10. Queen Maud Mountain area
11. Horlick Mountain area
12. Thiel Mountain area
13. Pensacola Mountain area
14. Shackleton Range area
15. Theron Mountain area
16. Coats Land, excluding Theron Mountains
17. Queen Maud Land, from Stancomb-Wills Glacier through New Schwabenland
18. Queen Maud Land, vicinity of Sør Rondane and Belgica Mountains
19. Queen Maud Land, east of the Belgica Mountains
20. Enderby Land
21. Mac. Robertson Land -- Lambert Glacier -- American Highland area
22. Ingrid Christensen Coast to Cape Filchner, Wilhelm II Coast
23. Queen Mary Coast and Wilkes Land west of 120°00E
24. Wilkes Land east of 120°00E
25. George V Coast
26. Ocean sites within c. 250 km. of the East Antarctic coast, excluding Ross Sea
27. Ross Ice Shelf, McMurdo Sound, and Ross Sea; Black, White, Ross, and Franklin Islands
28. Marie Byrd Land
29. Ellsworth Land, north of 77°00S
30. Ellsworth Land, south of 77°00S, including Whitmore Mountain area
31. Palmer Land
32. Graham Land, excluding Trinity Peninsula
33. Trinity Peninsula
34. South Shetland Islands and South Orkney Islands
35. Ocean sites within c. 250 km. of the West Antarctic coast, excluding Weddell Sea
36. Filchner Ice Shelf, Ronne Ice Shelf, Weddell Sea, and associated islands
37. Central East Antarctica
TABLE 2. CODES FOR REPORTED DATING METHODS, DECAY CONSTANTS (λ), HALF-LIVES ($T_{1/2}$), AND OTHER CONSTANTS

<table>
<thead>
<tr>
<th>CODES</th>
<th>DATING METHODS AND CONSTANTS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/A</td>
<td>No additional information on technique or values of constants is reported.</td>
</tr>
<tr>
<td>AAF</td>
<td>Total fusion age. Values of constants are not reported.</td>
</tr>
<tr>
<td>AAI</td>
<td>Isochron age. Values of constants are not reported.</td>
</tr>
<tr>
<td>AAP</td>
<td>Plateau or incremental age. Values of constants are not reported.</td>
</tr>
<tr>
<td>AAT</td>
<td>Total gas release age. Values of constants are not reported.</td>
</tr>
<tr>
<td>AAF1, AAI1, etc.</td>
<td>"1" after the dating method indicates that the constants have values as presented in Steiger and Jäger, 1977 (STE77 in the bibliography) and as listed below for "KA17".</td>
</tr>
<tr>
<td>AAF2, AAI2, etc.</td>
<td>"2" after the dating method indicates that the constants have values as presented in Steiger and Jäger, 1977 (STE77 in the bibliography) and as listed below for "KA17". The technique of Dalrymple and Lanphere, 1971 (DAL71 in the bibliography) is explicitly used.</td>
</tr>
<tr>
<td>AAF3, AAI3, etc.</td>
<td>"3" after the dating method indicates that the constants have values as listed below for "KA12". The technique of Dalrymple and Lanphere, 1971 (DAL71 in the bibliography) is explicitly used.</td>
</tr>
<tr>
<td>K/A, KA1, etc.</td>
<td>Please note that codes are primarily listed in alphabetical order. Additional potassium-argon entries are listed on the following pages.</td>
</tr>
</tbody>
</table>

14C method:

14C	Value of 14C half-life is not reported.
14C1	$T_{1/2} = 5568$ yr
14C2	$T_{1/2} = 5570$ yr
14C3	$T_{1/2} = 5730$ yr
TABLE 2 CONTINUED

<table>
<thead>
<tr>
<th>14CC1, 14CC2, etc.</th>
<th>Additional "C" indicates that a reservoir correction has been applied to the reported sample age. The size of the correction is stated in the parenthetical comments at the end of the date listing.</th>
</tr>
</thead>
</table>

Fission track method:

FTK
Values of constants are not reported.

FT1
Constants have values as presented in Steiger and Jäger, 1977 (STE77 in the bibliography) and as listed below for "UP5, UP_CS, UP_I5". Value of $\lambda_p^{(238\text{U})}$ is not reported.

FT2
Constants are the same as for "FT1" above. In addition: $\lambda_p^{(238\text{U})} = 6.85 \times 10^{-17}\text{ yr}$.

$^{40}\text{K-40Ar method:}$

Multiple dates may be listed if replicate analyses were done on the same sample.

K/A
No additional information on values of constants is reported.

KA1
$\lambda_k = 6.02 \times 10^{-11}\text{ yr}^{-1}$

KA2
$\lambda_e^{(40\text{K})} = 5.85 \times 10^{-11}\text{ yr}^{-1}$

KA3
$T_{1/2} = 1.885 \times 10^9\text{ yr}$
$40\text{K}/K = 1.19 \times 10^{-4}$

KA4
$\lambda_\beta = 4.7 \times 10^{-10}\text{ yr}^{-1}$
$\lambda_e = 0.585 \times 10^{-10}\text{ yr}^{-1}$
$40\text{K}/K = 1.22 \times 10^{-4}$

KA5
$\lambda_\beta = 4.72 \times 10^{-10}\text{ yr}^{-1}$
$\lambda_e = 0.550 \times 10^{-10}\text{ yr}^{-1}$
$40\text{K}/K = 1.22 \times 10^{-4}$

KA6
$\lambda_\beta = 4.72 \times 10^{-10}\text{ yr}^{-1}$
$\lambda_e = 0.557 \times 10^{-10}\text{ yr}^{-1}$

KA7
$\lambda_\beta = 4.72 \times 10^{-10}\text{ yr}^{-1}$
$\lambda_e = 0.58 \times 10^{-10}\text{ yr}^{-1}$
$40\text{K}/K = 1.19 \times 10^{-4}$

KA8
$\lambda_\beta = 4.72 \times 10^{-10}\text{ yr}^{-1}$
$\lambda_e = 0.584 \times 10^{-10}\text{ yr}^{-1}$
(TABLE 2 CONTINUED)

<table>
<thead>
<tr>
<th>KAn</th>
<th>$\lambda_{13} = 4.72 \times 10^{-10}$ yr$^{-1}$</th>
<th>$\lambda_{e} = 0.584 \times 10^{-10}$ yr$^{-1}$</th>
<th>$\dot{\alpha} = 1.19 \times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA9</td>
<td>$\lambda_{10} = 4.72 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.584 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.22 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA10</td>
<td>$\lambda_{11} = 4.72 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.585 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.19 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA11</td>
<td>$\lambda_{12} = 4.72 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.585 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.22 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA12</td>
<td>$\lambda_{13} = 4.72 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.585 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.19 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA13</td>
<td>$\lambda_{14} = 4.76 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.585 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.22 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA14</td>
<td>$\lambda_{15} = 4.76 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.585 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.21 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA15</td>
<td>$\lambda_{16} = 4.80 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.585 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.21 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA16</td>
<td>$\lambda_{17} = 4.96 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\lambda_{e} = 0.581 \times 10^{-10}$ yr$^{-1}$</td>
<td>$\dot{\alpha} = 1.167 \times 10^{-4}$</td>
</tr>
<tr>
<td>KA17</td>
<td>atomic ratio $^{40}\text{Ar}/^{36}\text{Ar}$ atmospheric = 295.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P/a

No additional information on values of constants is reported.

P/P

$^{207}\text{Hg}/^{206}\text{Pb}$ or "P/P" date. Values of constants are not reported.

PP1, PP2, etc.

$^{207}\text{Hg}/^{206}\text{Pb}$ date. The number following "PP" indicates that constants have values as listed below for the U-Pb code with the same number.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP_I</td>
<td>$^{207}\text{Pb}/^{204}\text{Pb} - ^{206}\text{Pb}/^{204}\text{Pb}$ isochron age. The "blank space" contains the number of points that define the isochron (e.g. "PP5I" indicates that the listed date is based on a 5-point isochron).</td>
</tr>
<tr>
<td>PP_{I1, I2, etc.}</td>
<td>Same as for "PP_I". In addition, the final number indicates that the constants have values as listed below for the U-Pb codes with the same number.</td>
</tr>
<tr>
<td>PPM</td>
<td>$^{207}\text{Pb}/^{206}\text{Pb}$ common-lead "model" age that assumes a single or multistage history. If four dates are listed, they correspond to $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, $^{208}\text{Pb}/^{204}\text{Pb}$, and $^{207}\text{Pb}/^{206}\text{Pb}$ common-lead "model" ages, respectively.</td>
</tr>
<tr>
<td>PPM_{I, II, etc.}</td>
<td>Same as for PPM. In addition, the final number indicates that the constants have values as listed below for the U-Pb code with the same number.</td>
</tr>
<tr>
<td>R/S</td>
<td>No additional information on technique or value of decay constant is reported.</td>
</tr>
<tr>
<td>RSM</td>
<td>"Model" age determination that assumes an initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio. The value of the decay constant is not reported.</td>
</tr>
<tr>
<td>RSM_{I, II, etc.}</td>
<td>"Model" age determination that assumes an initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio. The final number indicates that the decay constant is assigned one of the following values in the reference:</td>
</tr>
<tr>
<td>RSM1, RSM2, etc.</td>
<td>Same as "RSM_{I, II, etc.}" above. The "blank spaces" contain the initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio assumed in the reference (e.g. "RSM1/0.7040").</td>
</tr>
<tr>
<td>RSI</td>
<td>Isochron age. The value of the decay constant is not reported.</td>
</tr>
<tr>
<td>RSII, RSI2, etc.</td>
<td>Isochron age. The final number indicates that the decay constant has a value as listed above under "RSM_{I, II, etc.}"</td>
</tr>
</tbody>
</table>
TABLE 2 CONTINUED

RS II/._.____, RS II/._.____, etc.
Same as "RSI1, RSI2, etc." above. The "blank space" following "RS" contains the number of points that define the isochron; the "blank spaces" following the slash contain the initial 87Sr/86Sr ratio calculated in the reference (e.g. "RS14II/0.7030±0.0002"). An initial ratio that we have approximated from a graph in the reference source is listed in parentheses.

RSR, RSR1, RS R1/._.____, etc.
"Reference isochron" date. The code format is analogous to the format above for Rb-Sr isochrons. The initial 87Sr/86Sr ratio explicitly assumed in the reference follows the slash.

147Sm-143Nd method:

S/N
No additional information on technique or value of decay constant is reported.

SNM
Reported as a "model" age. The value of the decay constant is not reported.

SNMC
TC10 "model" age. The value of the decay constant is not reported.

SNMD
TDM "model" age. The value of the decay constant is not reported.

SNM1, SNMCl, SNMD1
"Model" age as denoted above. The final "1" indicates that: \(\lambda (147\text{Sm}) = 6.54 \times 10^{-12} \text{ yr}^{-1} \).

SNI/._.____, SNII/._.____
Isochron age. A "1" following "SNI" indicates that: \(\lambda (147\text{Sm}) = 6.54 \times 10^{-12} \text{ yr}^{-1} \). The "blank spaces" following the slash contain the calculated initial 143Nd/144Nd ratio, if reported.

U-Pb method:

U/P
Three ages are listed corresponding to 206Pb/238U, 207Pb/235U, and 208Pb/206Pb isotopic determinations respectively. No additional information on values of constants is reported. ("UP1", "UP2", etc. listed below refer to this technique.)

UPC, UP_C
If two ages are listed, they correspond to the lower and upper intercepts, respectively, of a chord on a concordia diagram. The "blank space" contains the number of points that define the chord. One age listed corresponds to the upper intercept of a chord whose lower intercept is zero, unless one age is listed with the code "UP0C". This code
(TABLE 2 CONTINUED)

indicates that the listed date is a concordant or nearly concordant determination irregardless of the lower intercept.

<table>
<thead>
<tr>
<th>U1,UP</th>
<th>Three isochron ages are listed corresponding to the sequence listed for "U/P" above; the "blank space" contains the number of points that define the isochrons.</th>
</tr>
</thead>
</table>
| U1,UP,UP C1,UP I1 | Dating technique, respectively, as denoted above. The final "1" indicates that:
\[\lambda(238\text{U}) = 1.537 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(235\text{U}) = 9.722 \times 10^{10} \text{ yr}^{-1} \]
\[238\text{U}/235\text{U} = 137.7 \] |
| U1,UP,UP C2,UP I2 | Dating technique, respectively, as denoted above. The final "2" indicates that:
\[\lambda(238\text{U}) = 1.537 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(235\text{U}) = 9.72 \times 10^{10} \text{ yr}^{-1} \]
\[238\text{U}/235\text{U} = 137.8 \] |
| U1,UP,UP C3,UP I3 | Dating technique, respectively, as denoted above. The final "3" indicates that:
\[\lambda(238\text{U}) = 1.54 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(235\text{U}) = 9.72 \times 10^{10} \text{ yr}^{-1} \]
\[238\text{U}/235\text{U} = 137.8 \] |
| U1,UP,UP C4,UP I4 | Dating technique, respectively, as denoted above. The final "4" indicates that:
\[\lambda(238\text{U}) = 1.54 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(235\text{U}) = 9.72 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(232\text{Th}) = 4.99 \times 10^{11} \text{ yr}^{-1} \]
\[238\text{U}/235\text{U} = 137.8 \] |
| U1,UP,UP C5,UP I5 | Dating technique, respectively, as denoted above. The final "5" indicates that:
\[\lambda(238\text{U}) = 1.55125 \times 10^{10} \text{ yr}^{-1} \text{ or } 1.5513 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(235\text{U}) = 9.8485 \times 10^{10} \text{ yr}^{-1} \]
\[238\text{U}/235\text{U} = 137.88 \] |
| U1,UP,UP C6,UP I6 | Dating technique, respectively, as denoted above. The final "6" indicates that:
\[\lambda(238\text{U}) = 1.55125 \times 10^{10} \text{ yr}^{-1} \text{ or } 1.5513 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(235\text{U}) = 9.8485 \times 10^{10} \text{ yr}^{-1} \]
\[\lambda(232\text{Th}) = 4.9475 \times 10^{11} \text{ yr}^{-1} \]
\[238\text{U}/235\text{U} = 137.88 \] |
(TABLE 2 CONTINUED)

<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/T</td>
<td>No additional information on values of constants is reported.</td>
</tr>
<tr>
<td>U1T1</td>
<td>230Th half-life = 75,000 yr</td>
</tr>
<tr>
<td>UTP</td>
<td>Four ages are listed corresponding to 206Pb/238U, 207Pb/235U, 208Pb/232Th, and 207Pb/206Pb isotopic determinations, respectively. No additional information on values of constants is reported.</td>
</tr>
<tr>
<td>UTPC, UTP_C</td>
<td>Analogous to "UPC,UP_C" listed above.</td>
</tr>
<tr>
<td>UTP1, UTP_I</td>
<td>Analogous to "UPI,UP_I" listed above.</td>
</tr>
<tr>
<td>UTP1, UTP_C1, UTP2, UTP_C2, etc.</td>
<td>Dating technique as denoted above. The final number indicates that the constants have values as listed above for the U-Pb code with the same number.</td>
</tr>
<tr>
<td>Code</td>
<td>Sample Material</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>AD</td>
<td>Andesine</td>
</tr>
<tr>
<td>AL</td>
<td>Algae</td>
</tr>
<tr>
<td>AM</td>
<td>Amphibole</td>
</tr>
<tr>
<td>AN</td>
<td>Anorthoclase</td>
</tr>
<tr>
<td>AP</td>
<td>Apatite</td>
</tr>
<tr>
<td>AR</td>
<td>Aragonite</td>
</tr>
<tr>
<td>AT</td>
<td>Allanite</td>
</tr>
<tr>
<td>AW</td>
<td>Acidified sea water</td>
</tr>
<tr>
<td>BH</td>
<td>Biotite and hornblende</td>
</tr>
<tr>
<td>BR</td>
<td>Bone</td>
</tr>
<tr>
<td>BT</td>
<td>Biotite</td>
</tr>
<tr>
<td>CA</td>
<td>Carbonate or "carbonate material"</td>
</tr>
<tr>
<td>CD</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CH</td>
<td>Chloride</td>
</tr>
<tr>
<td>CL</td>
<td>Chlorite</td>
</tr>
<tr>
<td>CO</td>
<td>Collagen</td>
</tr>
<tr>
<td>CS</td>
<td>Carbonate sediments</td>
</tr>
<tr>
<td>CV</td>
<td>Chevkinite</td>
</tr>
<tr>
<td>DS</td>
<td>Diatomaceous ocean sediments</td>
</tr>
<tr>
<td>EP</td>
<td>Epidote</td>
</tr>
<tr>
<td>ES</td>
<td>Elephant seal remains</td>
</tr>
<tr>
<td>EV</td>
<td>Evaporites</td>
</tr>
<tr>
<td>EX</td>
<td>Exsolution</td>
</tr>
<tr>
<td>FD</td>
<td>Feldspar</td>
</tr>
<tr>
<td>PG</td>
<td>Fluvial-glacial material</td>
</tr>
<tr>
<td>FT</td>
<td>Fish</td>
</tr>
<tr>
<td>FL</td>
<td>Flesh</td>
</tr>
<tr>
<td>FO</td>
<td>Foraminiferal ooze</td>
</tr>
<tr>
<td>FT</td>
<td>Foraminifera tests</td>
</tr>
<tr>
<td>FU</td>
<td>Fuchsite</td>
</tr>
<tr>
<td>GA</td>
<td>Galena</td>
</tr>
<tr>
<td>GB</td>
<td>Green and blue-green algae</td>
</tr>
<tr>
<td>GO</td>
<td>Guano</td>
</tr>
<tr>
<td>GP</td>
<td>Gypsum</td>
</tr>
<tr>
<td>GS</td>
<td>Glass</td>
</tr>
<tr>
<td>GU</td>
<td>Glaucophane concentrate</td>
</tr>
<tr>
<td>HB</td>
<td>Hornblende</td>
</tr>
<tr>
<td>IC</td>
<td>Dissolved inorganic carbon</td>
</tr>
<tr>
<td>KF</td>
<td>Potassium feldspar</td>
</tr>
<tr>
<td>LE</td>
<td>Leucite</td>
</tr>
<tr>
<td>LI</td>
<td>Lichen</td>
</tr>
<tr>
<td>LW</td>
<td>Lake water</td>
</tr>
<tr>
<td>MA</td>
<td>Marble</td>
</tr>
<tr>
<td>MC</td>
<td>Mica</td>
</tr>
<tr>
<td>MG</td>
<td>Magnophorite (amphibole)</td>
</tr>
<tr>
<td>MI</td>
<td>Mica</td>
</tr>
<tr>
<td>ML</td>
<td>Morainic loam</td>
</tr>
<tr>
<td>MN</td>
<td>Microline</td>
</tr>
<tr>
<td>MO</td>
<td>Moss</td>
</tr>
<tr>
<td>MS</td>
<td>Minerals or mineral separates</td>
</tr>
<tr>
<td>MU</td>
<td>Muscle</td>
</tr>
<tr>
<td>MZ</td>
<td>Monzonite</td>
</tr>
<tr>
<td>OC</td>
<td>Organic carbon</td>
</tr>
<tr>
<td>OM</td>
<td>Organic material</td>
</tr>
<tr>
<td>OR</td>
<td>Orthoclase</td>
</tr>
<tr>
<td>PB</td>
<td>Lead</td>
</tr>
<tr>
<td>PE</td>
<td>Peat</td>
</tr>
<tr>
<td>PG</td>
<td>Philogophite</td>
</tr>
<tr>
<td>PH</td>
<td>Pyroxene and hornblende</td>
</tr>
<tr>
<td>PL</td>
<td>Plagioclase</td>
</tr>
<tr>
<td>PO</td>
<td>Polycrast</td>
</tr>
<tr>
<td>PQ</td>
<td>Penguin remains</td>
</tr>
<tr>
<td>PR</td>
<td>Perriterite</td>
</tr>
<tr>
<td>FY</td>
<td>Pyroxene</td>
</tr>
<tr>
<td>QZ</td>
<td>Quartz</td>
</tr>
<tr>
<td>RI</td>
<td>Riebeckite (amphibole)</td>
</tr>
<tr>
<td>SC</td>
<td>Soil carbonate</td>
</tr>
<tr>
<td>SE</td>
<td>Seal remains</td>
</tr>
<tr>
<td>SH</td>
<td>Shells</td>
</tr>
<tr>
<td>SM</td>
<td>Shell material</td>
</tr>
<tr>
<td>SN</td>
<td>Sandine</td>
</tr>
<tr>
<td>SO</td>
<td>Soil</td>
</tr>
<tr>
<td>SP</td>
<td>Sphene</td>
</tr>
<tr>
<td>SW</td>
<td>Seaweed</td>
</tr>
<tr>
<td>WB</td>
<td>Whole body material</td>
</tr>
<tr>
<td>WD</td>
<td>Wood</td>
</tr>
<tr>
<td>WF</td>
<td>Whole rock and feldspar</td>
</tr>
<tr>
<td>WR</td>
<td>Whole rock</td>
</tr>
<tr>
<td>YX</td>
<td>"Yttrobrotholite (?), xenotime (?), others"</td>
</tr>
<tr>
<td>ZR</td>
<td>Zircon</td>
</tr>
</tbody>
</table>
TABLE 4.

ABBREVIATIONS IN THE DATE LISTS*

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>adj</td>
<td>adjusted</td>
</tr>
<tr>
<td>alt</td>
<td>altitude</td>
</tr>
<tr>
<td>approx</td>
<td>approximated</td>
</tr>
<tr>
<td>a.s.l.</td>
<td>above sea level</td>
</tr>
<tr>
<td>assoc</td>
<td>associated</td>
</tr>
<tr>
<td>ba</td>
<td>basin</td>
</tr>
<tr>
<td>btwn</td>
<td>between</td>
</tr>
<tr>
<td>calc</td>
<td>calculated</td>
</tr>
<tr>
<td>cen</td>
<td>central</td>
</tr>
<tr>
<td>cgl</td>
<td>conglomerate</td>
</tr>
<tr>
<td>contemporaneous</td>
<td>contemporaneous</td>
</tr>
<tr>
<td>coords</td>
<td>coordinates</td>
</tr>
<tr>
<td>corr</td>
<td>corrected or correction</td>
</tr>
<tr>
<td>d</td>
<td>depth</td>
</tr>
<tr>
<td>diff</td>
<td>different</td>
</tr>
<tr>
<td>drain</td>
<td>drainage</td>
</tr>
<tr>
<td>dscrt</td>
<td>description</td>
</tr>
<tr>
<td>E</td>
<td>east or eastern</td>
</tr>
<tr>
<td>est</td>
<td>estimated</td>
</tr>
<tr>
<td>eval</td>
<td>evaluation</td>
</tr>
<tr>
<td>fac</td>
<td>facies</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
</tr>
<tr>
<td>infer=</td>
<td>"we infer this listing is equivalent to..."</td>
</tr>
<tr>
<td>info</td>
<td>information</td>
</tr>
<tr>
<td>IR</td>
<td>initial (87\text{Sr}/86\text{Sr}) ratio</td>
</tr>
<tr>
<td>L</td>
<td>Lake</td>
</tr>
<tr>
<td>lac</td>
<td>lacustrine</td>
</tr>
<tr>
<td>LI</td>
<td>lower intercept</td>
</tr>
<tr>
<td>lm</td>
<td>limestone</td>
</tr>
<tr>
<td>lo</td>
<td>lower</td>
</tr>
<tr>
<td>loc</td>
<td>location</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
</tr>
<tr>
<td>Mas</td>
<td>Massif</td>
</tr>
<tr>
<td>mat.</td>
<td>sample material</td>
</tr>
<tr>
<td>meta</td>
<td>metamorphic</td>
</tr>
<tr>
<td>mor</td>
<td>moraine</td>
</tr>
<tr>
<td>N</td>
<td>north or northern</td>
</tr>
<tr>
<td>nr</td>
<td>near</td>
</tr>
<tr>
<td>Nun or nun</td>
<td>Nunatak or nunataks</td>
</tr>
<tr>
<td>Pen</td>
<td>Peninsula</td>
</tr>
<tr>
<td>pers. comm.</td>
<td>personal communication</td>
</tr>
<tr>
<td>Pks</td>
<td>Peaks</td>
</tr>
<tr>
<td>poss</td>
<td>possibly</td>
</tr>
<tr>
<td>Ps</td>
<td>Pass</td>
</tr>
<tr>
<td>ques</td>
<td>questionable</td>
</tr>
<tr>
<td>Ra</td>
<td>Range</td>
</tr>
<tr>
<td>Rdg</td>
<td>Ridge</td>
</tr>
<tr>
<td>recal</td>
<td>recalculated</td>
</tr>
<tr>
<td>res</td>
<td>reservoir</td>
</tr>
<tr>
<td>rev</td>
<td>revised</td>
</tr>
<tr>
<td>Rk</td>
<td>Rock</td>
</tr>
<tr>
<td>RM</td>
<td>reference map</td>
</tr>
<tr>
<td>rpt</td>
<td>report</td>
</tr>
<tr>
<td>rpted</td>
<td>reported</td>
</tr>
<tr>
<td>S</td>
<td>south or southern</td>
</tr>
<tr>
<td>samp</td>
<td>sample(s)</td>
</tr>
<tr>
<td>sec</td>
<td>section</td>
</tr>
<tr>
<td>sed</td>
<td>sediment</td>
</tr>
<tr>
<td>Sheet</td>
<td>Sheet</td>
</tr>
<tr>
<td>SM</td>
<td>sample material</td>
</tr>
<tr>
<td>ss</td>
<td>sandstone</td>
</tr>
<tr>
<td>sta</td>
<td>station</td>
</tr>
<tr>
<td>std</td>
<td>standard</td>
</tr>
<tr>
<td>Strm</td>
<td>Stream</td>
</tr>
<tr>
<td>UI</td>
<td>upper intercept</td>
</tr>
<tr>
<td>unpbl</td>
<td>unpublished</td>
</tr>
<tr>
<td>up</td>
<td>upper</td>
</tr>
<tr>
<td>V or Val</td>
<td>Valley</td>
</tr>
<tr>
<td>vic</td>
<td>vicinity</td>
</tr>
<tr>
<td>volc</td>
<td>volcanic</td>
</tr>
<tr>
<td>W</td>
<td>west or western</td>
</tr>
<tr>
<td>w/</td>
<td>with</td>
</tr>
<tr>
<td>w/o</td>
<td>without</td>
</tr>
<tr>
<td>wt</td>
<td>weight</td>
</tr>
</tbody>
</table>

Additional abbreviations and codes are listed in Tables 2 and 3, and in the text under "The source for the listed coordinates" and "The scale of the date and other terms".
Acknowledgements

We are especially grateful to A.L. Washburn and the staff at the Quaternary Research Center of the University of Washington for supporting our efforts with their many resources and talents. This compilation owes its scope to the Flint-Washburn Library at the Quaternary Research Center, as well as the University of Washington library system. Paul Linnemeyer provided careful assistance in the compilation of data, Lynn Carothers did a rigorous job of typing, and Mike Coghlan developed a first version of the compilation. This work received support from the National Science Foundation, Grant DPP-8400574.
LIST 1

INDEX

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135</td>
</tr>
<tr>
<td>2</td>
<td>137</td>
</tr>
<tr>
<td>3</td>
<td>142</td>
</tr>
<tr>
<td>4</td>
<td>147</td>
</tr>
<tr>
<td>5</td>
<td>149</td>
</tr>
<tr>
<td>6</td>
<td>152</td>
</tr>
<tr>
<td>7</td>
<td>161</td>
</tr>
<tr>
<td>8</td>
<td>165</td>
</tr>
<tr>
<td>9</td>
<td>166</td>
</tr>
<tr>
<td>10</td>
<td>171</td>
</tr>
<tr>
<td>11</td>
<td>174</td>
</tr>
<tr>
<td>12</td>
<td>176</td>
</tr>
<tr>
<td>13</td>
<td>177</td>
</tr>
<tr>
<td>14</td>
<td>179</td>
</tr>
<tr>
<td>15</td>
<td>182</td>
</tr>
<tr>
<td>16</td>
<td>183</td>
</tr>
<tr>
<td>17</td>
<td>184</td>
</tr>
<tr>
<td>18</td>
<td>192</td>
</tr>
<tr>
<td>19</td>
<td>196</td>
</tr>
<tr>
<td>20</td>
<td>202</td>
</tr>
<tr>
<td>21</td>
<td>206</td>
</tr>
<tr>
<td>22</td>
<td>209</td>
</tr>
<tr>
<td>23</td>
<td>214</td>
</tr>
<tr>
<td>24</td>
<td>222</td>
</tr>
<tr>
<td>25</td>
<td>223</td>
</tr>
<tr>
<td>26</td>
<td>225</td>
</tr>
<tr>
<td>27</td>
<td>226</td>
</tr>
<tr>
<td>28</td>
<td>230</td>
</tr>
<tr>
<td>29</td>
<td>240</td>
</tr>
<tr>
<td>30</td>
<td>244</td>
</tr>
<tr>
<td>31</td>
<td>246</td>
</tr>
<tr>
<td>32</td>
<td>249</td>
</tr>
<tr>
<td>33</td>
<td>256</td>
</tr>
<tr>
<td>34</td>
<td>259</td>
</tr>
<tr>
<td>35</td>
<td>269</td>
</tr>
<tr>
<td>36</td>
<td>270</td>
</tr>
<tr>
<td>37</td>
<td>270</td>
</tr>
</tbody>
</table>
LIST 1

GEOGRAPHIC AREA 1:

VICTORIA LAND, NORTH OF 73°00S, WEST OF RENNICK GLACIER
(samples from west to east by coordinates)

69°13S 156°00E AR
"Mt. Berg"

516 MY (K.12412h) KA17 WR Phyllite;
Robertson Bay Group. RAV64 STA59 TES81
(info. in RAV64: 530 MY, KA6; info. in PIC63:
512 MY, KA16; infer loc.=Berg Mountains)

69°13S 156°00E AR
"Mt. Berg"

468 MY (S.18b) KA17 WR Quartz-albite vein in phyllite;
Robertson Bay Group. RAV64 STA59 TES81
(info. in RAV64: 480 MY, KA6; info. in PIC63:
461 MY, KA16; infer loc.=Berg Mountains)

69°05S 157°30E R
Babushkin Island

463 MY (K.1244) KA16 WR Muscovite granite vein;
Granite Harbour Intrusives. GAI69 PIC63 RAV64 STU70
(info. in RAV64: 480 MY, KA6, loc.=Wilson Hills)

69°05S 157°30E R
Babushkin Island

434 MY (K.1244) KA16 WR Granite gneiss;
Wilson Group. GAI69 PIC63 RAV64 STU70
(info. in RAV64: 450 MY, KA6, descrt.=migmatized
two-mica gneiss, loc.=Wilson Hills)

69°08S 157°15E R
Archer Point

458 MY (K.1244a) KA16 WR Biotite gneiss;
Wilson Group. GAI69 PIC63 RAV64 STU70
(info. in RAV64: 475 MY, KA3, descrt.=migmatized
two-mica gneiss, loc.=Wilson Hills)

69°16S 158°45E R
Aviation Islands

420 MY (GA 385) KA10 BT Granitic vein;
Granite Harbour Intrusives. GAI69 PIC63 RAV64 STU70
(info. in WEB64: 69°06S 158°36E;
info. in GAI69: mat.=WR)

69°34S 158°56E R
Parkinson Peak

450 MY (GA 384) KA10 WR Biotite gneiss;
Wilson Group. GAI69 WEB64 STU70
(info. in WEB64: BT, 69°34S 158°44E)

69°48S 159°10E R
Manna Glacier

565 MY (#?) KA WA Foliated granodiorite vein;
Wilson Group. GAI69 STU70
(infer=BT sample in STU70; pers. comm. Ravich and
Krylov; ?KA6, as in RAV64)

69°42S 159°19E R
Ferguson Glacier

495 MY (#?) KA WA Granodiorite;
Granite Harbour Intrusives GAI69 STU70
(pers. comm. Ravich and Krylov; ?KA6, as in RAV64)

69°53S 159°40E R
Mt. Ellery

500 MY (#?) KA WA Foliated adamellite;
Granite Harbour Intrusives. GAI69 STU70
(pers. comm. Ravich and Krylov; ?KA6, as in RAV64)

71°33S 160°23E G
Thompson Spur RM

477±2.5 MY (DA 8) KA17 MC Migmatite;
(Granite Harbour Intrusives). KRE81 TES81

71°33S 160°23E G
Thompson Spur RM

474.5±2.5 MY (DA 8) KA17 BT Migmatite;
(Granite Harbour Intrusives). KRE81 TES81

71°33S 160°23E G
Thompson Spur RM

472±3 MY (DA 13) KA17 BT Metasediment;
(Granite Harbour Intrusives). KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

71°38S 160°30E G
Schroeder Spur RM

473±2.5 MY (DA 3) KA17 MC Migmatite;
(Granite Harbour Intrusives). KRE81 TES81

71°38S 160°30E G
Schroeder Spur RM

478±1.5 MY (DA 5) KA17 BT Granite;
(Granite Harbour Intrusives). KRE81 TES81
(ages of diff. sieve fractions also in KRE81)
71°38'S 160°30'E G
Schroeder Spur RM

71°38'S 160°30'E G
Schroeder Spur RM
71°38'S 160°30'E G
Schroeder Spur
71°38'S 160°30'E G
Schroeder Spur

71°35'S 161°40'E RM
Morozumi Range
71°35'S 161°40'E RM
Morozumi Range

71°35'S 161°40'E RM
Morozumi Range

71°35'S 161°40'E RM
Morozumi Range

7°01°4S 161°05′E R
Znamensky Island

71°39'S 161°55'E G
Main massif,
Morozumi Range
71°39'S 161°55'E G
Main massif,
Morozumi Range
71°39'S 161°55'E G
Main massif and 10 km.
S., Morozumi Range
71°24'S 162°00'E G
Litell Rocks

471.5±3 MY (DA 5) KA17 BT Granite;
(Granite Harbour Intrusives). KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

472±2.5 MY (DA 9) KA17 BT Tonalite dike;
(Granite Harbour Intrusives). KRE81 TES81

510±36 MY RS313/0.7116 WR Granites;
(Granite Harbour Intrusives). KRE81 VET83

495±10 MY RS513/0.7125 WR Granites, pegmatite,
migmatite; (Granite Harbour Intrusives). KRE81
VET83

478.5±2 MY (MO 1) KA17 BT Granite;
(Granite Harbour Intrusives). KRE81 TES81

467±2 MY (MO 3) KA17 BT Granite;
(Granite Harbour Intrusives). KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

479±2 MY (MO 6) KA17 MC Granite;
(Granite Harbour Intrusives). KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

318 MY (S.19) KA17 WR Granodiorite;
(Admiralty Intrusives). GAI69 PIC63 RAV64 STU70
(info, in RAV64: 330 MY, KA6, descrpt. = biotite
plagiogranite)

484±63 MY RS413/0.716 WR 4 of 5 granites;
(Granite Harbour Intrusives). KRE81
(tentative isochron)

515±28 MY RS513/0.7136 WR Granites and an aplite;
(Granite Harbour Intrusives). KRE81 VET83
(tentative isochron)

478±14 MY RS313/0.7092 WR Granite and leucogranites;
(Granite Harbour Intrusives). KRE81 VET83
(tentative isochron)

90-120 MY (#'s?) KA17 WR Altered volcanics;
(Ferrar Dolerite?). KRE81
(geol. significance of dates unknown)
VICTORIA LAND, NORTH OF 73°00S, EAST OF RENNICK GLACIER
(samples from west to east by coordinates)

283.8±5 MY (NZKA 20) KA12 WR Basic lava flow;
Sledgers Formation, Bowers Group. DOW74 HUL72
479±2.5 MY (IA 2) KA17 BT Diorite;
(Granite Harbour Intrusives). KRE81 TES81
414±3 MY (3871TR;S29) KA9 WR Slate;
Sledgers Group, Bowers Supergroup. ADA82A
413±3 MY (3872TR;S30) KA9 WR Slate;
Sledgers Group, Bowers Supergroup. ADA82A
416±3 MY (3873TR;S32) KA9 WR Slate;
Sledgers Group, Bowers Supergroup. ADA82A
413±3 MY (6294TR;H8) KA9 WR Siltstone;
(Mariner Group?), Bowers Supergroup. ADA82A
398±3 MY (3874TR;S44) KA9 WR Slate;
Mariner Group, Bowers Supergroup. ADA82A
398±3 MY (3874TR;S55) KA9 WR Slate;
(Mariner Group Correlative), Bowers Supergroup. ADA82A
(mean age=384 MY)
380±3 MY (3882TR;S57) KA9 WR Slate;
(Mariner Group Correlative), Bowers Supergroup. ADA82A
400±3 MY (3884TR;S59) KA9 WR Slate;
(Mariner Group Correlative), Bowers Supergroup. ADA82A
413±3 MY (3875TR;S44) KA9 WR Slate;
(Mariner Group Correlative), Bowers Supergroup. ADA82A
402±3 MY (3877TR;S49) KA9 WR Slate;
(Mariner Group Correlative), Bowers Supergroup. ADA82A
313 MY (S.22) KA16 WR Granodiorite;
(Admiralty Intrusives). GAI69 PIC63 RAV64
(Info. in RAV64: 325 MY, KA6, descrpt.=biotite plagiogranite)
474±3 MY (3895TR;RB13) KA9 WR Slate;
Robertson Bay Group. ADA82A
401±3 MY (3870TR;S19A) KA9 WR Slate;
(Sledgers Group?), Bowers Supergroup. ADA82A
451±3 MY (3904hb; W13) KA9 HB Amphibolitic gneiss;
Wilson Group. ADA82A
479±3 MY (3905b1) 152±422 µ; W15) KA9 BT Granodiorite
gneiss; Wilson Group. ADA82A
490.5±2.5 MY (LA 3) KA17 BT Diorite;
(Granite Harbour Intrusives). KRE81 TES81
441±3 MY (6293TR;S2) KA9 WR Siltstone;
Sledgers Group, Bowers Supergroup. ADA82A
355±3 MY; 355±3 MY (3903hb;W11) KA9 HB Amphibolitic
gneiss; Wilson Group. ADA82A
467±3 MY (3962mu 152±853 µ; W12) KA9 MC Granodiorite
gneiss; Wilson Group. ADA82A
361±3 MY (6206TR;J13-8) KA9 WR Gray Slate;
Robertson Bay Group. ADA82A
467±3 MY; 467±3 MY (3868TR;S13) KA9 WR Slate;
Sledgers Group, Bowers Supergroup. ADA82A

GEOGRAPHIC AREA 2:

70°44S 162°07E R
Frolov Ridge
71°06S 162°40E R
Lanterman Range
71°06S 163°05E R
Mt. Jamroga
71°06S 163°05E R
Mt. Jamroga
71°06S 163°05E R
Mt. Jamroga
71°06S 163°15E R
Helix Pass
71°06S 163°15E R
4 km WSW of Helix Ps.
71°06S 163°17E R
Con. Sec., Reilly Rdg.
71°06S 163°17E R
Con. Sec., Reilly Rdg.
71°06S 163°17E R
S. end, Reilly Rdg.
71°06S 163°22E R
Sputnik Island.
71°06S 163°25E R
Head of Leap Year
and Graveson Gls.
71°06S 163°26E R
N side, Sledgers Gl.
71°06S 163°27E R
Husky Pass
71°06S 163°29E R
Husky Pass
71°06S 163°30E R
Lanterman Range
71°06S 163°36E R
Molar Massif, N. Sec.
71°06S 163°36E R
S. side, Husky Pass
71°06S 163°36E R
S. side, Husky Pass
71°06S 163°37E R
NW end, Mirabito R.
71°06S 163°37E R
Molar Massif
138°35'S 163°39'E R
Cen. Sec., Molar Mas.
138°10'30"S 163°40'E R
Mt. Camelot
137°45'S 163°40'E R
S. side, Husky Pass
137°28'S 163°40'E R
N. side, Leap Year Gl.

71°47'S 163°41'E R
Upper Zenith Glacier
71°47'S 163°41'E R
Upper Zenith Glacier
71°47'S 163°42'E R
Upper Zenith Glacier
71°47'S 163°42'E R
Upper Zenith Glacier
71°47'S 163°42'E R
Upper Zenith Glacier
71°27'S 163°42'E R
N. side, Leap Year Gl.
71°26'S 163°42'E R
N. side, Leap Year Gl.
71°27'S 163°42'E R
N. side, Leap Year Gl.
71°27'S 163°43'E R
N. side, Leap Year Gl.
71°46'S 163°44'E R
SW rdg., Molar Massif
71°39'S 163°49'E R
Leap Year Glacier
71°28'S 163°51'E R
N side, head of Champness Glacier
71°48'30"S 163°51'30"E R
5-1/2 Mi.S, Husky Ps.
71°28'S 163°52'E R
N side, head of Champness Glacier
72°26'S 163°56'E R
Gallipoli Heights, Evans Névé
71°31'S 163°57'E R
N side, Ian Peak
71°32'S 164°02'E R
2 km SE of Ian Pk.
71°28'S 164°14'E R
SW of Copperstain Rdg
72°22'S 164°28'E R
2.5 km SW of Mt Staley
453±3 MY (6207TR;2M85) KA9 WR Slate;
Sledgers Group, Bowers Supergroup. ADA82A
384.4±5.1 MY (NZKA 108) KA12 BT Porphyritic biotite
damelellite; Freyberg Adamellite. ADA75 DW74
474±3 MY (3902bi;W7) KA9 BT Granodiorite gneiss;
Wilson Group. ADA82A
444±3 MY (3887TR;RB4) KA9 WR Slate;
Robertson Bay Group. ADA82A
(mean age=447 MY)
483±3 MY (3898bi;W1) KA9 BT Granodiorite gneiss;
Wilson Group. ADA82A
466±3 MY (3899bi;W2) KA9 BT Granodiorite gneiss;
Wilson Group. ADA82A
455±3 MY; 450±3 MY (3900bi;W2) KA9 BT Amphibolitic
gneiss; Wilson Group. ADA82A
(mean age=453 MY)
476±3 MY (3901mu;W4a) KA9 BT Granodiorite gneiss;
Wilson Group. ADA82A
495±4 MY (3888TR;RB5) KA9 WR Slate;
Robertson Bay Group. ADA82A
482±3 MY (3896TR;RB14) KA9 WR Slate;
Robertson Bay Group. ADA82A
491±3 MY (3897TR;RB15) KA9 WR Slate;
Robertson Bay Group. ADA82A
468±3 MY (3898TR;RB6) KA9 WR Slate;
Robertson Bay Group. ADA82A
450±3 MY (6187TR;2M83) KA9 WR Slate;
Sledgers Group, Bowers Supergroup. ADA82A
501±4 MY (3885TR;RB1) KA9 WR Slate;
Robertson Bay Group. ADA82A
491±4 MY (3892TR;RB9) KA9 WR Slate;
Robertson Bay Group. ADA82A
136.5±2.0 MY (NZKA 21) KA12 WR Dolerite;
Ferrar Dolerite. DOW72 HUL72
490±4 MY (3891TR;RB8) KA9 WR Slate;
Robertson Bay Group. ADA82A
375±40 MY (3156316) RS2I2/0.7057 WR Porphyritic rhyolite;
Gallipoli Porphyries. GA169 FAU70
(=#1's C75 and C78 of Carryer, respectively)
448±3 MY (3890TR;RB7) KA9 WR Phyllite, greenschist facies;
Robertson Bay Group. ADA82A
476±3 MY (3893TR;RB10) KA9 WR Slate;
Robertson Bay Group. ADA82A
350.2±5 MY (NZKA 19) KA12 BT Granodiorite;
Champness Granodiorite. DOW74 HUL72
330±7 MY (24397) KA BT Biotite granodiorite;
Salamander Granodiorite. IA174
70°31'S 164°30'E R
Zykov Glacier

424 MY(K.1245a)KA17 WR Micaceous phyllite;
Robertson Bay Group. GAI69 PIC63 RAV64 TES81
(info. in GAI69: 420 MY, KA6; info. in RAV64:
435 MY, KA6, loc. = "Mount Zykov")

70°31'S 164°30'E R
Zykov Glacier

414 MY(S.21)KA17 WR Micaceous schist;
Robertson Bay Group. GAI69 PIC63 RAV64 TES81
(info. in GAI69: 410 MY, KA6; info. in RAV64:
425 MY, KA6, descrpt. = phyllite, loc. = "Mount Zykov")

71°10'S 164°40'E RM
Everett Range

362+2 MY(EV 1)KA17 BT Granite;
Everett Massif, Admiralty Intrusives. KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

71°10'S 164°40'E RM
Everett Range

358+3 MY(EV 6)KA17 BT Granite;
Everett Massif, Admiralty Intrusives. KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

71°10'S 164°40'E RM
Everett Range

363.5+4 MY(EV 6)KA17 HB Granite;
Everett Massif, Admiralty Intrusives, KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

71°10'S 164°40'E RM
Everett Range

360.5+1.5 MY(EV 8)KA17 BT Granite;
Everett Massif, Admiralty Intrusives, KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

71°10'S 164°40'E RM
Everett Range

363+3.5 MY(EV 11)KA17 HB Granite;
Everett Massif, Admiralty Intrusives. KRE81 TES81
(ages of diff. sieve fractions also in KRE81)

72°57'S 165°05'E R
Retreat Hills

460.7+6 MY(NZKA 24;P36357)KA12 BT Schist;
Retreat Hills Schist. HUL72 NAT71

72°16'S 165°22'E R
6 km WW Pyramid "Rk."

421.3 MY(62921R;P5)KA9 WR Red siltstone;
Camp Ridge Quartzite, Leap Year Gp. ADA82A
(infer loc. = Pyramid Peak)

72°43.8'S 165°27.7'E R
Eroded cone, N. Pleiades

360 MY KSR3/0.711, 0.713 WR 6 granitic and 2 leuco-
granitic samples; Everett Massif, Admiral Intrusives. KRE81 TES81
(samples fall between 2 360-MY-reference lines)

72°44.8'S 165°28.5'E R
Mount Pleiones

300 MY(#) KA WR Granodiorite;
(Admiralty Intrusives). GAI69 STU70

72°45.1'S 165°29.1'E R
Mount Pleiones

360 MY KSR3/0.711, 0.713 WR 6 granitic and 2 leuco-
granitic samples; Everett Massif, Admiral Intrusives. KRE81 TES81
(samples fall between 2 360-MY-reference lines)

71°45'S 165°30'E R
S of Austin Peak

492+4 MY(6203TR; J9-17)KA9 WR Gray-green shale;
Robertson Bay Group. ADA82A

71°45'S 165°30'E R
S of Austin Peak

491+4 MY(6204TR; J10-7)KA9 WR Gray-green shale;
Robertson Bay Group. ADA82A

72°14'S 165°32'E R
4 km NW Pyramid Pk.

499+3 MY(3661TR;P13)KA9 WR Red siltstone;
Robertson Bay Group. ADA82A
140°45.0S 165°35.4E R
Cone 1, Mount Pleiones

70°44S 165°44E G
(Gregory Bluff area)

70°35S 166°02E R
Nella Island

70°39S 166°03E R
Thala Island

70°37S 166°05E G
Thala Island RM

70°35S 166°08E R
4 km NW of Mt McCarthy
70°35S 166°50E RM
Missen Head

70°41S 166°55E G
Unger Island
70°44S 167°0E RM
vic. Yule Bay

70°44S 167°0E RM
vic. Yule Bay

70°45S 167°24E G
Sentry Rocks RM

70°42S 167°29E G
"Birthday Ridge"
(Novosad I.) RM
71°57S 167°30E R
Upper Tucker Gl.

70°44S 167°39E G
Hughes Island RM

70°50S 167°50E RM
Cape Moore

72°35S 169°20E RM
Lower Tucker Glacier

72°31S 169°46E G
Football Saddle RM

72°19S 170°13E G
W. end, Seabee Hook

72°26.1S 170°16.9E R
Cape Wheatstone

71°35S 167°05E RM
W slope, Adare Pen.
71°35'S 170°20'E RM
W slope, Adare Pen.
71°25'S 170°20'E RM
W slope, Adare Pen.
72°23.2'S 170°20.3'E RM
8 km S of Cape Hallet
71°58.6'S 170°40.5'E RM
Cape Roget

7.08±0.11 MY (Jo 116) KA17 WR Phonol. tephrite; Adare volcanics, unit E. KRE81 TES81
1.14±0.05 MY (Jo 148) KA17 WR Phonol. tephrite; Adare volcanics, unit E. KRE81 TES81
6.77±0.05 MY (Jo 113c) KA17 WR Phonolite; Adare volcanics, unit D. KRE81 TES81
8.28±0.05 MY (Jo 119) KA17 WR Phonolite; Adare volcanics, unit D. KRE81 TES81
8.12±0.06 MY (Jo 141a) KA17 WR Phonolite; Adare volcanics, unit D. KRE81 TES81
8.01±0.07 MY (Jo 185) KA17 WR Phonolite; Adare volcanics, unit D. KRE81 TES81
7.69±0.05 MY (Jo 186) KA17 WR Phonolite; Adare volcanics, unit D. KRE81 TES81
11.9±0.2 MY (Jo 106) KA17 WR Leucobasalt; Adare volcanics, unit C. KRE81 TES81
11.74±0.10 MY (Jo 107) KA17 WR Quartz andesite; Adare volcanics, unit C. KRE81 TES81
13.24±0.12 MY (Jo 110a) KA17 WR Leucobasalt; Adare volcanics, unit C. KRE81 TES81
9.88±0.07 MY (Jo 154a) KA17 WR Phonol. tephrite; Adare volcanics, unit C. KRE81 TES81
6.4±0.4 MY (Yu-McM-A 247G) KA9 WR Massive basalt; McMurdo Volcanic Group. ARM78
2.21±0.5 MY (Yu-McM-A 233D) KA9 WR Basalt pillow; McMurdo Volcanic Group. ARM78
GEOGRAPHIC AREA 3:

73°01S 161°015E G
"Bleak Peak"
Sequence Hills
73°03S 165°050E R
NE rdg, Mt. Supernal
73°03S 165°050E R
NE rdg, Mt. Supernal
73°10.1S 164°35.4E R
Mount Overlord
73°11S 162°055E G
Mesa Range
73°15S 167°0E RM
SW side, Mariner Gl., E. of Meander Gl.
73°22.8S 164°08.3E R
Nathan Hills
73°28S 163°052E R
Stewart Heights
73°29S 162°20E G
Illusion Hills
73°30.3S 169°034.6E R
Coulman Island
73°46.8S 163°39.4E R
Hades Terrace
74°10.4S 164°029.7E R
Baker Rocks
74°10.5S 164°041.8E R
Mount Melbourne
74°13.8S 164°043.7E R
Baker Rocks
74°15S 163°057E AR
W side, Campbell Gl.
74°20.8S 164°41.2E R
Mount Melbourne
74°20.9S 164°41.2E R
Mount Melbourne
74°30S 165°028.4E R
S of Willow Nunatak
74°51S 163°048E G
"Hells Gate Ice Shelf"
74°54S 163°039E G
edge, Nansen Ice Sht. (Inexpressible I) RM

VICTORIA LAND, SOUTH OF 73°00S TO 78°00S, EXCLUDING
SOME DRY VALLEY AREAS (SEE GEOGRAPHIC AREAS 4-6)
(samples from north to south by coordinates)

770+20 MY (289) RSM2/0.7040 WR Qtz-biotite schist;
Rennick Group. FAU70

346.7±5 MY (NZKA 23;P36358A) KA12 BT Bt-hb-granite;
Supernal Granite. HUL72 NAT71

320.6±5 MY (NZKA 23;P36358B) KA12 HB Bt-hb-granite;
Supernal Granite. HUL72 NAT71

6.8±0.14 MY (YU-Mcm-35412) KA9 WR Trachyandesite;
McMurdo Volcanic Group. ARM78

8.1±1.7 MY (YU-Mcm-35413) KA9 WR Trachyandesite;
McMurdo Volcanic Group. ARM78

7.2±0.14 MY (YU-Mcm-37835) KA9 WR Trachybasalt;
McMurdo Volcanic Group. ARM78

174.2±1.0 MY (?1AAP Lava flow from base of range;
Kirpatrick Basalts. MCI82

9+1 MY (ETT) RS213/0.7148 WR, CL Granite;
pluton. STU83

18.0±0.7 MY (YU-Mcm-35416) KA9 WR Olivine basalt;
McMurdo Volcanic Group. ARM78

(believed anomalously old by supplier, S. Nathan)

454.2±6 MY (NZKA 22;P36359) KA12 BT Granite;
Cosmonaut Granite. HUL72 NAT71

530±13 MY (234) RSM2/0.7040 WR Mc-bt-granite;
Campbell Plutonics. FAU70

7.0±0.5 MY (YU-Mcm-A 220C) KA9 WR Latite pillow in
palagonite breccia; McMurdo Volcanic Group. ARM78

4.3±0.2 MY (YU-Mcm-35421) KA9 WR Xenocrystic basalt;
McMurdo Volcanic Group. ARM78

0.19±0.04 MY (YU-Mcm-34921) KA9 Trachybasalt;
McMurdo Volcanic Group. ARM78

0.25±0.06 MY (YU-Mcm-24918) KA9 WR Trachyte;
McMurdo Volcanic Group. ARM78

0.72±0.10 MY (YU-Mcm-35425) KA9 WR Olivine basalt;
McMurdo Volcanic Group. ARM78

407.9±6 MY (NZKA 25;P36356) KA12 BT Granite in boulder;
Dickason Granite. HUL72 NAT71

0.09±0.015 MY (YU-Mcm-37175) KA9 WR Trachyandesite;
McMurdo Volcanic Group. ARM78

0.01±0.02 MY (YU-Mcm-34912) KA9 WR Trachyte glass;
McMurdo Volcanic Group. ARM78

2.4±0.1 MY (YU-Mcm-MM1a) KA9 WR Olivine basalt;
McMurdo Volcanic Group. ARM78

2450±40 BP (14C 75-22; QL-176) 14C1 Sed. mixed with
shells; —. KEL79A
(data amended by M. Stuiver)

7020±60 BP (QL-174) 14C1 SH Adamussium colbecki, from a
recent moraine. STU81
75057S 158°20E R
Gorgon Peak
75057S 158°31E R
Ambalada Peak
76°00S 160°35E R*
The Mitten

76°40S 159°40E G
Allan Hills RM
76°05S 159°24E G
Carapace Nun., S. RM
76°05S 159°24E G
Carapace Nun., N. RM
76°05S 159°24E G
Carapace Nun., N. RM
77°00S 160°32E R
Granite Harbor
77°00S 160°32E R
Granite Harbor
77°00S 160°32E R
Granite Harbor
77°27S 161°05E R
main rdg, Olympus Ra.
77°27S 161°05E R
main rdg, Olympus Ra.
77°30S 162°00E M
Victoria Land

162.8±2.3 MY; 159.7 MY (78220) AAP1; AAP1 WR Dolerite;
Ferrar Super group. KYL81B
(mean age with #78038 is 165±2.4 MY)
175.8±3.0 MY (78217) AAP1 WR Basalt;
Ferrar Super group. KYL81B
167.3±2.5 MY (78034) AAP1 WR Dolerite;
Ferrar Supergroup. KYL81B
(*text coords.="75000S" inferred misprint; mean age with #78220 is 165±2.4 MY)
185.0±4 MY (H-5) KAl7 WR Massive dolerite;
intrusive into Beacon Sandstone. HAL82
183.74 MY (H-5) KAl7 WR Massive dolerite;
intrusive into Beacon Sandstone. HAL82
188.8±4 MY (H-8) KAl7 WR Basalt dike;
intrudes Mawson Diamictite. HAL82
189.7±4 MY (H-8) KAl7 WR Basalt dike;
intrudes Mawson Diamictite. HAL82
184.3±4 MY (H-8) KAl7 WR Basalt dike;
intrudes Mawson Diamictite. HAL82
185.7±3.4 MY (H-8) AAP2 WR Basalt dike;
intrudes Mawson Diamictite. HAL82
(other ages of age spectra data also in HAL82)
164.3±3 MY (H-31) KAl7 WR Basalt flow;
10 m above Carapace Nunatak sandstone. HAL82
166.5±3 MY (H-31) KAl7 WR Basalt flow;
10 m above Carapace Nunatak sandstone. HAL82
157.5±3 MY (H-31) KAl7 WR Basalt flow;
10 m above Carapace Nunatak sandstone. HAL82
151.0±3 MY (H-32) KAl7 WR Basalt pillow;
above Carapace Nunatak sandstone. HAL82
152.3±3 MY (H-32) KAl7 WR Basalt pillow;
above Carapace Nunatak sandstone. HAL82
182.8±3.5 MY (H-32) AAP2 WR Basalt pillow;
above Carapace Nunatak sandstone. HAL82
(other ages of age spectra data also in HAL82)
486±15 MY (25) RS22/0.709 BT Granite;
Irizar granite. DEU64
475±80 MY (25) RS22/0.709 FD Granite;
Irizar granite. DEU64
535±120 MY (30) RS22/0.709 WR Aplite;
assoc. with #25 from Irizar granite. DEU64
345±12 MY (1) RS22/0.709 BT Schist;
Asgard formation. DEU64
338±12 MY (1) RS22/0.709 BT Schist;
Asgard formation. DEU64
c.580 MY RS412/(btm 0.70 and 0.71) WR Pegmatoid,
Basement Sill, Solitary Rocks; pegmatoid, New Mountain Sill; granite, Irizar Granite, Taylor Valley; aplite, assoc. with Irizar Granite, Granite Harbor. COM68
(ques. geol. significance of isochron)
77°03S 160°09E R
Mount Fleming

500 MY; 500+ MY RSR/(below 0.707) FD+QZ 4 size-
fractחש של תיל; —. FAU81A
(2 samples fit isochron, 2 plot above; oldest
date derivable is 1460 MY; 2 FD samples from ss
clasts in till also plot above isochron)

77°03S 160°06E G
SW flank, Mt. Fleming

238±4 MY RS413/0.71000+0.00038 FD Size fractions from
basal till and sandstone clasts in till; overlies
 Mt. Fleming Fm., Beacon Supergroup. TAY83
(provenance age)

77°03S 160°06E G
SW flank, Mt. Fleming

499 MY RS213/0.7085 FD Fine size fractions from basal
till; overlies Mt. Fleming Fm. TAY83
(provenance age)

77°04S 161°00E M
S. Victoria Land

151±18 MY RS912/(btwn 0.710 and 0.715) WR Hyperstene
Tololite: Lake Vanda Sill, (Wright Valley);
Basement Sill, Solitary Rocks; Emmanuel Sill,
Emmanuel Gl.; shared strat.=Ferrar Dolerite. COM68

77°04S 163°20E RM
Lower Ferrar Valley

9860±160 BP (QL-995)14C1 AL Layer in place in silt bed
in delta 62 m alt.; on Ross Sea drift. STU81

77°04S 163°20E RM
Lower Ferrar Valley

10,000±40 BP (QL-1036)14C1 AL Layer in place in silt bed
in delta 43 m alt.; on Ross Sea drift. STU81

77°04S 161°09E G
Solitary Rocks*

153.9 MY (GA 1462)KA8 PL Pegmatoid hyperstene
foolite; Basement Sill. COM68
(*based on Table 2; infer "Lake Vanda Sill"
(Wright Valley) in Table 1 is misprint)

77°04S 161°09E G
Solitary Rocks*

156.4 MY (GA 1462)KA8 PL Pegmatoid hyperstene
tololite; Basement Sill. COM68
(*based on Table 2; infer "Lake Vanda Sill"
(Wright Valley) in Table 1 is misprint)

77°04S 161°09E G
Solitary Rocks*

169.2 MY (GA 1462)KA8 PH Pegmatoid hyperstene
toolite; Basement Sill. COM68
(*based on Table 2; infer "Lake Vanda Sill"
(Wright Valley) in Table 1 is misprint)

77°04S 161°09E G
Solitary Rocks*

164.5 MY (GA 1462)KA8 PH Pegmatoid hyperstene
toolite; Basement Sill. COM68
(*based on Table 2; infer "Lake Vanda Sill"
(Wright Valley) in Table 1 is misprint)

77°05S 164°24E RM
near Blue Glacier

12,330±50 BP (QL-1146)14C1 GB Layer, in place in lac.
delta, 255 m alt.; nr limit, Ross Sea drift. STU81

77°05S 164°32E RM
near Hobbs Glacier

77°05S 164°32E RM
near Hobbs Glacier

77°05S 164°32E RM
near Hobbs Glacier

77°05S 164°29E RM
near Hobbs Glacier

550+50 BP (QL-76)14C1 GB Mat, 9 m alt.; on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°31E RM
near Hobbs Glacier

1600+50 BP (QL-76)14C1 GB Mat, 46 m alt.; on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°30E RM
near Hobbs Glacier

1190±70 BP (QL-90)14C1 GB Mat, 126 m alt.; on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°28E RM
near Hobbs Glacier

2540±50 BP (QL-91)14C1 GB Mat, 75 m alt.; on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°32E RM
near Hobbs Glacier

2880±80 BP (QL-93)14C1 GB Mat, 38 m alt.; on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°32E RM
near Hobbs Glacier

800+100 BP (Y-2391)14C1 GB Mat, 130 m alt.; on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°32E RM
near Hobbs Glacier

1340±100 BP (Y-2392)14C1 GB Mat, 38 m alt. on or near
surface of ice-cored Ross Sea drift. STU81

77°05S 164°20E RM
near Blue Glacier

Minze Swisher and Thomas F Brazunas
77°54S 164°32E RM near Hobbs Glacier
77°54S 164°28E RM near Hobbs Glacier
77°54S 164°28E RM near Hobbs Glacier
77°54S 164°28E RM by Hobbs Glacier
77°54S 164°33E RM near Hobbs Glacier
77°55S 164°32E RM near Hobbs Glacier
77°55S 164°28E M front, Hobbs Glacier
77°55S 164°28E RM front, Hobbs Glacier
77°55S 164°28E RM front, Hobbs Glacier
77°56S 164°24E RM Salmon Stream
77°56S 164°34E RM Salmon Stream
77°57S 162°00E RM Table Mountain
77°57S 164°42E R front, Hobbs Glacier

350+80 BP (Y-2393) 14C1 GB Mat, 40 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
1720+100 BP (Y-2395) 14C1 GB Mat, 158 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
4030+160 BP (Y-2396) 14C1 GB Mat, 129 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
9490+140 BP (Y-2399) 14C1 GB Mat, 134 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
800+90 BP (Y-2400) 14C1 GB Mat, 150 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
2640+100 BP (I-3018) 14C1 AL Contorted, with mirabilite in moraine of Koettlitz Gl.; --. BLA68
1980+60 BP (QL-73) 14C1 GB Mat, 13 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
900+50 BP (QL-78) 14C1 GB Mat, 5 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
3160+70 BP (QL-87) 14C1 GB Mat, 65 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
1030+40 BP (QL-89) 14C1 GB Mat, 8 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
2460+50 BP (QL-89) 14C1 GB Mat, 110 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
2800+50 BP (QL-92) 14C1 GB Mat, 72 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
3300+90 BP (QL-94) 14C1 GB Mat, 26 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
3930+140 BP (Y-2394) 14C1 GB Mat, 91 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
2010+80 BP (Y-2397) 14C1 GB Mat, 62 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
1980+80 BP (Y-2398) 14C1 GB Mat, 157 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
6100+140 BP (Y-2401) 14C1 GB Mat, 100 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
2680+120 BP (Y-2402) 14C1 GB Mat, 99 m alt.; on or near surface of ice-cored Ross Sea drift. STU81
3740+210 BP (#?) 14C2 SE Lobodontini from mirabilite; --. SIE68
(SIE68: age = 3125±210 BP if res. corr. = 615±100BP)
12,200+1000 BP (I-3019) 14C1 OM Petid, assoc. with mirabilite, basal moraine of Hobbs Gl.; --. BLA68
2800+100 BP (I-3020) 14C1 AL Contorted, with mirabilite in moraine of Koettlitz Gl.; --. BLA68
8800+50 BP (QL-1160) 14C1 GB Layer, 122 m alt.; in place in silt bed in lac. delta; --. STU81
4720+50 BP (QL-1161) 14C1 GB Layer, 78 m alt.; in place in silt bed in lac. delta; --. STU81
524±115 MY RS413/0.7132±0.0068 FD Size fractions from till; possible Cenozoic. PAU81
5900±140 BP (I-462C) 14C1 Aligferous sand, ablation drift, moraine of Koettlitz Gl.; --.0LS6L
(infer=#I-462 in PBW58)
77°59'S 164°10'E R
in front of Davis Gl.

77°59'S 164°20'E R
Garwood Valley

250\pm150 \text{ BP (L-627)} \text{ } ^{14} \text{C} \text{Cl SE Flipper, crabeater, on the ground, 1170 ft. alt. OLS61 PEW62}
(OLS61: \text{age}=1450 \text{ BP w/o corr. based on #L-570})

2480\pm120 \text{ BP (L-462A) } ^{14} \text{C} \text{Cl PE Algal, in glacial sand and gravel, moraine of Koettlitz Gl.;}--. OLS61 PEW58
(OLS61: \text{loc.}="\text{Hobbs Valley}")
GEOGRAPHIC AREA 4:

VICTORIA VALLEY AND ASSOCIATED DRY VALLEYS NORTH OF OLYMPUS RANGE IN VICTORIA LAND (samples from west to east by coordinates)

77°20S 161°08E R
N of L. Vashka

163 MY (GA 153) KA9 PY Dolerite from lower sheet; Ferrar Dolerite. MCD63

77°20S 161°08E R
N. of L. Vashka

162 MY (GA 152) KA8 PL Dolerite from lowest sill; Ferrar Dolerite. EVE62.

77°25S 161°45E R
SW of L. Vida

162 MY (GA 250) KA9 PL Dolerite from middle sheet; Ferrar Dolerite. MCD63

77°22S 161°51E R
SW of L. Vida

172+23 MY, 193+23 MY, 170+24 MY, 176+25 MY (ANGN-1) FT1 ZR Gneiss; Olympus granite gneiss. VOC78 VOC81 (VOC81: mean age=180+24 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

123+16 MY (ANGN-1) FT1 AP Gneiss;

Olympus granite gneiss. VOC78 VOC81

77°22S 161°51E R
DVDP 6, by L. Vida

558+83 MY, 444+75 MY, 517+90 MY (ANGR-1) FT1 ZR Granite;

vida granite. VOC78 VOC81

(VOC81: mean age=500+83 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

48+12 MY (ANGR-1) FT1 AP Granite;

vida granite. VOC78 VOC81

77°22S 161°51E R
DVDP 6, by L. Vida

513 MY, 602 MY, 947 MY (ANGN-1) UP5 ZR Gneiss;

484 MY, 512 MY, 507 MY

(VOC81: mean age=500+83 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

318 MY, 332 MY, 419 MY (ANGR-1) UP5 ZR Granite;

316 MY, 332 MY, 441 MY

(VOC81: mean age=500+83 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

281 MY, 299 MY, 433 MY

300 MY, 318 MY, 446 MY (ANGR-1) UP5 ZR Granite;

306 MY, 324 MY, 444 MY

(via granite. VOC81

(ages are discordant, LI=462+6 MY, UI=2555+330 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

316 MY, 332 MY, 441 MY (ANGR-1) UP5 ZR Granite;

281 MY, 299 MY, 433 MY

300 MY, 318 MY, 446 MY (ANGR-1) UP5 ZR Granite;

306 MY, 324 MY, 444 MY

(VOC81: mean age=500+83 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

318 MY, 332 MY, 419 MY (ANGR-1) UP5 ZR Granite;

316 MY, 332 MY, 441 MY

(VOC81: mean age=500+83 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

242+31 MY (V6-37) RS312/0.7082+0.0027 WR, BT, PL Para-gneiss; basement complex. STU75A VOC81 (VOC81: age=235+31 MY using RS3, strat.=Olympus granite gneiss; STU75A: true age more than 500 MY)

77°22S 161°51E R
DVDP 6, by L. Vida

486+14 MY (V6-173 & V6-300) RS512/0.7096+0.0007 W

(VOC81: age=475+14 MY using RS3, strat.=vida granite

77°23S 161°52E R
S. of L. Vida

210 MY (GA 246) KA9 BT Granodiorite;

Admiralty system. MCD63

77°23S 161°57E G
10 m above L. Vida

13,400+330 BP (74-33) UT1 CA Algal 1 m, deltaic beds;

---. HEN79

(232Th corrected age=8000 BP; infer =#ER33, age=8.5+0.3 KY, Old Delta, L. Vida in UNI75)

77°23S 161°57E G
Lake Vida

26+14 KY (ER27) UT --- (Lacustrine CA or GP), Old Delta; ---. UNI75
77023S 161057E G
10 m above L. Vida

77024S 1620E R
SE of L. Vashka

77023S 1620E R
SE of L. Vida

77023S 1620E R
SE of L. Vida

77023S 1620E R*
SE of L. Vida

77023S 162000E G
Victoria Valley*

77025S 162005E AR
S. wall, Victoria Val.

11,075±151 BP (Wk58) 14C CA Lac., algal 1 m, deltaic beds; —, HEN79

(for comparison with #74-33)

159 MY (GA 249) KA9 PL Dolerite from lower sheet;
Ferrar Dolerite. MCD63

185 MY (GA 147) KA9 BT Granodiorite;
Admiralty system. MCD63

222 MY (GA 149) KA9 OR Silicic dike;
intrusive into Admiralty system. MCD63

211 MY (GA 251) KA9 BT Silicic dike;
Admiralty system. MCD63

(*infer descript. for "GA 247" is for this sample)

68±4 MY to 157±7 MY (?) FTK AP Basement samples. GLE83

(*and Wright Valley—also listed in Geog. Area 5)

549±15 MY, 564±18 MY, 598±25 MY (?) UPL ZR Fraction;

506±15 MY, 526±18 MY, 611±25 MY " "

521±15 MY, 535±18 MY, 598±25 MY " "

Olympus Granite-gneiss. DEU66

(Ages are discordant; best chord LI=0, UI=610 MY;
if LI=160 MY, then UI=640 MY.; recal. in SKI83 as
UI=588.5±12.5 MY if LI=0)
GEOGRAPHIC AREA 5: WRIGHT VALLEY AND BULL PASS, VICTORIA LAND (samples from west to east by coordinates)

77032S 161°00′5E RM N Fork, Wright Valley
77035S 161°00′5E RM S Fork, Wright Valley
77034S 161°0′E R Don Juan Pond vic. Wright Valley
77032S 161°30′E R S shore, L. Vanda
77032S 161°33′E G in Lake Vanda
77032S 161°33′E G near L. Vanda
77032S 161°33′E G in Lake Vanda
77032S 161°33′E G in Lake Vanda
77032S 161°33′E G nr L. Vanda
77032S 161°33′E G shore of Lake Vanda
WRIGHT VALLEY AND BULL PASS, VICTORIA LAND (samples from west to east by coordinates)

780 BP (R. 809/2) 14C SK Seal No. 36; on the surface. BAR67
(age based on std.=−140 o/oo; corr.=c.1200 yrs)
560 BP (R. 809/3) 14C FL Adelie PQ, Pygoscelis adeliae; BAR67
(age based on std=−140 o/oo; corr.=c.1200 yrs)
1210±120 BP (#?) 14C SE Carcass of crabeater (Lobodon carcinophagus). YAM67
190±5.6 MY; 181.2 MY (77060) A1 Pl; WR Dolerite; Ferrar Supergroup. KYL81
481±15 MY (6) RSM2/0.709 BT Gneiss; Olympus granite-gneiss. DEU64
494±15 MY (8) RSM2/0.709 BT Gneiss; Olympus granite-gneiss. DEU64
13600±1000 BP (#?) U/T CA Assoc. with gypsum, 55 cm level of core near hole H; --. GUM74
(may=#ER13, same loc.)
1D 1200+10 BP (#?) U/T CA Assoc. with gypsum, 15 cm level of core near hole H; --. GUM74
13.6±0.9 KY (ER13) U/T 1st EV, L. Vanda Core K; --. UNI75
("Th contamination"; may=# of GUM74 from 55 cm)
9.5±1.6 KY (ER25) U/T 1st EV, L. Vanda deep core; --. UNI75
("a little Th.")
13.6±0.5 KY (ER26) U/T 2nd EV, L. Vanda deep core; --. UNI75
("a little Th.")
3.3±2.2 KY (ER32) U/T (EV) L. Vanda deep core 166 cm; --. UNI75
("too little material, Th contamination")
100 BP (R. 809/1) 14C SK Seal No. 7; on the surface. BAR67
(age based on std.=−140 o/oo; corr.=c.1200 yrs)
0±50 BP (ML 692) 14C LW 25 m. depth. JON 71
("age is probably 20 to 70 years")
2130±80 BP (ML 691) 14C LW 60 m. depth. JON 71
(at 9 m. depth, counts=10x modern; at 54 m. depth, counts=2.5x modern)
c.3000 BP (#?) 14C AL Circa upper lake shore lines; --. WIL69
2080±90 BP (#?) 14C AL Elevated beach 41 m. above lake level on 12/2/70; --. YOS75
2120±90 BP (#?) 14C AL Elevated beach 36 m. above lake level on 12/2/70; --. YOS75
2430±100 BP (#?) 14C AL Elevated beach 34 m. above lake level on 12/26/68; --. YOS75
2920±120 BP (#?) 14C AL Elevated beach 29 m. above lake level on 12/26/68; --. YOS75
2590±100 BP (#?) 14C AL Elevated beach 24 m. above lake level on 12/26/68; --. YOS75
77032S 161033E G
shore of Lake Vanda
77032S 161040E RM
NE of Lake Vanda
77032S 161040E RM
NE of Lake Vanda
77032S 161040E RM
NE of Lake Vanda
77032S 161050E RM
floor, Wright Valley
77032S 161050E RM
floor, Wright Valley

77031S 161050E G
Wright Valley RM
77031S 161050E G
Wright Valley RM
77031S 161050E G
Wright Valley
77031S 161050E G
Wright Valley*
77030S 161052E G
Prospect Mesa
77030S 161052E G
Prospect Mesa
77030S 1620E AR
N side, Wright Val.
2 km E, Bull Pass RM
77030S 1620E AR
N side, Wright Val.
c.2 km E, Bull Pass

2210+90 BP (#?)14C AL Elevated beach 18 m. above lake level on 12/26/68;—. YOS75
1930+110 BP (#?)14C AL Elevated beach 11 m. above lake level on 12/26/68;—. YOS75
1810+90 BP (#?)14C AL Elevated beach 11 m. above lake level on 12/2/70;—. YOS75
1280+90 BP (#?)14C AL Elevated beach 5 m. above lake level on 12/2/70;—. YOS75
2760+100 BP (#?)14C AL Elevated beach 2 m. above lake level on 12/26/68;—. YOS75
1990+130 BP (#?)14C AL Elevated beach 0.3 m. above lake level on 12/2/70;—. YOS75
2130+90 BP (#?)14C AL Elevated beach 25 m. above lake level on 12/27/68;—. YOS75
2000+100 BP (#?)14C AL Elevated beach 22 m. above lake level on 12/27/68;—. YOS75
2060+54 BP (#?)14C AL Elevated beach 22 m. above lake level on 12/27/68;—. YOS75
150 MY (#?)FTK BT Ferrar Dolerite. SHI67
200 MY (#?)FTK BT Vida Granite. SHI67
520 MY (#?)FTK BT Dais Granite. SHI67

GT 35,000 BP (L-645)14C SH Pecten shells, fossiliferous gravel; Pecten Glaciation. NIC65
GT 800 KY (#?)U/T Pecten shells, fossiliferous gravel; floor, Wright Valley Pecten Glaciation. NIC65
(pers. comm., Broecker; radium-uranium measurements suggest same date, pers. cairn, Turber, NIC71)
499+43 MY RS912/0.7109±0.0007 WR Granite to granodiorite; Olympus granite-gneiss and Dais granite. FAU74
481±44 MY RS1012/0.7104±0.0008 WR Granite to granodiorite, porphyry; Vida granite and Vanda porphyry. FAU74
490±14 MY RS1512/0.7109 WR Olympus granite-gneiss, Dais granite, and Vida granite. JON69
(infer = 2 RSI sample suites of FAU74 above)
68+4 MY to 157+7 MY (#?)FTK AP Basement samples. GL883
* (and Victoria Val. — also listed in Geog. Area 4)
460+95 MY (F-80-2) RS13/0.70869±0.00069 FD,"WR" Size fractions from sediment; Jason Diamicton. TAY83
(provenance date; "WR" from 1-2 mm size fraction)
762+90 MY (F-80-3) RS413/0.7053±0.00093 FD Size fractions from Peleus till. TAY83
(provenance date)
4.1±0.2 MY (#?)FT2 MI Size fractions, soil; on bench carved during Vanda glacial. JAC77
(ages of size fractions in each horizon also listed in JAC77; date on parent rock given below)
151.2 MY (#?)FT2 BT Granite from outcrop near soil MI site listed above; Olympus granite-gneiss. JAC77
(parent rock for above listed soil)
77°30S 162°04E R
N wall, Wright Valley
77°30S 162°04E R
N wall, Wright Valley
77°30S 162°00E R
M wall, Wright Valley
77°32S 162°10E M
W Bartley Glacier
77°30S 162°08E R
N wall, Wright Val.
77°31.6S 162°09.3E R
cone nr Bartley Gl.
77°28S 162°33E R
N Spur, Mt. Loke
77° 29S 162°33E R
N Spur, Mt. Loke
77°24S 162°45E R
N wall, nr Mt. Doorly

477+15 MY (29) RSM2/0.709 BH Porphyry dyke;
in Olympus granite-gneiss. DEU64
942+80 MY (29) RSM2/0.709 FD Porphyry dyke;
in Olympus granite-gneiss. DEU64
(determined from ages of 956 MY, 940 MY, and 931 MY)
1000+80 MY (29) RSM2/0.709 WR Porphyry dyke;
in Olympus granite-gneiss. DEU64
(from ages of 1030 MY, 960 MY, and 1003 MY; eval. in JON 67)
495+15 MY (22) RSM2/0.709+0.004 BT Granodiorite;
Theseus granodiorite. DEU64
435+25 MY (21) RSM2/0.709+0.004 BT Pegmatite;
in Olympus granite-gneiss. DEU64
3.75+0.2 MY (YU-Mcm-WV3) K9 WR Basalt;
McMurdo Volcanic Group. ARM78
(infer is rev. age for #?, 3.9+0.3 MY in NIC71
and #?, 3.6+0.3 MY in DEN68; loc. info. divergent;
info, also in FLE72 and JAC77)
1970+95 BP (#?) 14C SE In the face of a small terrace;
Alpine I glaciation. BEH70
494+15 MY (2) RSM2/0.709+0.004 BT Schist;
Asgard Formation. DEU64
3.4+0.6 MY (LMJ-1) K/A WR Basalt;
Debris at 1 m depth, Alpine II moraine. FLE72 BEH74
3.4+0.1 MY (LMJ-2) K/A WR Basalt;
Debris at surface, Alpine II moraine. FLE72 BEH74
2.5+0.3 MY (LMJ-3) K/A WR Basalt, of cone;
McMurdo volcanics. FLE72 BEH74
4.2+0.2 MY (LMJ-4) K/A WR Basalt, smaller & more westerly
Of 2 cones; 2nd Loop cone, McMurdo volcanics.
FLE72 BEH74
470+7 MY RS4/2/0.7119+0.0006 WK Porphyry;
Vanda porphyry dikes. JON67
3.50+0.2 MY (YU-Mcm-WV 2E) K9 WR Basalt;
McMurdo Volcanic Group. ARM78
(infer is rev. age for #?, 3.7+0.3 MY in NIC71
and #?, 3.5+0.3 MY in DEN68; loc. info. divergent;
info, also in FLE72 and JAC77)
479+15 MY (17) RSM2/0.709 BT Porphyritic granite;
Dais granite. DEU64
495+15 MY (17) RSM2/0.709 BT Porphyritic granite;
Dais granite. DEU64
487+15 MY (18) RSM2/0.709 BT Porphyritic granite;
Dais granite. DEU64
GEOGRAPHIC AREA 6:

77°46.0S 162°07.9E R above Taylor Gl.
77°45.9S 162°08.4E R above Taylor Gl.
77°46.2S 162°08.4E R above Taylor Gl.
77°42S 162°014E G (nr Rhone Glacier)
77°44.4S 162°15.0E R above Taylor Gl.
77°44S 162°15.0E M nr snout, Taylor Gl.

77°44S 162°15.0E RM L. Bonney drainage ba.
77°43S 162°15.0E RM L. Bonney drainage ba.
77°42.2S 162°15.7E R E. of Rhone Gl.
77°41.8S 162°15.9E R E. of Rhone Gl.

77°46S 162°17E G (nr Calkin Glacier)
77°43S 162°20E M (btw Hughes and (Bonney Reigel Gls.))
77°43S 162°20E M (btw Hughes and Bonney Reigel Gls.)
77°43S 162°20E M nr west lobe, L. Bonney
77°44S 162°20E RM L. Bonney drainage ba.
77°44S 162°20E RM L. Bonney drainage ba.
77°43S 162°20E M West Lobe, L. Bonney
77°41.3S 162°22.5E R by Matterhorn Gl.

TAYLOR VALLEY, VICTORIA LAND, FROM TAYLOR GLACIER TO GNEISS POINT (samples from west to east by coordinates)

1.84+0.11 MY (YU-McM-26) KA9 WR Lava cascade from ridge crest; McMurdo Volcanic Group. ARM78
1.53+0.06 MY (YU-McM-27) KA9 WR Welded spatter from cinder cone; McMurdo Volcanic Group. ARM78
2.00+0.06 MY (YU-McM-29) KA9 WR Lava cascade from ridge crest; McMurdo Volcanic Group. ARM78
300+40-25 K (930) U/T (CA) —
Rhone Gl. section. UNI78
1.94+0.12 MY (YU-McM-24) KA9 WR Flow capping till and covered by erratics; McMurdo Volcanic Gp. ARM78
2.6+0.2 MY ("3") KA9 WR Basalt from a lateral moraine; postdates extensive glaciation. ARM68
(in progress rept; superseded by dating in ARM78)
17,790+70 BP (QL-1257) 14C GB 144 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
16,470+200 BP (QL-1046) 14C GB 116 m alt.; layer in silt bed in delta; (Glacial Lake Washburn). STU81
1.79+0.13 MY (YU-McM-23) KA9 WR Massive flow on flank of cinder cone; McMurdo Volcanic Group. ARM78
2.00+0.18 MY (YU-McM-20) KA9 WR Bomb on cinder cone nr summit; McMurdo Volcanic Group. ARM78
(infer=??, 1.8+0.2m in DEN68)
250±15 KY (76-25) U/T (CA) —;
Calkin delta. UNI78
1.36±3 KY, 140±10 KY (383) U/T (CA) (Lac. sediment) clasts in "till between Hughes and Bonney Reigel." UNI78
240-40+70 KY, 318±12 KY (384) U/T (CA) (Lac.sed.) clasts in "till between Hughes and Bonney Reigel." UNI78

203+10 KY (74-24) UT1 CA Platy lacustrine, lag;
(possibly Taylor II glaciation). HEN79
(infer=ER24 in UNI75)
210+10 KY (74-19) UT1 CA Platy lacustrine, lag;
(possibly Taylor II glaciation) HEN79
(infer=ER19 in UNI75)
198+10 KY (74-20) UT1 CA Platy lacustrine, lag;
(possibly Taylor II glaciation). HEN79
(infer=ER20 in UNI75)
197+8 KY (74-23) UT1 CA Platy lacustrine, lag;
(possibly Taylor II glaciation). HEN79
(infer=ER23 in UNI75)
21,200+200 BP (QL-1246) 14C1 GB 113 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
17,530+70 BP (QL-1247) 14C1 GB 102 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
15,450+1650 BP (NZ79) 14C IC Bottom waters; postdates Taylor II glaciation. HEN77
136+3 KY, 140±10 KY (383) U/T (CA) (Lac. sediment) clasts in "till between Hughes and Bonney Reigel." UNI78

3.33±0.10 MY (YU-McM-16) KA9 WR Basalt;
McMurdo Volcanic Group. ARM78
(infer=??, 3.3±0.2 MY, in DEN68)
77043S 162025E R
L. Bonney drainage ba.

77043S 162025E RM
L. Bonney drainage ba.

77044S 162025E RM
L. Bonney drainage ba.

77043S 162025E RM
L. Bonney drainage ba.

77042S 162025E R
in ice of L. Bonney
77043S 162025E G
East Lobe, L. Bonney

77043S 162025E G
East Lobe, L. Bonney

77043S 162025E G
East Lobe, L. Bonney

77043S 162025E G
East Lobe, L. Bonney

77043S 162025E G
East Lobe, L. Bonney

77043S 162025E G
(nr Lake Bonney)
77043S 162025E G
(nr Lake Bonney)

77043S 162025E G
E of L. Bonney
77043S 162025E G
E of L. Bonney

77041.8S 162025.3E R
nr Matterhorn Gl.
77040-43S 162030-45E R
Suess Gl, L. Bonney, Nussbaum Riegel

77040-43S 162030-45E R
Suess Gl, L. Bonney, Nussbaum Riegel

77040-43S 162030-45E R
Suess Gl, L. Bonney, Nussbaum Riegel

77040-43S 162030-45E R
Suess Gl, L. Bonney, Nussbaum Riegel

77040-43S 162030-45E R
Suess Gl, L. Bonney, Nussbaum Riegel

19,300+800 BP (QI-1256) 14C1 GB 89 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
18,700+80 BP (QI-1248) 14C1 GB 186 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
18,170+70 BP (QI-1137) 14C1 GB 205 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
13,980+60 BP (QI-1255) 14C1 GB 99 m alt., layer in silt bed in delta; (Glacial Lake Washburn). STU81
GT 300 BP (L-462E) 14C1 SE Fur from carcass. OLS61
(w/o corr. factor, age=1500+150 BP)
1.97+0.12 KY (74-29) UT1 AR Shallow core;
[possibly Taylor I glaciation]. HEN79
(232Th corr. age=0.800 KY; infer=#ER29 in UNI 75)
4.09+0.43 KY (74-30) UT1 GP Shallow core;
[possibly Taylor I glaciation]. HEN79
(232Th corr. age=0.907 KY; infer=#ER30 in UNI75)
1.80+0.14 KY (74-56) UT1 AR Shallow core;
[possibly Taylor I glaciation]. HEN79
(232Th corr. age=1.10 KY; infer=#ER56 in UNI75)
1.90+0.12 KY (74-57) UT1 AR Shallow core;
[possibly Taylor I glaciation]. HEN79
(232Th corr. age=0.60 KY; infer=#ER57 in UNI75)
10.00+0.60 KY (74-58) UT1 GP Shallow core;
[possibly Taylor I glaciation]. HEN79
(232Th corr. age=0.1 KY; infer=#ER58 in UNI75)
5.60+0.19 KY (74-90) UT1 AR Varves 48 cm down core ll,
sed. depth c. 1.6 m; (poss. Taylor I Glac.). HEN79
(232Th corr. age=1.98+0.28 KY; infer=#ER90 in UNI75)
GT 400+1SD KY (386) U/T (CA) Lake Bonny till. UNI78
("No Th recovery")
GT 290+2SD KY (387) U/T (CA) Lake Bonny till. UNI78
2.55+0.56 MY; 2.44+0.18 MY (#2) K/A WR Trachybasalt, dyke?, 400 m alt.; McMurdo volcanic province. KUR78
2.53+0.20 MY (#?) K/A WR Trachybasalt, vent, 750 m alt.; McMurdo volcanic province. KUR78
3.38+0.14 MY (YU-McM-19) KA9 WR Basalt, covered with erratics; McMurdo Volcanic Group. ARM78
2045+140 BP (M-1919) 14C2 SK Desiccated Weddell seal, side away from ground. CRA68
2490+140 BP (M-1981) 14C2 MU Weddell seal, weathered side of thorax. CRA72B
(same animal as M-1919)
845+100 BP (M-1912) 14C2 SE Desiccated Crabeater flipper, side next to ground. CRA68
870+100 BP (M-1913) 14C2 SE Desiccated Crabeater flipper, in contact with ground. CRA68
1200+120 BP (M-1914) 14C2 SE Desiccated Crabeater flipper, side away from ground. CRA68
77°40'3S 162°30'4E R
Suess G1, L. Bonney, Nussbaum Riegel
77°40'3S 162°30'4E R
Suess G1, L. Bonney, Nussbaum Riegel
77°40'3S 162°30'4E R
Suess G1, L. Bonney, Nussbaum Riegel
77°40'3S 162°30'4E R
Suess G1, L. Bonney, Nussbaum Riegel
77°40'3S 162°30'4E R
Suess G1, L. Bonney, Nussbaum Riegel
77°40'3S 162°30'4E R
by Lacroix G, snout
77°40'3S 162°30'4E R
nr Lacroix G1,
77°40'3S 162°30'4E R
(nr Lacroix G1,
77°40'3S 162°30'4E R
below Lacroix G1,
77°40'3S 162°30'4E R
in front of Lacroix G1,
77°40'3S 162°30'4E R
in front of Lacroix G1,
77°40'3S 162°30'4E R
W of Solas G1,
77°40'3S 162°30'4E R
in front of Solas G1,
77°40'3S 162°30'4E R
W of Solas G1,
77°40'3S 162°30'5E RM
L. Bonney drainage ba.
77°40'3S 162°30'5E M
1 mi. E of L. Bonney
77°40'3S 162°30'6E G
by Solas (=Sollas) G1
77°40'3S 162°30'4E R
E of Solas G1
77°40'3S 162°30'6E R
E of Solas G1
77°40'3S 162°30'9E G
W of "L. Henderson" (=Mummy Pond?)
77°40'3S 162°30'9E G
W of "L. Henderson" (=Mummy Pond?)

1045±120 BP (M-1915) 14C2 SE Desiccated Crab eater
flipper, on side away from ground. CRA68

2150±200 BP (M-1916) 14C2 SE Desiccated Crab eater
flipper, on side away from ground. CRA68

1155±120 BP (M-1917) 14C2 SE Skin and tissue from
remnants of carcass on side of hill. CRA68

1845±140 BP (M-1918) 14C2 SK Desiccated Crab eater
seal, side away from ground. CRA68

90±2.4 KY (75-26) UT1 CA Nodules in silt;
(possibly between Taylor I and II Glac.). HEN79

74±1.6 KY (76-14) UT1 CA Lac., on moraine mound;
(possibly between Taylor I and II Glac.). HEN79

350±40 KY (76-13) UT1 CA Cement in sands, base of
Lacroix sec.; (possibly Taylor III Glac.). HEN79

300±200 KY (76-11) UT1 CA Lac., clast, in delta;
(possibly Taylor III Glac.). HEN79

320±40+50 KY (76-10) UT1 CA Lac., clast, in moraine;
(possibly Taylor III Glac.). HEN79

220±10 KY (76-17) UT1 CA Lacustrine, lag on terrace;
(poss. Taylor II Glac.). HEN79

188±35 KY (76-38) UT1 CA Lacustrine, lag;
(poss. Taylor II Glac.). HEN79

3.11±0.09 Mx (YU-MGm-12) KA9 WR Basalt on valley wall;
McMurdo Volcanic Group. ARM78

2.66±0.06 Mx (YU-MGm-10') KA9 WR Same basalt flow as
YU-MGm-10; McMurdo Volcanic Group. ARM78

3.06±0.10 Mx (YU-MGm-10) KA9 WR Basalt flow;
McMurdo Volcanic Group. ARM78

(infer=?) 3.0±0.2 Mx in DGN68

2.95±0.07 Mx (YU-MGm-13) KA9 WR Dike on valley wall;
McMurdo volcanic Group. ARM78

17,640±90 BP (QL-1258) 14C1 GB 73 m alt., layer in silt
bed in delta; (Glacial Lake Washburn). SUT81

660±300 BP (M-851) 14C SE Well-preserved carcass, 365
ft. a.s.l.; --. PNB62

2.34±0.9 Mx ("2") KA9 WR Basalt from scoria pile;
brownadvance of Solas Glacier. ARM68

(in progress rept; superseded by dating in ARM78)

4.64±0.12 Mx (YU-MGm-7) KA9 WR Core of dike or cinder
cone plug; McMurdo Volcanic Group. ARM78

4.54±0.7 Mx (YU-MGm-8) KA9 Dike exposed by erosion;
McMurdo Volcanic Group. ARM78

92±2.0 KY (76-7) UT1 CA-cemented silts from dry basin;
(poss. between Taylor I and II Glac.). HEN79

90.5±1.4 KY (76-6) UT1 CA-cemented silts at margin
of basin; (poss. between Taylor I and II Glac.). HEN79
95+4.5 KY (75-22) UT1 CA Bedded lacustrine; (pos. btwn Taylor I and II Glac.). HEN79
95+1.6 KY (74-36) UT1 CA Platy lacustrine, lag; (pos. btwn Taylor I and II Glac.). HEN79
100+3 KY (75-18) UT1 CA Bedded lacustrine; (pos. btwn Taylor I and II Glac.). HEN79
120+6 KY (76-5) UT1 CA Lacustrine, encasing dropped boulder; (pos. btwn Taylor I and II Glac.). HEN79
("Possibly same as 75-18.")
70+1.4 KY (76-4) UT1 CA Lacustrine, 15 m below surface; (pos. btwn Taylor I and II Glac.). HEN79
210+15 KY (76-1) UT1 CA Lacustrine, clast; (pos. Taylor II Glac.). HEN79
161+2 KY (394) U/T (CA) Lacroix section II. UNI78
(Not included in dating summary of HEN79)
80+2.8 KY (75-8) UT1 CA Upper massive horizon, Suess Stream, Sec.; (pos. btwn Taylor I and II Glac.). HEN79
98+1.7 KY (75-11) UT1 CA Lac., encasing boulder, Suess Stream Sec.; (pos. btwn Taylor I and II Glac.). HEN79
127+5 KY (75-1) UT1 CA Nodules in silt, Suess Stream; (pos. btwn Taylor I and II Glac.). HEN79
125+2.5 KY (75-2) UT1 CA Nodules in silt, Suess stream; (pos. btwn Taylor I and II Glac.). HEN79
200+10 KY (75-13) UT1 CA Clast in CA silt, Suess Stream; (pos. Taylor II Glac.). HEN79
1855+160 BP (TAM-15; MIN-1) 14C CR, SN, SK, PL Mummified crab-eater seal, moraine surface, 793+25 m alt.
NOA64 (corr. age=500 BP relative to seal TAM-14)
474.6+9 MY (NZKA 16) KA12 BT Country rock; Olympus granite-gneiss. HUL72
448.0-46 MY (NZKA 17) KA12 WR Lamprophyre dyke; intrudes Olympus granite-gneiss. HUL72
454.0-46 MY (NZKA 18) KA12 WR Lamprophyre dyke; intrudes Olympus granite-gneiss. HUL72
185+10 KY (ER75-7) U/T (CA) Suess Stream Section; -. UNI75
(not included in dating summary of HEN79)
2.84+0.2 MY ("1") KA9 WR Basalt complex on bedrock bench; Overridden by Taylor Glacier advance. ARM68 (in progress rept; superseded by dating in ARM78)
520+30 MY (AS-1) KA13 BT Lamprophyric dike; Basement rocks. PEA63
77°41'S 162°40'E R
Mt. Nussbaum

77°41.4S 162°40.8E R
far below Marr Gl.

77°39'S 162°42'E R
beside Suess Gl.

77°41.8S 162°42.0E R
below Marr Gl.

77°42.0S 162°42.7E R
below Marr Gl.

77°40'S 162°45'E R
W slope, Mt. Nussbaum

77°40'S 162°45'E R
Taylor Valley

77°38'S 162°50'E G
S of L. Hoare

77°38'S 162°50'E G
Lake Hoare

77°38'S 162°50'E G
S of L. Hoare

77°38'S 162°51'E G
S of L. Hoare

77°38'0.1S 162°51.3'E R
DVDP 12

77°38'0.9S 162°51.3'E R
DVDP 12

77°38'0.1S 162°51.3'E R
DVDP 12

77°38'0.9S 162°51.3'E R
DVDP 12

77°38'0.1S 162°51.3'E R
DVDP 12

77°37'S 162°59'E G
Canada Glacier

77°37'S 162°59'E G
Canada Glacier

77°37'S 163°00'E G
N wall, Taylor Valley

77°37'S 163°00'E G
central Taylor Valley

77°37'S 163°00'E G
dge, Taylor Valley

77°37'S 163°00'E G
Taylor Valley

1250±100 BP (L-462B) 14C Cl SE Hide, lying on glacial drift; 1630 ft. alt. OLS61 BM59
(corr. per seal L-570; w/o corr. age=2550+100 BP)

2.87±0.15 MY (YU-McM-6) KA9 WR Basalt on steep Wall;
McMurdo Volcanic Group. ARM78

3110+40 BP (Q1-1162) 14C1 AL Freshwater, in lac. sed. in moraine; "Alpine II" or "Alpine I." STU78

2.89±0.10 MY (YU-McM-3) KA9 WR Basalt flow;
McMurdo Volcanic Group. ARM78

2.93±0.10 MY (YU-McM-1) KA9 WR Basalt flow, cape hill;
McMurdo Volcanic Group. ARM78

425±20 MY (AT2-1) KA13 BT Monzonite gneiss;
Basement rocks. ANG62 PEA63

458±20 MY (AT2-2) KA13 BT Lamprophyrite dyke;
Basement rocks. ANG62 PEA63

400-100+200 KY (ER75-28)U/T CA Biscuit lag; --. UNI75
(not included in dating summary of HEN79)

92±2.5 KY (250) U/T (CA) Lag; --. UNI78
(not included in dating summary of HEN79)

87±2.6 KY (75-29) U/T1 CA lacustrine, lag;
(poss. btwn Taylor I and II Glac.). HEN79

214±10 KY (75-27) U/T1 CA lacustrine, lag;
(poss. Taylor II Glac.). HEN79

255±40 KY (76-52) U/T1 CA Clasts, 24.66-70 m down;
(poss. Taylor II Glac.). HEN79
(coords. from DVDLP Bulletin No. 5)

160±13 KY (76-53) U/T1 CA Clasts, 38.51 m down;
(poss. Taylor II Glac.). HEN79
(coords. from DVDLP Bulletin No. 5)

300-40+50 KY (75-16) U/T1 CA Lacustrine, 57.99-58.00;
(poss. Taylor II Glac.). HEN79
(coords. from DVDLP Bulletin No. 5)

260±40 KY (76-54) U/T1 Calcareous-cemented Diamicton,
95.44-46 m; (poss. Taylor III Glac.). HEN79
("Postdates deposition"; coords.: DVDLP Bull. 5)

300±25 KY (76-55) U/T1 CA lacustrine, clasts, 111.18-111.26 m;
(poss. Taylor III Glac.). HEN79
(coords. from DVDLP Bulletin No. 5)

4000 KY (76-61) U/T1 CA Disturbed lac. CA-silt
varves, 142.35-142.40 m; (poss. predates Taylor III Glac.)
HEN79

(in radiometric equil.; coords: DVDLP Bull. No. 5)

295-30±40 KY (265) U/T (CA) lag; --. UNI78
(not part of summary rept of HEN79)

240±45+60 KY (422) U/T CA Clast; --. UNI78
(not part of summary rept of HEN79)

120±3 KY (76-9) U/T1 CA Lacustrine, lag on terrace;
(poss. btwn Taylor I and II Glac.). HEN79

75±2.6 KY (76-8) U/T1 CA Lacustrine, draping moraine
mound; (poss. btwn Taylor I and II Glac.). HEN79

11.0 MY (K-Ar-176) KA6 WR Basalt exposed in granite-
geiss; Cenozoic volcanics. POL76

824±5 KY (76-21) U/T CA Pedogenic clast; --. UNI78
(not included in dating summary of HEN79)
Compilation of Isotopic Dates from Antarctica

77°037'S 163°000'E
Taylor Valley
77°038'S 163°006'E RM
by Canada Glacier

77°038'S 163°006'E RM
L. Fryxell drain. ba.
77°040'S 163°007'E RM
L. Fryxell drain. ba.
77°040'S 163°007'E RM
L. Fryxell drain. ba.
77°034'S 163°008'E AR
Mt Falconer area RM

142+5 KY (76-12) U/T CA Taylor Lake sed.;—. UNI78
(not included in dating summary of HEN79)
12,530±260 BP (QL-991) 14C1 GB 88 m alt., in lac. sed. on
moraine draped on Canada Gl. alpine moraine;
(Glacial Lake Washburn). STU81
12,200±600 BP (QL-1032) 14C1 GB 60 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
12,100±500 BP (QL-1033) 14C1 GB 65 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
10,950±70 BP (QL-1250) 14C1 GB 67 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
10,800±65 BP (QL-1147) 14C1 GB 20 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
14,600±400 BP (QL-1030) 14C1 GB
17,050±60 BP (QL-1253) 14C1 GB 224 m alt. in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
16,920±230 BP (QL-992) 14C1 GB 224 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
16,500±700 BP (QL-1034) 14C1 GB 118 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
15,100±800 BP (QL-1035) 14C1 GB 118 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
14,600±700 BP (QL-990) 14C1 GB 76 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
14,430±170 BP (QL-1148) 14C1 GB 76 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
13,700±180 BP (QL-1252) 14C1 GB 98 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
13,500±320 BP (QL-1254) 14C1 GB 118 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
13,300±800 BP (QL-989) 14C1 GB 68 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
12,000±700 BP (QL-1031) 14C1 GB 36 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
11,900±150 BP (QL-1251) 14C1 GB 60 m alt., in silt bed in
lac. delta; (Glacial Lake Washburn). STU81
451.4±6.2 MY (GA3505;FP2-4) K12 BT Quartz monzonite;
Mt Falconer pluton. MCD70
461.2±8.0 MY (GA3506;FP2-5) K12 BT Quartz monzonite;
Mt Falconer pluton. MCD70
459.9±8.0 MY (GA3507;FP2-15) K12 BT Quartz monzonite;
Mt Falconer pluton. MCD70
469.1±8.1 MY (GA3508;FS2-1) K12 BT Schist;
Skelton Group. MCD70
469.0±8.2 MY (GA3509;FD0-4) K12 BT Microdiorite dike;
intruding Skelton Group. MCD70
463.2±8.2 MY; 458.9±8.1 MY (both: GA3509; FD0-4) K12 HB
Microdiorite dike; intruding Skelton Gp. MCD70
464.9±8.2 MY (GA3510; FD0-7) K12 BT Diorite dike;
intruding Skelton Group. MCD70
482.1±8.5 MY (GA3510;FD0-7) K12 BT Diorite dike;
intruding Skelton Group. MCD70
77o37'1630'1E G
(L. Fryxell)
77o37'1630'1E M
L. Fryxell drain. ba.
77o37'1630'1E G
(Lake Fryxell)
77o37'1630'1E G
(Lake Fryxell)
77o38'1630'12E G
L. Fryxell drain. ba.
77o38'1630'12E G
L. Fryxell drain. ba.
77o38'1630'12E G
L. Fryxell drain. ba.
77o38'1630'14E G
L. Fryxell drain. ba.
77o38'1630'15E G
L. Fryxell drain. ba.
77o38'1630'16E RM
Commonwealth Gl.
77o38'1630'20E G
L. Fryxell drain. ba.
77o38'1630'21E RM
Commonwealth Gl.
77o38'1630'22E RM
Commonwealth Gl.
77o38'1630'24.3S
163024.3E R
DVDP II
77o38'1630'29E RM
Explorers Cove
77o38'1630'30E G
Along Wales Stream
77o38'1630'39E RM
Explorers Cove
77o38'1630'3E G
End of Taylor Valley
77o38'1630'3E M
mouth, Taylor Valley
77o38'1630'4 E
163030'42E R
DVDP 8
77o38'1630'43S
163030'43E R
DVDP 8 & 9

175+20 KY (76-24) U/T CA Fryxell delta; --. UNI78
(not reliable; not in dating summary of HEN79)
9200+40 BP (QL-1142) 14C G8 21 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
188+35 KY (76-18) U/T CA Clast, in Fryxell delta;
--. UNI78
LP 57 KY (76-18) U/T CA Clast, in Fryxell delta;
--. UNI78
12,450+350 BP (QL-1043) 14C G8 88 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
12,300+700 BP (QL-1044) 14C G8 69 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
11,500+300 BP (QL-1045) 14C G8 69 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
12,350+120 BP (QL-1149) 14C G8 69 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
9800+40 BP (QL-1138) 14C G8 20 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
13,700+260 BP (QL-1139) 14C G8 80 m alt., in silt bed in lac. delta; (Glacial Lake Washburn). STU81
15,660+60 BP (QL-1140) 14C G8 In lac. beds with dropstones; (Ross Sea ice margin). STU81
13,330+80 BP (QL-1141) 14C G8 41 m alt., in silt bed lac. delta; (Glacial Lake Washburn). STU81
14,730+150 BP (QL-1156) 14C G8 In lac. beds with dropstones; (Ross Sea ice margin). STU81
13,700+400 BP (QL-1234) 14C G8 In lac. beds with dropstones; (Ross Sea ice margin). STU81
13,300+300 BP (QL-1249) 14C G8 In lac. beds with dropstones; (Ross Sea ice margin). STU81
G7 26,800 BP (? 14C Macrofossil debris, 170.35 m depth; Foraminiferal Zone III. WEB82
(pers. comm., Stuiver; coords. from DVDP Bull. 5)
5240+40 BP (QL-139) 14C G8 5 m alt. values of Adamussium colbecki in emerged marine deposits;
postdate Ross Sea drift sheet. STU76 STU81
8340+120 BP (QL-993) 14C G8 In silt bed in lac. delta;
(Contemp. with grounded Ross Sea ice). STU77 STU81
5500+70 BP (QL-161) 14C G8 1.7 m alt., values of Adamussium colbecki, emerged marine deposits;
postdate Ross Sea drift sheet. STU76 STU81
4000+200 BP (L-4625) 14C11 SH Marine, mostly pecten, on sand at high-tide mark on beach. OLS81
(w/o corr., age=4700+200 BP; loc. may be incorrect)
4360+110 BP (?14C2 SH Adamussium colbecki, 0.8 m.
a.s.l.; --. YOS83
G7 400 KY (76-57) UT1 CA-cemented fine silt, 57.25-57.28 m;
(postes. predate Taylor III Glac.). HEN79
(in radiometric equilibrium; coords: DVDP Bull.5)
6670+200 BP (QL-191) 14C1 Sh Adamussium colbecki,
combined material from DVDP 8 & 9, -21.1 to -22.1 m alt.; postdates Ross Sea drift sheet. STU76 STU81
(quoted as 5800 BP, using est. correction, in ELS81)
77°33'S 163°30'E RM
Explorers Cove
5400+60 BP (QL-163) 14C1 SH Adamussium colbecki, 8.1 m alt., in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°33'S 163°30'E RM
Explorers Cove
5970+70 BP (QL-162) 14C1 SH Adamussium colbecki, 5.3 m alt., in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
5860+70 BP (QL-158) 14C1 SH 4.2 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
5350+70 BP (QL-159) 14C1 SH 1.9 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
5770+50 BP (QL-160) 14C1 SH 0.5 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
5200+60 BP (QL-153) 14C1 SH 1.4 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
5630+60 BP (QL-154) 14C1 SH 3.3 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
6150+80 BP (QL-157) 14C1 SH 4.5 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
4620+60 BP (QL-165) 14C1 SH Adamussium colbecki, 2.9 m alt., in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°35'S 163°30'E RM
Explorers Cove
6050+70 BP (QL-137) 14C1 SH Adamussium colbecki, 0.5 m alt., in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°27'S 163°44'E R
nr. mouth, South Stream RM
77°27'S 163°44'E R
nr. mouth, South Stream RM
5760+60 BP (QL-164) 14C1 SH Adamussium colbecki, 0.5 m alt., in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°27'S 163°44'E R
nr. mouth, South Stream RM
77°27'S 163°44'E R
nr. mouth, South Stream RM
5310+60 BP (QL-155) 14C1 SH 1.0 m alt., valves of Adamussium colbecki in emerged marine deposits; postdate Ross Sea drift sheet. STU76 STU81

77°27'S 163°44'E R
nr. mouth, South Stream RM
77°27'S 163°44'E R
nr. mouth, South Stream RM
5930+200 BP (QL-70) 14C1 AL Terrestrial, 6.6 m alt., from emerged marine deposits; postdates Ross Sea drift sheet. STU77 STU81

77°27'S 163°44'E R
nr. mouth, South Stream RM
77°27'S 163°44'E R
nr. mouth, South Stream RM
6010+70 BP (QL-71) 14C1 AL Terrestrial, 8.1 m alt., from emerged marine deposits; postdates Ross Sea drift sheet. STU77 STU81
77°27'S 163°44'E nr mouth, South Stream RM
77°27'S 163°44'E nr mouth, South Stream RM
77°27'S 163°44'E nr mouth, South Stream RM
77°26'S 163°46'E Marble Point
77°26'S 163°48'E Marble Point
77°24'S 163°50'E McMurdo Sound area
77°25'S 163°50'E McMurdo Sound area

5280+400 BP (QL-1041) 14C1 AL Terrestrial, 9.3 m alt., from emerged marine deposits; postdates Ross Sea drift sheet. STU77 STU81
6430+70 BP (QL-72) 14C1 SH Adamussium colbecki, 6.0 m alt., from emerged marine deposits; postdates Ross Sea drift sheet. STU77 STU81
6350+60 BP (QL-96) 14C1 SH Adamussium colbecki, 4.5 m alt., from emerged marine deposits; postdates Ross Sea drift sheet. STU77 STU81
6120+50 BP (QL-1042) 14C1 SH Adamussium colbecki, 4.0 m alt., from emerged marine deposits; postdates Ross Sea drift sheet. STU77 STU81
4450+150 BP (L-594) 14C1 Hide, elephant seal, buried under 1 ft gravel on beach, 44 ft alt. NIC68 OLS61 (corr. per L-570; w/o corr., age=5650+150 BP)
500+20 MY (ATZ-3) KAl3 BT Marble; (Ross System). ANG62 PEA63
496+15 MY (P-1) KAl3 BT Diorite; Surko Creek diorite. PEA63
524+15 MY (P-2) KAl3 BT Basic Dyke;
Bill Hill 'trap' (=Loke microdiorite?). PEA63
GEOGRAPHIC AREA 7

78001S 163042E G beside Joyce Gl. RM

78002S 164010E G

Garwood Valley RM 78002S 164010E G mouth, Garwood V. RM

78004S 164010E G lower Marshall V. RM

78004S 164010E G lower Marshall V. RM

78004S 164010E G Marshall Valley

78005.4S 165023.2E R Rainbow Ridge

78006S 164000E G mouth, Miers Valley RM

78006S 164000E G Miers Valley

78006S 164000E G (Miers Valley)

78006L 163051E G Lake Miers

78006S 164000E G (Miers Valley)

TRANSANTARCTIC MOUNTAIN AREA, FROM 78000S TO BYRD GLACIER (samples from north to south by coordinates)

3960+30 BP (QL-1157) 14C1 AL Freshwater, from upturned lac.seds. in moraine; "Alpine II" or "Alpine I." STU78

3780+200 BP (QL-1158) 14C1 AL Freshwater, from upturned lac.seds. in moraine; "Alpine II" or "Alpine I." STU78

5610+160 BP (QL-1159) 14C1 AL Freshwater, from upturned lac.seds. in moraine; "Alpine II" or "Alpine I". STU78

6580+50 BP (QL-1221) 14C1 GB in lac. seds. in delta; within limits of Ross Sea drift. STU81

6190+80 BP (QL-80) 14C1 GB 24 m alt., mat; surface of ice-cored Ross Sea drift. STU81

1990+40 BP (QL-1039) 14C1 GB 60 m alt., mat; surface of ice-cored Ross Sea drift. STU81

210+15 KY (395) U/T (CA) Section I. UNI78

190-20+30 KY (395) U/T CA section I. UNI78

16+0.46 KY (433) U/T CA —. UNI78

2.7+0.09 KY (YU-Mcm-21001) KA9 WR Hornblende trachyte (Trachyte Hill Form.); McMurdo Volc. Gp. ARM78

1300+40 BP (QL-1040) 14C1 GB 133 m alt., mat; surface of ice-cored Ross Sea drift. STU81

3.5+0.5 KY (ER28) U/T GY Miers Valley Gypsum. UNI75 (sketchy report)

9.0+2.4 KY (ER35) U/T GY Miers Valley Gypsum. UNI75 (sketchy report; "Th. Contamination."")

7.5+0.7 KY (ER46) U/T GY Miers Valley Gypsum. UNI75 (sketchy report).

15+3 KY (76-32) U/T CA Na2O3, moraine. UNI78

115+12 KY (76-33) U/T CA Lag. UNI78

58+3.3 KY (76-36) U/T CA "Miers till beneath tuff." UNI78 (sketchy report).

120+4 KY (76-31) U/T GY -. UNI78 (sketchy report)

11.9+0.3 KY (76-27) U/T CA Lake Miers High Level. UNI78

9.5+0.3 KY (76-28) U/T CA Lake Miers High Level. UNI78

10.0+0.3 KY (76-29) U/T CA Lake Miers High Level. UNI78

5-15 KY (76-37) U/T GY Lake Miers High Level. UNI78

185+20 KY (76-35) U/T GY Miers Lake Sed. UNI78 (sketchy report)
78006S 165025E 0.85
E. Brown Pen., RM

78007.5S 165016.5E R
Brown Peninsula

78008.7S 165028.1E R
Brown Peninsula

78008.7S 165025.0E R
Brown Peninsula

78011.6S 165026.4E R
near Howchin Gl.

78012S 165055E R
edge, Koettlitz Gl. tongue

78012S 165055E R
edge, Koettlitz Gl. tongue

78014.5S 165024.8E R
canyon in front of Walcott Glacier

78014.5S 165023.9E R
canyon in front of Walcott Glacier

78014.5S 165022.5E R
canyon in front of Walcott Glacier

78014.5S 165022.0E R
canyon in front of Walcott Glacier

78015.7S 165011.3E R
near mouth, Roaring Valley

78015.7S 165011.2E R
near mouth, Roaring V.

78016.1S 16507.1E R
Roaring Valley

78016.1S 16507.1E R
Roaring Valley

78016.1S 16508.5E R
side of Roaring Valley

78016.1S 16508.4E R
side of Roaring Valley

78016.2S 16506.7E R
Roaring Valley

78016.5S 165018.8E R
Dromedary Platform

78016.8S 165033.2E R
N summit, The Bulwark

78016.8S 165033.2E R
N summit, The Bulwark

78016.8S 165033.2E R
N summit, The Bulwark

78016.8S 165025.0E R

78017.5S 165028.1E R
Brown Peninsula

78018.7S 165025.0E R
Brown Peninsula

78021.6S 165026.4E R
near Howchin Gl.

78012S 165055E R
edge, Koettlitz Gl. tongue

78012S 165055E R
edge, Koettlitz Gl. tongue

78014.5S 165024.8E R
canyon in front of Walcott Glacier

78014.5S 165023.9E R
canyon in front of Walcott Glacier

78014.5S 165022.5E R
canyon in front of Walcott Glacier

78014.5S 165022.0E R
canyon in front of Walcott Glacier

78015.7S 165011.3E R
near mouth, Roaring Valley

78015.7S 165011.2E R
near mouth, Roaring V.

78016.1S 16507.1E R
Roaring Valley

78016.1S 16507.1E R
Roaring Valley

78016.1S 16508.5E R
side of Roaring Valley

78016.1S 16508.4E R
side of Roaring Valley

78016.2S 16506.7E R
Roaring Valley

78016.5S 165018.8E R
Dromedary Platform

78016.8S 165033.2E R
N summit, The Bulwark

78016.8S 165033.2E R
N summit, The Bulwark

GT 32,900 BP (R1523) 14C SH Zygochlamys, in sand with
volcanic fragments; Scallop Hill Fm. VEL69

2.1+0.4 MY (YU-McM-21068) KA9 WR Hornblende basalt
(Melia Basalt Fm.); McMurdo Volcanic Group. ARM78

2.25+0.05 MY (YU-McM-21047) KA9 WR Hornblende trachyte
(Aurora Trachyte Fm.); McMurdo Volc. Gr. ARM78

2.2+0.09 MY (YU-McM-21094) KA9 WR Basalt
(Nubian Basalt Fm.); McMurdo Volcanic Group. ARM78

13.8+0.2 MY (YU-McM-73) KA9 WR Lava;
McMurdo Volcanic Group. ARM78

3790+60 BP (QL-81) 14C GB 65 m alt., mat;
surface of ice-cored Ross Sea drift. STU81

2110+60 BP (QL-82) 14C GB 43 m alt., mat;
surface of ice-cored Ross Sea drift. STU81

480+40 BP (QL-95) 14C GB 34 m alt., mat;
surface of ice-cored Ross Sea drift. STU81

5.7+0.5 MY (YU-McM-43) KA9 WR Upper lava unit;
McMurdo Volcanic Group. ARM78

("definitely anomalously old")

0.45+0.07 MY (YU-McM-44) KA9 WR Upper lava unit;
McMurdo Volcanic Group. ARM78

0.27+0.10 MY (YU-McM-45) KA9 WR Upper lava unit;
McMurdo Volcanic Group. ARM78

1.45+0.15 MY (YU-McM-46) KA9 WR Lower flow;
McMurdo Volcanic Group. ARM78

0.90+0.09 MY (YU-McM-50a) KA9 WR Lava flow flooding
Roaring Val.; McMurdo Volcanic Group. ARM78

0.84+0.07 MY (YU-McM-50b) KA9 WR Lava flow flooding
Roaring Val.; McMurdo Volcanic Group. ARM78

1.12+0.14 MY (YU-McM-47a) KA9 WR Basalt dome;
McMurdo Volcanic Group. ARM78

1.35+0.20 MY (YU-McM-47b) KA9 WR Basalt dome;
McMurdo Volcanic Group. ARM78

2.10+0.09 MY (YU-McM-49a) KA9 WR Lava cascade, base
covered by Alpine II mor.; McMurdo Volc. Gr. ARM78

1.75+0.19 MY (YU-McM-49b) KA9 WR Lava cascade, base
covered by Alpine II mor.; McMurdo Volc. Gr. ARM78

1.25+0.10 MY (YU-McM-48a) KA9 WR Second basalt dome;
McMurdo Volcanic Group. ARM78

2.44+0.16 MY (YU-McM-63) KA9 WR Lava;
McMurdo Volcanic Group. ARM78

30+3 MY (#?) KA9 Excess radiogenic argon in harzburgite
from eruptive vent, host rock=basalt with
1.66+0.4 MY K/A date. ARM78

64+9 MY (#?) KA9 From excess 40-Ar, harzburgite from
eruptive vent, host rock=basalt with 1.66+0.4 MY
K/A date. ARM78
78°16.8S 16°30.33.2E R
N summit, The Bulwark
From excess 40-Ar, titanamugite xeno-
crysts from eruptive vent, host rock=basalt with
1.66±0.4 MY K/A date. ARM78

78°16.8S 16°30.33.2E R
N summit, The Bulwark
From excess 40-Ar, harzburgite from
eruptive vent, host rock=basalt with 1.66±0.4 MY
K/A date. ARM78

78°16.8S 16°30.33.2E R
N summit, The Bulwark
From excess 40-Ar, titanamugite xeno-
crysts from eruptive vent, host rock=basalt with
1.66±0.4 MY K/A date. ARM78

78°17.4S 16°30.27.7E R
floor, Pyramid Valley
0.22±0.12 MY (YU-McM-33a) KA9 WR Basalt dome, covered
with erratics; McMurdo Volcanic Group. ARM78

78°17.4S 16°30.27.7E R
floor, Pyramid Valley
0.22±0.06 MY (YU-McM-33b) KA9 WR Basalt dome, covered
with erratics; McMurdo Volcanic Group. ARM78

78°17.8S 16°30.27.8E R
floor, Pyramid Valley
0.08±0.13 MY (YU-McM-32) KA9 WR Dome, preglacial;
McMurdo Volcanic Group. ARM78

78°17.8S 16°30.27E G
Pyramid Trough NW
226,000±1100 BP (QAL-21a) KA-17 Lava flow;
underlies Ross Sea drift. STU81

78°18.5S 16°30.27E G
Pyramid Trough NW
236,000±4000 BP (QAL-22) KA-17 Lava flow;
underlies Ross Sea drift. STU81

150 MY (GA 396) KA9 PL Pegmatitic dolerite, dikelike
body; Ferrar dolerite, emplaced in basement rocks.
MCD63

154 MY (GA 396-R) KA9 PL Pegmatitic dolerite, dikelike
body; Ferrar dolerite, emplaced in basement rocks.
MCD63

1.65±0.3 MY (YU-MCD-40) KA9 WR Flow, appears to overlie
a till; McMurdo Volcanic Group. ARM78

0.71±0.16 MY (YU-McM-33) KA9 WR Lava on cinder cone;
McMurdo Volcanic Group. ARM78

1.83±0.09 MY (YU-McM-35) KA9 WR Lava tongue flowing
into Pyramid Val.; McMurdo Volcanic Group. ARM78

2.88±0.15 MY (YU-McM-36) KA9 WR Massive flow;
McMurdo Volcanic Group. ARM78

1.68±0.08 MY (YU-McM-65) KA9 WR Lava;
McMurdo Volcanic Group. ARM78

15.4±0.5 MY (YU-McM-32) KA9 WR Trachyandesite dike;
McMurdo Volcanic Group. ARM78

1.21±0.09 MY (YU-McM-66) KA9 WR Lava;
McMurdo Volcanic Group. ARM78

13.4±0.4 MY (YU-McM-37) KA9 WR Massive flow or mega-
pillow; McMurdo Volcanic Group. ARM78

2700±3400 MY RS2* 3 samples of non-marine carbonate
rocks; Aztec Formation. FAU73

(=present age of provenance of these rocks based
on age of Aztec Fm=150 MY)

4.6 MY (K-15) KA6 WR Trachyte;
Cenozoic volcanics. POL76

5.3±0.14 MY (YU-McM-15170) KA9 FD Basalt;
McMurdo Volcanic Group. ARM78
164

<table>
<thead>
<tr>
<th>Location</th>
<th>Age (MY)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Mt. Morning</td>
<td>1.15±0.02</td>
<td>Trachyte, McMurdo Volcanic Group (ARM78)</td>
</tr>
<tr>
<td>Mount Morning</td>
<td>2.2</td>
<td>Basalt, Cenozoic volcanics (POL76)</td>
</tr>
<tr>
<td>Mount Morning</td>
<td>1.2</td>
<td>Trachyte, Cenozoic volcanics (POL76)</td>
</tr>
<tr>
<td>Mount Morning</td>
<td>1.0</td>
<td>Trachyte, Cenozoic volcanics (POL76)</td>
</tr>
<tr>
<td>Mount Morning</td>
<td>1.0</td>
<td>Trachyte, Cenozoic volcanics (POL76)</td>
</tr>
<tr>
<td>Mount Morning</td>
<td>2.4</td>
<td>Basalt, Cenozoic volcanics (POL76)</td>
</tr>
<tr>
<td>Mount Morning area</td>
<td>14.6 to 18.7</td>
<td>Unspecified samples in trachyandesitic-type rocks, McMurdo Volc. Gp. (KYL83)</td>
</tr>
<tr>
<td>Mt. Escalade</td>
<td>158</td>
<td>Dolerite, lower sheet, Ferrar dolerite, intrusive into Beacon Gp. (MOD63)</td>
</tr>
<tr>
<td>Mt. Escalade</td>
<td>153</td>
<td>Dolerite, lower sheet, Ferrar dolerite, intrusive into Beacon Gp. (MOD63)</td>
</tr>
<tr>
<td>Butcher Ridge</td>
<td>174.4±3.4</td>
<td>MY, Basaltic andesite, Ferrar Supergroup (KYL81B)</td>
</tr>
<tr>
<td>Butcher Ridge</td>
<td>153</td>
<td>MY (79028) Intrusive pitchstone, Ferrar Supergroup (KYL81B)</td>
</tr>
<tr>
<td>Butcher Ridge</td>
<td>486±36</td>
<td>MY (G-78-9*) RS512/0.7141±0.0005 FD 4 size fractions, Pleistocene till (FAU81)</td>
</tr>
<tr>
<td>Coastal moraine, Brown Hills</td>
<td>568±9.0</td>
<td>MY RS713/0.7122±0.0015 WR Carlyon Granodiorite (PEL80)</td>
</tr>
<tr>
<td>Brown Hills</td>
<td>500</td>
<td>MY RSR2/0.7132 FD 4 size fractions (G-78-3) from till, possible Cenozoic (FAU81)</td>
</tr>
</tbody>
</table>

(samples scatter above ref. line; provenance age of finest fraction=2034 MY assuming IR=0.7040)
Geographic Area 8:

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°34'S 158°20'E G</td>
<td>along Mt. Tuatura RM</td>
<td></td>
</tr>
<tr>
<td>80°34'S 158°20'E G</td>
<td>N slope, Mt Tuatura RM</td>
<td></td>
</tr>
<tr>
<td>80°51'S 159°32'E R</td>
<td>(near Mt. Dick RM)</td>
<td></td>
</tr>
<tr>
<td>81°03'S 162°32'E R</td>
<td>(nr Starshot GL. RM)</td>
<td></td>
</tr>
<tr>
<td>81°03'S 161°40'E R</td>
<td>(Nash Range RM)</td>
<td></td>
</tr>
<tr>
<td>81°04'S 162°24'E R</td>
<td>(Nash Range RM)</td>
<td></td>
</tr>
<tr>
<td>81°05'S 159°40'E R</td>
<td>(by Starshot GL. RM)</td>
<td></td>
</tr>
<tr>
<td>82°01'S 160°24'E R</td>
<td>(Holyoake Range RM)</td>
<td></td>
</tr>
<tr>
<td>82°02'S 159°43'E R</td>
<td>(Cobham Range RM)</td>
<td></td>
</tr>
<tr>
<td>82°03'S 155°15'E R</td>
<td>Quest Cliffs</td>
<td></td>
</tr>
<tr>
<td>82°03'S 155°01'E R</td>
<td>Quest Nunatak</td>
<td></td>
</tr>
</tbody>
</table>

Transantarctic Mountain Area, from Byrd Glacier to Nimrod Glacier (samples from north to south by coordinates)

- **486±36 MY (G-78-31*) RS512/0.714±0.0005 FD** Till from lateral moraine of Byrd Gl.; Holocene till. FAU81 (*isochron based on this sample and G-78-9 from Brown Hills, 79°45'E 159°30'E, Geog. Area 7)
- **1100±69 MY (G-78-26, G-78-30) RS612/0.705±0.0021 FD** Size fractions, till; possibly Cenozoic. FAU81 (provenance date)
- **463±3 MY (6291TR; 27536) KA9 WR Siltstone; Dick Formation. Byrd Group. ADA82**
- **437±3 MY (6303TR; 27099) KA9 WR Argillite interbedded with sandstone and conglomerate; Starshot Fm. ADA82**
- **449±3 MY (6297mu; 27065) KA9 MC Pegmatite; Intruding Goldie Formation. ADA82**
- **447±3 MY (6301bi; 27037) KA9 BT Adamellite; Intruding Goldie Formation. ADA82**
- **384±3 MY (6209TR; J4) KA9 WR Slate, sandstone; Starshot Formation, Byrd Group. ADA82**
- **475±3 MY (6304TR; 27121) KA9 WR Siltstone interbedded with Cambrian limestone; Shackleton Limestone. ADA82**
- **465±3 MY (6208TR; 31600) KA9 WR Slate, greenschist facies; Goldie Formation, Beardmore Group. ADA82**
- **618±6 MY (GA1951) KA9 HB Schist; Miller Formation. GRI69A**
- **655 MY (#?) KA9 HB Metamorphics; Miller Formation. GRI69 (pers. comm. McDougall; may be previous date for #GA1951 listed above)**
GEOGRAPHIC AREA 9:

- **82°05S 157°24E R** Miller Range
 - **871±3 MY (3671hb; 26827A) KA9 HB Quartz-diorite; Hope Granite, at granite contact with skarn marbles. ADA82**

- **82°05S 157°24E R** Miller Range
 - **476±3 MY (3671bi; 26827A) KA9 BT Quartz-diorite; Hope Granite, at granite contact with skarn marbles. ADA82**

- **82°05S 157°24E R** Miller Range
 - **470±3 MY (6163bi; 26826) KA9 BT Granodiorite; Hope Granite, sill at contact of northern pluton with marbles. ADA82** (mean age = 474 MY)

- **82°05S 157°30E R** Rust Bluffs
 - **463 MY (GA 766; NZGS p 26819) KA9 BT Granite; Hope Granite. MCD65 GUN82 GRI69**

- **82°05S 157°30E R** Rust Bluffs
 - **474±3 MY (6295bi; 31554) KA9 BT Tonalite; intruding Shackleton Limestone, Byrd Gp. ADA82**

- **82°05S 157°30E R** Rust Bluffs
 - **486±4 MY (3664mu; 26831D) KA9 MT Schist close to granite; Hope Granite. ADA82**

- **82°05S 157°30E R** Rust Bluffs
 - **495±4 MY (6186TR; N4) KA9 WR Slate, greenschist facies, interbedded with limestone and quartzite; Shackleton Limestone, Byrd Group. ADA82**

- **82°05S 157°30E R** Rust Bluffs
 - **476 MY (GA 767; NZGS p 26835) KA9 MC Pegmatite; assoc. with Hope Granite. MCD65 GRI69**

- **83°00S 157°015E R** Miller Range
 - **497±4 MY (3669hb; 26807A) KA9 HB Hornfels, contact with northern granite pluton; Hope Granite. ADA82**

- **83°00S 157°015E R** Miller Range
 - **474±3 MY (3669bi; 26807A) KA9 BT Hornfels, contact with northern granite pluton; Hope Granite. ADA82**

- **83°00S 157°015E R** Miller Range
 - **538±28 MY RS612/0.713±0.002 WR Composites, mostly arenites and argillites; Goldie Fm. GUN76 (from 4 locations, coordinates in GUN76)**

- **83°00S 157°015E R** Miller Range
 - **494±4 MY (495±4 MY) (both are 3665bi; 26842A) KA9 BT Granite; Hope Granite, northern pluton close to contact. ADA82** (mean age = 495 MY)

- **83°00S 157°015E R** Miller Range
 - **476 MY (GA 762; NZGS p 26779) KA9 BT Lamprophyre dike; intrusive into Nimrod Group. MCD65 GRI69**

- **83°00S 157°015E R** Miller Range
 - **495±4 MY (3670hb; 26813A) KA9 HB Schist in pelite and marble sequence; Worsley Fm, Nimrod Gp. ADA82**

- **83°00S 157°015E R** Miller Range
 - **475±3 MY (6130bi; 26817) KA9 BT Schist; Worsley formation, Nimrod Group. ADA82**

- **83°00S 157°015E R** Miller Range
 - **487 MY, 491 MY (GA 763; NZGS p 26804) KA9 MC Schist; Argosy Formation. MCD65 GRI69** (one date of 489 MY listed in GRI69)

- **83°00S 157°015E R** Miller Range
 - **952±7 MY (3667hb; 26776A) KA9 HB Schist in pelitic sequence; Argosy Formation, Nimrod Gp. ADA82**

- **83°00S 157°015E R** Miller Range
 - **456 MY (GA 764; NZGS p 26810) KA9 BT Schist; Argosy Formation. MCD65 GRI69**

- **83°00S 157°015E R** Miller Range
 - **486 MY (GA 765; NZGS p 26811) KA9 MC Schist; Argosy Formation. MCD65 GRI69**

- **83°00S 157°015E R** Miller Range
 - **524±5 MY (GA 1953; NZGS p 26805) KA9 BT Amphibolite; Argosy Formation. GRI69A (coords. = 83°01S 155°54E in GRI69)
<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Location Name</th>
<th>Age (Ma)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83°08S 156°19E R</td>
<td>N side, Argoey Gl.</td>
<td>1011±19 (GA1953; NZGS P26805) KA9 HB Amphibolite; Argoey Formation. GRI69A (coords. = 83°11S 156°54E in GRI69)</td>
<td>1043±16 MY (GA1952; NZGS P26808) KA9 HB Amphibolite; Argoey Formation. GRI69A (coords. = 83°08S 156°49E in GRI69)</td>
<td>696±5 MY; 700±5 MY (3668hb;26800) KA9 HB Schist band (1 m); Argoey Formation, Nimrod Group. ADA82 (mean age=698 MY)</td>
</tr>
<tr>
<td>83°08S 156°53E R</td>
<td>W. Aurora Heights</td>
<td>525±4 MY (3662hb;26801B) KA9 HB Gneiss; pegmatitic veins in paragneiss sequence; Aurora Formation. ADA82</td>
<td>503±4 MY; 504±4 MY (all are #3662bi;26801B) KA9 HB Gneiss; pegmatitic veins in paragneiss sequence; Aurora Formation. ADA82</td>
<td></td>
</tr>
<tr>
<td>83°08S 156°00E R</td>
<td>Miller Range</td>
<td>83°10-35S 156°00-156°00E RM</td>
<td>485±3 MY (6309mu;26809) KA9 MC Pelitic schist; Argoey Formation, Nimrod Group. ADA82</td>
<td></td>
</tr>
<tr>
<td>83°10S 156°00E RM</td>
<td>W Miller Range</td>
<td>456±14 MY (522) RS12/0.7511±0.0007 WM Augengneiss; Nimrod Group. GUN72 (w/o BT point, isochron age=561±23 MY and IR=0.7478+0.0003)</td>
<td>1984±77 MY RS2/c.0.711 WR Selected high-grade metasedimentary rocks of Nimrod Group. GUN72 (pooled slope of upper isochron=2027±38 MY, RS3I2/0.7276±0.0021 and lower isochron=1828±141 MY, RS3I2/0.7059±0.0042; considered best estimate of age; isochron for all selected samples=1950±153 MY, RS3I2/0.7111+0.0058)</td>
<td>602±38 MY RS612/0.7099±0.0033 WR Selected high-grade metasedimentary rocks of Nimrod Group. GUN72 (tentative interpretation: time of isotopic re-equilibration)</td>
</tr>
<tr>
<td>83°10S 156°00E RM</td>
<td>W Miller Range</td>
<td>3720 MY (530) RS2/0.704 WR Granite-gneiss; Nimrod Group. GUN72 (maximum estimate of age of Nimrod Group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83°10S 156°00E RM</td>
<td>nr head, Argoey Gl.</td>
<td>1180 MY, 1300 MY, 1550 MY (522) UP6 ZR Augen gneiss; Nimrod Group Paragneisses. GUN82 GUN76</td>
<td>1640 MY, 2230 MY, 2800 MY (554) UP6 ZR Gneissic meta-quartzite; Nimrod Group Paragneisses. GUN82 GUN76</td>
<td>840±6 MY (3666hb;26788) KA9 HB Amphibolite facies schist; metavolcanic horizon in migmatites, Aurora Formation, Nimrod Group. ADA82 (mean age=755 MY)</td>
</tr>
<tr>
<td>83°10S 156°00E RM</td>
<td>nr head, Argoey Gl.</td>
<td>758±5 MY; 751±5 MY (both are #3666hb;26788) KA9 HB Amphibolite facies schist; metavolcanic horizon in migmatites, Aurora Formation. ADA82 (mean age=755 MY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83°10S 156°54E R</td>
<td>Miller Range</td>
<td>83°11S 156°52E R</td>
<td>1152±8 MY; 1154±8 MY (both are #3676hb;26790) KA9 HB Skarn pegmatite; reaction zone at marble in migmatites, Aurora Formation. ADA82 (mean age=1153 MY)</td>
<td>563±4 MY (3678hb;26797) KA9 HB Schist, metadolomite or marble in pelitic schist; Miller Fm. ADA82</td>
</tr>
</tbody>
</table>
Miller Range
83°33S 157°018E
Miller Range
Cen. (Nimrod, 83°30S 171°0E
83°25S 156°32E R
Miller Range
83°15S 157°000E G
E. Miller Range RM
83°15S 157°000E G
E. Miller Range RM
83°15S 157°000E G
Miller Range RM
83°01S 155°02E R
Miller Range
551±4 MY (6308 hb; 26795) KA9 HB Schist, 30 m above
Miller Formation. ADA82
Miller Range
559±4 MY (6308 bi; 26795) KA9 BT Schist, 30 m above
Miller Formation. ADA82
Miller Range
483±4 MY (3661 bi; 26774) KA9 BT Gneiss;
Aurora Formation, Nimrod Group. ADA82
Miller Range
476 MY, 477 MF, 484±40 MY (48) UP6 SP Granitic rock;
Granite Harbor Intrusives. GUN75
Miller Range
469 MY, 461 MF, 537±5 MF (48) UP6 ZR -200 mesh,
Miller Range
468 MY, 480 MF, 537±5 MF (48) UP6 ZR +200 mesh,
granitic rock; Granite Harbour Intrusives. GUN75
Miller Range
1615±221 MY RS1912/0.706±0.031 WR High-grade meta-
formation of Nimrod Group. GUN72
(points scatter widely; geologically more meaning-
form from W Miller Range, the 602±38 MY minimum from S
Miller Range, and the 1984±77 MY date for selected
samples from W Miller Range, all in GUN72)
551±4 MY (6308 hb; 26795) KA9 HB Schist, 30 m above
Miller Formation. ADA82
559±4 MY (6308 bi; 26795) KA9 BT Schist, 30 m above
Miller Formation. ADA82
483±4 MY (3661 bi; 26774) KA9 BT Gneiss;
Aurora Formation, Nimrod Group. ADA82
476 MY, 477 MF, 484±40 MY (48) UP6 SP Granitic rock;
Granite Harbor Intrusives. GUN75
469 MY, 461 MF, 537±5 MF (48) UP6 ZR -200 mesh,
468 MY, 480 MF, 537±5 MF (48) UP6 ZR +200 mesh,
granitic rock; Granite Harbour Intrusives. GUN75
1615±221 MY RS1912/0.706±0.031 WR High-grade meta-
formation of Nimrod Group. GUN72
(points scatter widely; geologically more meaning-
form from W Miller Range, the 602±38 MY minimum from S
Miller Range, and the 1984±77 MY date for selected
samples from W Miller Range, all in GUN72)
83°14S 157°13E R
Miller Range

504±5 MY (GA1955) KA9 HB Amphibolite;
Nimrod Group. GRI69A
(infer=7, from Gerard Cliffs, 83°14S 157°15E, Miller Formation, in GRI69)

83°14S 157°13E R
Miller Range

517±4 MY (6298hb; 26854A) KA9 BT Adamellite;
granitic apophyses intruding Aurora gneiss. ADA82

83°15S 157°13E R
Gerard Cliffs

633 MY (GA 770; NZGS p 26855) KA9 BT Orthogneiss;
Aurora Formation, Nimrod Group. MCD65 GRI69
(age in MCD65 = (1) 631 MY, (2) 635 MY)

83°15S 157°15E R
Miller Range

521±4 MY (3673hb; 26856) KA9 HB Augen-gneiss;
Aurora Formation, Nimrod Group. ADA82

83°15S 157°16E R
Miller Range

83°15S 157°16E R
Gerard Cliffs

83°06S-84°15S
167°00E-174°00E RM
Beardmore Gl. area

83°34S 156°17E R
Miller Range

1006±9 MY (GA1954) KA9 HB Amphibolite lens in garnet
gneiss; Nimrod Group. GRI69A
(infer=? from Gerard Cliffs, 83°37S 157°16E, Miller Formation, in GRI69)

83°38S 157°09E R
Miller Range

528±4 MY (3660hb; 21763) KA9 HB Schist;
metavolcanic band in pelitic schists & marbles, Miller Fm. ADA82

83°38S 157°09E R
Miller Range

530±4 MY; 529±4 MY (both are #3660hb; 21763) KA9 BT
Schist; metavolcanic band in pelitic schists and marbles, Miller Formation. ADA82
(mean age = 530 MY)

83°38S 157°09E R
Miller Range

570±4 MY; 571±4 MY (both are #3679hb; 26850) KA9 HB
Schist; metavolcanic band in pelitic schists and marbles, Miller Formation. ADA82
(mean age = 571 MY)

83°38S 157°08E R
Gerard Cliffs

520 MY (GA 768; NZGS p 26846) KA9 BT Orthogneiss;
Aurora Formation, Nimrod Group. MCD65 GRI69

83°50S 167°00E R
(Queen Alexandra Ra.)
83°51S 166°00E g
Tillite Glacier
84°17S 169°25E G
The Cloudmaker
84°22S 164°55E R
Mount Falla
84°22S 164°55E G
Mount Falla
84°22S 164°55E G
NW Mount Falla
84°22S 164°55E G
Mount Falla

173±6 MY RS512/0.712±0.0001 Basalt flows 1 through
6; Kirkpatrick Basalt. FAU82

197±2.7 MY (F218A-19) KA12 WR Trachyte pebble;
Prebble Formation. BAR72

190±9 MY RS512/0.712±0.0096 WR Tuff;
Triassic Falla Formation. FAU73A
(rev. age for 203±12 MY cited in BAR72)

169.3±2.0 MY (71.62) KA12 WR Tholeiite, flow 14;
Kirkpatrick Basalt. FLE77
132.7±3.0 MY (71.42) KA12 WR Tholeiite, flow 11; Kirkpatrick Basalt; FLE77
165.9±2.0 MY (71.15) KA12 WR Tholeiite, flow 5; Kirkpatrick Basalt; FLE77
130.9±1.5 MY (71.03) KA12 WR Tholeiite, flow 1; Kirkpatrick Basalt; FLE77
135.6±10.9 MY (27.71) KA12 WR Tholeiites, flow 11; Kirkpatrick Basalt; FLE77
(with age of 126.0±1.8 MY and 141.4±1.4 MY)
176.0±3.9 MY (27.67) KA12 WR Tholeiites, flow 9; Kirkpatrick Basalt; FLE77
(with age of 179.8±1.2; 172.1±1.4; 174.7±1.5 MY)
152.1±18.3 MY (27.17) KA12 WR Tholeiites, flow 6; Kirkpatrick Basalt; FLE77
(with age of 160.5±4.8 MY and 134.6±6.9 MY)
141.7±2.3 MY (27.56) KA12 WR Tholeiites, flow 5; Kirkpatrick Basalt; FLE77
(with age of 139.8±1.4 MY and 143.1±1.2 MY)
174.4±4.6 MY (27.52) KA12 WR Tholeiites, flow 3; Kirkpatrick Basalt; FLE77
(with age of 179.4±1.8 MY and 172.9±1.3 MY)
133.8±9.3 MY (27.46) KA12 WR Tholeiites, flow 2; Kirkpatrick Basalt; FLE77
(with age of 139.5±4.0 MY and 126.3±4.4 MY)
144.9±1.4 MY (27.90) KA12 WR Tholeiite, flow 1; Kirkpatrick Basalt; FLE77
179±7 MY (27.42) KA13 WR Basalt; Kirkpatrick Basalt; ELL70
170±7 MY (27.13) KA13 WR Basalt; Kirkpatrick Basalt; ELL70
163±10 MY (27.45) KA13 WR Basalt; Kirkpatrick Basalt; ELL70
156.8 MY; 161.8±8.6 MY (27.17) AAP3, AA13 WR Tholeiite, flow 6; Kirkpatrick Basalt; FLE77
(age spectrum discordant; ages given in FLE77; AA1 age of questionable significance)
129.8±4.8 MY; 126.1±3.8 MY (27.46) AAP3, AA13 WR Tholeiite, flow 2; Kirkpatrick Basalt; FLE77
(age spectrum and other calc. ages in FLE77)
GEOGRAPHIC AREA 10: QUEEN MAUD MOUNTAIN AREA (samples from west to east by coordinates)

85°28S 171°59E G 172±8 Mt(50.4) K/A WR Basalt;
Mt. Spohn Kirkpatrick Basalt. ELL70
85°27S 172°00E G 179±10 Mt(0003) K/A WR Basalt boulder, boulder lens
Otway Massif RM in lahar debris; Prebble Formation. BAR72
82°57S 172°30E R 465 Mt(GA 519) K/A BT Granodiorite;
Celebration Pass Hope Granite. MCD65 MCG69 GUN82
83°07S 172°30E R 450 Mt(GA 520) K/A BT Granodiorite;
Celebration Pass Hope Granite. MCD65 MCG69 GUN82
85°39S 174°10E R 161 Mt(#?) K/A WR Basalt; --. MCG69
Mt. Bumstead (infer strat.= Kirkpatrick Basalts from ref. map)
85°39S 174°10E G 173±1.9 Mt(64.10) K/A2 WR Tholeiite, flow 14;
Mt. Bumstead Kirkpatrick Basalt. FLE77
85°39S 174°10E G 159.1±1.8 Mt(64.07) K/A2 WR Tholeiite, flow 13;
Mt. Bumstead Kirkpatrick Basalt. FLE77
85°39S 174°10E G 165.7±1.9 Mt(64.04) K/A2 WR Tholeiite, flow 3;
Mt. Bumstead Kirkpatrick Basalt. FLE77
85°39S 174°10E G 167.0±2.2 Mt(64.02) K/A2 WR Tholeiite, flow 2;
Mt. Bumstead Kirkpatrick Basalt. FLE77
85°39S 174°10E G 168.2±2.75 Mt(64.01) K/A2 WR Tholeiites, flow 1;
Mt. Bumstead Kirkpatrick Basalt. FLE77
 (wt-avg. age of 188.6±2.2 MY and 149.7±2.1 MY)
85°39S 174°10E G 169.8 Mt(170.4±1.4 MY;169.4±1.1 MY(64.01)AAF3;AAP3;
Mt. Bumstead AA13 WR Tholeiite, flow 1; Kirkpatrick Basalt. FLE77
 (age spectrum discordant; AAP3 age is wt-mean; spectrum ages listed in FLE77)
85°39S 174°10E G 175.4 Mt(167.5±3.8 MY(64.10)AAF3;AA13 WR Tholeiite,
Mt. Bumstead flow 14; Kirkpatrick Basalt. FLE77
 (age spectrum discordant; ages listed in FLE77)
85°52S 174°15E G 171.7 Mt(59.32) K/A WR Basalt;
Mt. Cecily Kirkpatrick Basalt. ELL70
84°14S 177°50E 418 Mt(64.01) K/A BT Granodiorite;--. MCG69
Chopper Ridge (infer strat.=Granite Harbour Intrusives from RM)
83°37S 155°53W RM 1600-2300 MY RS2* WR CA Non-marine;
Beardmore to Scott Victoria Group, Beacon Supergroup. FAU73
Glaciers (*age of provenance based on Sr-87/Sr-86 of 12
 samples=0.7160, assumed IR of provenance=0.7030, and age of the Permian Fms. sampled=250 MY)
84°58S 177°40W R 430 Mt(#?) R/S FD Monzotonalite;--. MCG69
Cascade Bluff (infer strat.=Granite Harbour Intrusives from RM)
85°39S 177°10W R 183 Mt(#?) K/A PI Diabase;--. MCG69
Roberts Massif (infer strat. prob.=Ferrar Dolerites from ref. map)
85°39S 177°10W R 171 Mt(#?) K/A PI Diabase;--. MCG69
Roberts Massif (infer strat. prob.=Ferrar Dolerites from ref. map)
83°39S 177°10W R 163 Mt(#?) K/A PI Diabase;--. MCG69
Roberts Massif (infer strat. prob.=Ferrar Dolerites from ref. map)
85°39S 177°10W R 160 Mt(#?) K/A PI Diabase;--. MCG69
Roberts Massif (infer strat.=Granite Harbour Intrusives from RM)
84°57S 176°55W R 315 Mt(#?) R/S BT Leucogranodiorite;--. MCG69
Thanksgiving Point (infer strat.=Granite Harbour Intrusives from RM)
84°57S 176°55W R 250 Mt(#?) R/S BT Leucogranodiorite;--. MCG59
Thanksgiving Point (infer strat.=Granite Harbour Intrusives from RM)
84°57'S 176°55'W R
Thanksgiving Point
84°30'S 176°30'W R
Mt. Speed
84°39'S 175°55'W R
Longhorn Spurs
85°14'S 175°10'W R
Halfmoon Bluff
85°00'S 175°00'W G
Transantarctic Mts.: N. Victoria Land to Dufek Massif
84°34'S 174°30'W R
Longhorn Spurs
85°17'S 163°20'W R
NW of mouth, Axel Heiberg Gl. RM
86°22'S 160°01'W R
Lonely Ridge
86°22'S 160°01'W R
Lonely Ridge
86°00'S 160°00'W R
Queen Maud Mt. Area
86°00'S 160°00'W M
Upper Anversen Gl.
86°20'S 158°00'W G
Nilsen Plateau
86°27'S 157°15'W R
1 mi SE, O'Brien Pk.
85°27'S 157°15'W R
1 mi SE, O'Brien Pk.
85°27'S 157°15'W R
1 mi SE, O'Brien Pk.
85°27'S 157°15'W R
1 mi SE, O'Brien Pk.
87°04'S 153°45'W G
Mount Early
86°53'S 153°30'W G* Sheridan Bluff
166 MY(#?)K/A BT Leucogranodiorite;--. MCG69
(infer strat.=Granite Harbour Intrusives from RM)
405 MY(#?)K/A BT Granite gneiss;--. MCG69
(infer strat.=Granite Harbour Intrusives from RM)
470 MY(#?)R/S BT Adamellite gneiss;--. MCG69
(infer strat.=Granite Harbour Intrusives from RM)
165.9±6.3 MY(HB1)AAP1 WR Dolerite;
Ferrar Supergroup. KY81B
470±90 MY RS251/0.7064±0.0010* WR Flows and sills of Jurassic dolerites. BR076 FAU82
(*pseudosochron age of mantle rocks)
405 MY(#?)K/A BT Adamellite;--. MCG69
(infer strat.=Granite Harbour Intrusives from RM)
445±13 MY(GA 771;NZGS p 26950)KA9 MC Pegmatite dike;
cuts Henson Marble. MCD65 MIR69
846±35 MY(#?)R/S BT Granodiorite;
Lonely Ridge granodiorite. MIR69
(cited from McLelland, 1967,unpubl.)
472±10 MY(#?)K/A BT Granodiorite;
Lonely Ridge granodiorite. MIR69
(cited from McLelland, 1967,unpubl.)
630-720 MY R/S Silicic ignimbrites and quartz porphyries; unconformably overlain by Cambrian strata. TES82
(Dates are part of a review)
600±13 MY RS1 Wisconsin Range batholith. GRI81
(date is part of a review; higher IR)
708±41 MY RS12/0.7122 WR Metasediments;
LaGorce Formation. FAU79A
476±9 MY RS12/0.7157 WR Metavolcanic rocks;
Wyatt Formation. FAU79A
620±13 MY RS412/0.7115 WR Lonely Ridge Granodiorite.
FAU79A
(several cataclastically deformed samples had dates of 553-401 MY)
471±20 MY RS12/0.7189 WR South Quartz Monzonite.
FAU79A
460±20 MY (L62-18)RSM4/0.707 MC Granite;
---. CRA64A MIR69
450±20 MY (L62-18)RSM4/0.707 BT Granite;
---. CRA64A MIR69
520±30 MY (L62-18)RSM4/0.707 MN Granite;
---. CRA64A MIR69
490±20 MY (L62-18)RSM4/0.707 WR Granite;
---. CRA64A MIR69
15.45±0.19 MY;16.27±0.23 MY(34)KA17 WR Basalt flow;
---. STU80
(duplicate analyses; avg=15.86±0.30 MY)
18.54±0.37 MY(30)KA17 WR Basalt, lava flow 10;
---. STU80
avg. age with #27 and #24=18.32±0.35 MY)
86°53'S 153°30'W G* Sheridan Bluff 17.98±0.24 MY(27) KA17 WR Basalt, lava flow 7; --. STU80 (*see comments for #30 above)
86°53'S 153°30'W G* Sheridan Bluff 18.43±0.23 MY(24) KA17 WR Basalt, lava flow 4; --. STU80 (*see comments for #30 above)
86°53'S 153°30'W G* Sheridan Bluff 19.21±0.39 MY(22) KA17 WR Basalt, lava flow 2; --. STU80 (*coods. from Antarct. J. U.S.17(4),1982,p.11; age is wt-avg; age spectrum was concordant)
86°53'S 153°30'W G* Sheridan Bluff 19.43±0.65 MY(27) AAP2 WR Basalt, lava flow 7; --. STU80 (*coods. from Antarct. J. U.S.17(4),1982,p.11; age is wt-avg; age spectrum was concordant)
86°53'S 153°30'W G* Sheridan Bluff 19.75±1.57 MY(22) AAP2 WR Basalt, lava flow 2; --. STU80 (*coods. from Antarct. J. U.S.17(4),1982,p.11; age is wt-avg; age spectrum was concordant)
85°45'S 153°00'W G* Scott Gl. Area 27.3±2.7 MY(#?) -- Volcanic rocks assoc. with glacial deposits. BUL73 (Minshew and Mercer, pers. comm.)
85°45'S 153°00'W G* Scott Gl. Area 47°±14 MY(#?) KA13 BT Brown, from grey granite; Mt. Wilbur basement complex. MIN65
85°29.3'S 145°36'W R Byrd Mts. nr. Leverett Glacier 489±30 MY RS412 WR Acid volcanic rocks; --. FAU68A (see comment for 472±11 MY, 144°45W, FAU66)
85°39.5'S 144°45'W R Harold Byrd Mts. 472±11 MY(#?) RS12/0.7161 WR Rhyolites; --. FAU66 M1R69 (may be based on same samples as these listings: 483±13 MY, 144°24W, FAU68; 489±30 MY, 145°36W, FAU68A; and/or 493±9 MY, 144°45W, FAU79)
85°40'S 144°24'W G Mt. Webster, Byrd Mts. 483±13 MY RS412/0.7157 WR Acid volcanics; Mt. Webster, Byrd Mts. Leverett Fm. FAU68 (see comment for 472±11 MY, 144°45W, FAU66)
85°40'S 144°24'W G Mt. Webster, Byrd Mts. 493±9 MY RS12/0.7153 WR Acid volcanic rocks; Mt. Webster, Byrd Mts. (see comment for 472±11 MY, 144°45W, FAU66)
GEOGRAPHIC AREA 11:

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°55'S 131°40'W RM</td>
<td>Quartz Hills, along W side Reedy Glacier</td>
</tr>
<tr>
<td>86°00'S 130°00'W M</td>
<td>Upper Reedy Gl.</td>
</tr>
<tr>
<td>86°13'S 125°40'W R</td>
<td>Metavolcanic Mt.</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>Mims Spur</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>Mims Spur</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>Mims Spur</td>
</tr>
<tr>
<td>85°48'S 125°24'W G</td>
<td>Wisconsin Plateau RM</td>
</tr>
<tr>
<td>86°02'S 125°22'W R</td>
<td>Rdg. E of Olentangy Glacier</td>
</tr>
<tr>
<td>86°02'S 125°22'W R</td>
<td>Rdg. E of Olentangy Glacier</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>Wisconsin Range</td>
</tr>
</tbody>
</table>

HORLICK MOUNTAIN AREA (samples from west to east by coordinates)

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86°02'S 125°35'W G</td>
<td>576±21 MY RS3I2/0.7117±0.0005 FD Grain-size fractions from glaciolacustrine sediment; pre-Reedy III. FAU83</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>615±22 MY RS1 Wisconsin Range Batholith. GRI81 (date is part of a review; relatively high IR)</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>633±13 MY RS4I2/0.7034 WR Metavolcanics; Wyatt Formation. FAU68 FAU68A MIR69 (reported as 630±14 My in FAU68)</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>130±13 MY RS1I2/0.7430 BT,MC,KF Pegmatite; basement complex. FAU79</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>473±5 MY RS1I2/0.7189 KF Pegmatite dykes; basement complex. FAU79</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>485±17 MY(#) K/A MC Pegmatite dyke; basement complex. FAU79</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>480±21 MY RS4I2/0.7144±0.0030 FD Grain-size fractions in lodgement till; unit 4 (mid. Horlick Glac.). FAU83 (provenance date)</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>479±10 MY RS6I2 Quartz monzonite (aplite,pegmatite); Granite Harbor Intrusives. FAU68A MIR69 (listing of 486±9 MY of FAU79 may be rev. age)</td>
</tr>
<tr>
<td>86°02'S 125°35'W G</td>
<td>627±22 MY RS7I2/0.7090, same descr., Wisc. Ra. batholith. FAU68A MIR69 (infer=629±22 MY, R57I2/0.7090, same descr., Wisc. Range, in FAU68)</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>460±16 MY RS1I2/0.7160 WR Metasediments; LaGorce Formation. FAU79 (infer=460±16 MY, RS8I2, phyllites and slates, LaGorce Fm., Wisc. Ra., FAU68A; and 462±17 MY, "lower limit", RS8I2/0.7168, metagreywacke, slate, phyllite from LaGorce Fm., Wisc. Ra., FAU68)</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>555±48 MY RS2I2/0.7098 WR Metavolcanics; Wyatt Formation. FAU79</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>507±23 MY RS2I2/0.7157 WR Older granitic rocks; (Beardmore Suite). FAU79</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>513±12 MY RS2I2/0.7050 WR Quartz Monzonite plutons; basement complex. FAU79</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>486±9 MY RS2I2/0.7146 WR Aplites; basement complex. FAU79</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>490±12 MY RS7I2I2/0.7062 WR Postkinematic granitic rocks and aplites; Wisconsin Ra. batholith. FAU68 (listing: 486±9 MY from FAU79 may be rev. age)</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>505 MY(#) RSM2 BT Older granites; Wisconsin Range batholith. FAU66 (may be rev. by 513 MY, 118°45'W, of FAU68)</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>396 MY(13)RSM2/0.7040 BT Foliated rapakivi granite; basement complex. FAU68</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>1255 MY(13)RSM2/0.7040 MC Foliated rapakivi granite; basement complex. FAU68</td>
</tr>
<tr>
<td>85°45'S 125°00'W G</td>
<td>401 MY(11)RSM2/0.7040 BT Foliated rapakivi granite; basement complex. FAU68</td>
</tr>
</tbody>
</table>
85°16'S 119°19'W G Todd Ridge

564±7 MY RSi2/0.7073 WR Acid volcanic rocks; basement complex. FAU79
(may relate to same samples as 532±38 MY, FAU68, and 498±45 MY, FAU68A, both from Todd Ridge)

85°16'S 119°19'W G Todd Ridge

532±38 MY RS6i2/0.7116 WR Acid volcanics; —. FAU68
(see comment for 564±7 MY, 119°19'W, FAU79)

85°16'S 119°10'W G Todd Ridge

498±45 RS6i2 WR Acid volcanic rocks; basement complex. FAU68A MIR69
(see comment for 564±7 MY, 119°19'W, FAU79)

85°18'S 118°45'W G Long Hills

520-560 MY RS2i2 WR Quartz Monzonite pluton(s); basement complex. FAU79

85°18'S 118°45'W G Long Hills

513 MY(227)RSM2/0.7040 HT Porphyritic quartz monzonite; —. FAU68

84°45'S 114°40'W R Discovery Ridge and Treves Butte

472±24 MY(#?)K/A HT Quartz monzonite; basement rocks. TRE65 MIR69
(infer=470±36 MY, same descr., Ohio Pa., TRE64)

84°45'S 114°40'W R Discovery Ridge and Treves Butte

471±49 MY(#?)R/S FD Quartz monzonite; basement rocks. TRE65 MIR69

84°45'S 114°40'W R Discovery Ridge and Treves Butte

516±72 MY(#?)R/S WR Quartz monzonite; basement rocks. TRE65 MIR69
(same sample as FD from this loc.)
GEOGRAPHIC AREA 12:

THIEL MOUNTAIN AREA (samples from west to east by coordinates)

85°02S 91°45W R
(Ford Massif area RM)
85°02S 91°45W R
(Ford Massif area RM)
85°02S 91°37W R
(Ford Massif area RM)
85°02S 91°37W R
(Ford Massif area RM)
504 MY(#?) K/A BT Granodiorite;--. SCH69A
(error about +5% of age value)
510±50 MY(#?) P/a ZR Granodiorite;--. SCH69A
(method may = Pal as in FOR63)
648±85 MY(R/S WR Granodiorite;--. SCH69A
646±85 MY R/S KF Granodiorite;--. SCH69A
491 MY(#?) K/A BT Granodiorite;--. SCH69A
(error about +5% of age value)
660±79 MY RS12/0.7069 WR Metavolcanic rocks;
Wyatt Formation. FAU79
542±42 MY RS12/0.7115 WR Granitic rocks;
basement complex. FAU79
620±70 MY(1) Pal ZR Hypersthene-quartz monzonite
porphyry;--. FOR63 SCH69A
(coords.=85°10S 90°30W in FOR63)
630±70 MY(2) Pal ZR Hypersthene-quartz monzonite
porphyry, less magnetic split;--. FOR63 SCH69A
(coords.=85°05S 90°15W in FOR63)
530±60 MY(2) Pal ZR Hypersthene-quartz monzonite
porphyry, more magnetic split;--. FOR63 SCH69A
(coords.=85°05S 90°15W in FOR63)
560±60 MY(#?) Pal ZR Granodiorite;--. FOR64 SCH69A
(coords.=85°16S 89°25W in FOR64)
511 MY(#?) K/A BT Granodiorite;--. SCH69A
(error about +5% of age value)
720±90 MY(#?) P/a ZR Granodiorite;--. SCH69A
(method may = Pal as in FOR63)
500 MY(#?) K/A BT Granodiorite;--. SCH69A
(error about +5% of age value)
670±50 MY(#?) Pal ZR Hypersthene-quartz monzonite
porphyry;--. FOR64 SCH69A
(coords.=85°19S 87°35W in FOR64)
175±4 MY(2-65-4) K/A3 BT Granite;--. WEB82A
470±50 MY(#?) Pal ZR Granodiorite;--. FOR64 SCH69A
(coords.=85°23S 86°30W in FOR64)
570±70 MY(#?) R/S WR Granodiorite;--. SCH69A
484 MY(#?) K/A BT Granodiorite;--. SCH69A
(error about +5% of age value)
510±20 MY(60-H-57) RS14/0.707 MC Adamellite pegmatite
glacial erratic;--. CRA64A SCH69A
508 MY(#?) K/A MC Metasedimentary rocks;
--. CRA70 CRA77
<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Penascoia Mountain Area (samples from west to east by coordinates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°37'34"S 68°44'26"W R Pecora Escarpment</td>
<td>217.3±5.4 MY(1Sa) KA17 WR Basalt; dolerite sill intruding Pecora Fm. FOR80</td>
</tr>
<tr>
<td>85°37'34"S 68°44'26"W R Pecora Escarpment</td>
<td>180.0±4.5 MY(1Se) KA17 PY Dolerite; dolerite sill intruding Pecora Fm. FOR80 (avg of PY and PL ages of 1Se=179±5 MY=sill age)</td>
</tr>
<tr>
<td>85°37'38"S 68°42'21"W R Pecora Escarpment</td>
<td>177.7±4.5 MY(1Se) KA17 PL Dolerite; dolerite sill intruding Pecora Fm. FOR80 (avg of PY and PL ages of 1Se=179±5 MY=sill age)</td>
</tr>
<tr>
<td>84°43'S 64°30'W G Patuxent Range</td>
<td>208.0±5.2 MY(N57) KA17 PY Dolerite; dolerite sill intruding Pecora Fm. FOR80</td>
</tr>
<tr>
<td>84°43'S 64°30'W G Patuxent Range</td>
<td>197.0±4.9 MY(N57) KA17 PL Dolerite; dolerite sill intruding Pecora Fm. FOR80</td>
</tr>
<tr>
<td>84°52'S 63°34' W R Patuxent Range</td>
<td>212.2±5.3 MY(82F6) KA17 PY Dolerite; dolerite sill intruding Pecora Fm. FOR80</td>
</tr>
<tr>
<td>84°53'S 62°10'W R (nr Sullivan Pks RM)</td>
<td>199.7±5.0 MY(82F6) KA17 PL Dolerite; dolerite sill intruding Pecora Fm. FOR80</td>
</tr>
<tr>
<td>84°53'S 62°10'W R (nr Sullivan Pks RM)</td>
<td>223.1±5.6 MY(10Sa) KA17 WR Basalt; dolerite sill intruding Pecora Fm. FOR80</td>
</tr>
<tr>
<td>83°14'S 57°48'W G Schmidt Hills</td>
<td>443±28 MY RSI2/0.7156 WR Metasediments; Patuxent Fm. FAU79A (date may be reset)</td>
</tr>
<tr>
<td>83°30'S 56°00'W G (S. Neptune Range)</td>
<td>393±6 MY RSI2/0.7156 WR Metasediments; Patuxent Fm. FAU79A (date may be reset)</td>
</tr>
<tr>
<td>83°30'S 56°00'W G Neptune Range</td>
<td>233 MY(#?) K/A BT Biotite lamprophyre; dike cutting across strike of Patuxent Fm. SCH69A (error about ±5% of age value)</td>
</tr>
<tr>
<td>83°30'S 56°00'W G Neptune Range</td>
<td>244 MY(#?) K/A BT Biotite lamprophyre; dike cutting across strike of Patuxent Fm. SCH69A (error about ±5% of age value)</td>
</tr>
<tr>
<td>83°30'S 56°00'W G Neptune Range</td>
<td>219 MY(#?) K/A BT Biotite lamprophyre; dike cutting across strike of Patuxent Fm. SCH69A (error about ±5% of age value)</td>
</tr>
<tr>
<td>83°30'S 56°00'W G Neptune Range</td>
<td>784±58 MY RSI2/0.7064 WR Dolerite sill; intrudes Patuxent Formation. FAU79A</td>
</tr>
<tr>
<td>80°9+38 MY RSI2/0.7074 WR Gorecki Rhyolite. FAU79A</td>
<td>500±10 MY RS8I WR Volcanics; Gambacorta Fm. SCH69 (pers. comm. Faure and Eastin; may be same samples as 565±35 MY in FAU79A)</td>
</tr>
<tr>
<td>565±35 MY RSI2/0.7057 WR Rhyolite; Gambacorta Formation. FAU79A</td>
<td>568±81 RSI2/0.7054 WR Volcaniclastic rocks; Hawkins member, Gambacorta Fm. FAU79A</td>
</tr>
</tbody>
</table>
83°03S 56°00W G
Neptune Range

83°03S 56°00W G
Neptune Range

83°04S 55°55W R
Num. NE of Mt. Dover
83°04S 55°30W R
Num. NW of Mt. Dover

83°34S 54°50W G
Serpan Peak
83°35S 54°40W R
(nz Hannah Rdg RM)
83°35S 54°40W R
(nz Hannah Rdg RM)
82°46'05"S
53°21'26"W R
Cordiner Peaks
82°46'05"S
53°21'26"W R
Cordiner Peaks

82°38'02"S
53°17'03"W R
W of Walker Peak
82°36'25"S
52°56'40"W R
N end, Neuburg Pk
82°34'11"S
52°01'03"W R
Frost Spur
83°22'46"S
51°31'46"W R
W Mt Stephens
83°22'46"S
51°29'43"W R
spur of Mt. Stephens
83°13'27"S
51°02'17"W R
NW of Mt Lechner
83°13'27"S
51°02'17"W R
NW of Mt Lechner
82°29S 50°52W R
Dufek Massif
83°17'20"W R
50°40'11"W R
Base, Sonna Bluff
83°05 50°W M
Dufek Massif and Forrestal Range

953±175 MY RS(I) WR Felsic flows; Gorecki Rhyolite. EAS69
(may be same samples as 809±38 MY in FAU79A)

563±35 MY RS(I) WR Hawkes Pyroclastics and rhyolite bodies within Patuxent Fm. EAS69
(may be same samples as 568±81 MY and 565±35 MY in FAU79A)

261±7.5 MY(#?)KA11 WR Rhyodacite; ---. KAI82

237±25 MY(#?)KA11 WR Lamprophyrite; intrudes Nelson limestone or is between the Nelson limestone and the Patuxent Formation. KAI82

536±13 MY RS12/0.7064 WR Serpan Granite and assoc. gneiss. FAU79A

510±30 MY R/S WR Granite;---. SCH69A

265 MY K/A Mt Granite;---. SCH69A

(error about ±5% of age value)

307.9±7.7 MY(13Fa)KA17 PY Dolerite; interior of dike cutting Dover Sandstone and Gale Mudstone. FOR80

(inferred to contain excess 40Ar)

168.8±4.2 MY(13Fa)KA17 PL Dolerite; interior of dike cutting Dover Sandstone and Gale Mudstone. FOR80

171.2±4.3 MY(192Fb)KA17 PL Plagioclase cumulate; Walker Anorthosite, Dufek intrusion. FOR80

189.5±13.7 MY(38Fa)AAT2 PY PL-FY-cumulate (leuco-gabbro); Dufek intrusion. FOR80

(J=0.00599)

97.5±2.4 MY(198Fa)KA17 PY (-100±60 Ma), pyroxene cumulate; base of Frost Pyroxenite Member, Aughenbaugh Gabbro, Dufek intrusion. FOR80

169.5±4.2 MY(75Fe)KA17 PL Plagioclase cumulate; Stephens Anorthosite Member, Saratoga Gabbro, Dufek intrusion. FOR80

148.7±7.3 MY(94Fi)AAT2 PY PL-Fe-titania oxide cumulate; in (or above?) Stephens Anorthosite Member, Saratoga Gabbro, Dufek intrusion. FOR80

111.9±2.8 MY(297Fa)KA17 WR Gabbro; Dufek intrusion. FOR80

106.3±2.7 MY(297FaR)KA17 WR Gabbro; Dufek intrusion. FOR80

126±27 MY(#?)KA11 WR Gabbro; Dufek intrusion. KAI82

174.1±4.4 MY(101Fa)KA17 PL Plagioclase cumulate; Dufek intrusion. FOR80

(avg. age of 101Fa,192Fb,75Fe=172±4 MY=best est.)

168±5 MY(#?)K/A PL Gabbros; Dufek intrusion. FOR72

(avg. age; may be same samples as in FOR80)
<table>
<thead>
<tr>
<th>GEOGRAPHIC AREA 14:</th>
<th>SHACKLETON RANGE AREA (samples from west to east by coordinates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°24S 30°05W G</td>
<td>531+13 MY (2.1060.9) K/A HB Migmatitic gneiss; metasediments, Nostoc Lake Fm. PAN83A</td>
</tr>
<tr>
<td>(Nostoc Lake area RM)</td>
<td>537+36 MY RS613/0.7086±0.0003 WR Gneisses; metasediments, Nostoc Lake Fm. PAN83A</td>
</tr>
<tr>
<td>80°24S 30°05W G</td>
<td>(4 data points fall on 583 MY isochron of GRE79)</td>
</tr>
<tr>
<td>(Nostoc Lake area RM)</td>
<td>500±5 MY RS513/0.7085±0.0001 BT, AM, KF, PL, WR Gneiss; metasediments, Nostoc Lake Fm. PAN83A</td>
</tr>
<tr>
<td>80°24S 30°05W G</td>
<td>583±48 MY ("1017-1") RS513/0.7084±0.0024 WR Feldspathic augen gneiss; Shackleton Range Metamorphic Complex. GRE79</td>
</tr>
<tr>
<td>(Nostoc Lake area RM)</td>
<td>80°24S 29°55W G</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>656±66 MY ("1017-6") RS313/0.7078±0.0064 WR Granitic gneiss; Shackleton Range Metamorphic Complex. GRE79</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>519±15 MY (1017-3) RS313/0.708 BT Feldspathic augen gneiss; Shackleton Range Metamorphic Complex. GRE79</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>C.600 MY ("1006-1") RS5R3/0.707 WR Gneissic granite; Shackleton Range Metamorphic Complex. GRE79</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>515 MY, 512 MY, 497 MY (1006-2) U/P ZR Gneissic granite; Shackleton Range Metamorphic Complex. GRE80 GRE70 (concordant at 500 MY)</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>431 MY, 451 MY, 556 MY (1017-4) U/P ZR Feldspathic augen gneiss; Shackleton Range Metamorphic Complex. GRE80 GRE79</td>
</tr>
<tr>
<td>(Mt. Provender area RM)</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>(data lie close to chord 0-550 MY)</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>466 MY, 470 MY, 490 MY (1029-7) U/P ZR Migmatite; Shackleton Range Metamorphic Complex. GRE80 GRE79</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>(data lie close to chord 0-500 MY)</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>477 MY, 484 MY, 518 MY (1045-4) U/P ZR Migmatite; Shackleton Range Metamorphic Complex. GRE80 GRE79</td>
</tr>
<tr>
<td>Mt. Provender area RM</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>(data lie close to chord 0-500 MY)</td>
</tr>
<tr>
<td>(Mt. Provender area RM)</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>475±40 MY ("2.1039.9") RS4R3/0.716±0.004 WR Red shale; Mt. Provender Fm., Blaiklock Glacier Gp. PAN83A</td>
</tr>
<tr>
<td>(Mt. Provender area RM)</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°23S 29°55W G</td>
<td>(using 3 data points, date=482±11 MY)</td>
</tr>
<tr>
<td>(Mt. Provender area RM)</td>
<td>80°23S 29°55W G</td>
</tr>
<tr>
<td>80°27S 29°30W G</td>
<td>c.900-1500 MY RS3M/0.703 WR Schist; metasediments, Mount Gass Fm. PAN83A</td>
</tr>
<tr>
<td>(Mt. Gass area RM)</td>
<td>80°24S 29°21W G</td>
</tr>
<tr>
<td>Pratt's Peak RM</td>
<td>510±5 MY RS13/0.7082±0.0001 MS Pegmatite clinopyroxene-biotite-apatite body; metasediments, Nostoc Lake Formation. PAN83A</td>
</tr>
<tr>
<td>80°30S 29°20W G</td>
<td>(10 samples; secondary lines of c. 700-900 MY with IR=0.715)</td>
</tr>
<tr>
<td>Williams Ridge RM</td>
<td>80°30S 29°20W G</td>
</tr>
<tr>
<td>Williams Ridge RM</td>
<td>600 MY (2.1095*) RS213/0.742 WR Schist, gneiss; supposed basement rock in Williams Ridge Fm. PAN83A</td>
</tr>
<tr>
<td>(*locale number)</td>
<td>80°30S 29°20W G</td>
</tr>
<tr>
<td>Williams Ridge RM</td>
<td>520±24 MY (2.1090, 2.1097*) RS4R3/0.7134±0.0006 WR Unaltered schist; Williams Ridge Fm. PAN83A</td>
</tr>
<tr>
<td>(*locale numbers; "errorchron" date)</td>
<td>80°30S 29°12W G</td>
</tr>
<tr>
<td>around Wedge Ridge RM</td>
<td>2700±100 MY RS613/0.700±0.004 WR Pegmatites(2) and gneisses(4); crystalline basement. PAN83A</td>
</tr>
<tr>
<td>(*"errorchron" date)</td>
<td>80°30S 29°12W G</td>
</tr>
<tr>
<td>around Wedge Ridge RM</td>
<td>1700±50 MY RS3M/IT 1. MC Pegmatite; crystalline basement. PAN83A</td>
</tr>
<tr>
<td>80°30S 29°12W G</td>
<td>504±6 MY RS313/0.8820±0.0003 BT, KF, WR Gneiss; crystalline basement. PAN83A</td>
</tr>
</tbody>
</table>
80°28S 29°10W G
nr Mt. Weston RM
80°24S 28°31W G
Dragons Back
81°33S 28°30W G
Eastern Nunatak of
Whichaway Nunataks
81°33S 28°30W G
Whichaway Nunataks
80°18S 27°50W G
"Myashiro Ridge,"
Lagrange Nunataks
80°18S 27°50W G
Lagrange Nunataks
80°18S 27°50W G
Lewis Chain RM
80°46S 25°43W R
S. side, Hatch Plain
80°20S 25°30W G
"Sumgin Buttress N."
Herbert Mts.
80°20S 25°30W G
"Charpentier Pyramid
S.E.", Herbert Mts.
80°20S 25°30W G
"Sumgin Buttress N."
Herbert Mts.
80°20S 25°30W G
"Unnamed Nun., S. Sum-
gin Buttress,"
Herbert Mts.
80°20S 25°30W G
"Sumgin Buttress N."
Herbert Mts.
80°20S 25°30W G
"Unnamed Nun., S. Sum-
gin Buttress, E."
Herbert Mts.
80°20S 25°30W G
Herbert Mountains
80°20S 25°30W G
Herbert Mountains
80°20S 24°45W G
"Beche Blade, N."
Read Mountains

1550 MY RS11R3/0.707 WR Paragneisses;
crystalline basement. PAN83A
297±12 MY(Z.736.4)RA9 WR Dolerite dike;
intruding Otter Highlands Fm. CIA72 REX72
163±13 MY(9)KAll WR Dolerite;
crosscuts sandstone of Whichaway Fm. HOF80
171±14 MY(10)KAll WR Dolerite;
crosscuts sandstone of Whichaway Fm. HOF80
195±20 MY(8)KAll Dolerite;
--. HOF80

2310±130 MY RS6I3/0.722±0.004 WR Gneisses;
crystalline basement. PAN83A
("errorchron" date)
c.1600 MY RM3/0.722±0.004 WR Gneiss;
crystalline basement. PAN83A
505±18 MY("Z.720.1")RS5I3/0.7141±0.0001 WR Micaschists;
Williams Ridge Formation. PAN83A
(if combined with the 520±24 MY samples from
Williams Ridge, age=512±3 MY, RS9I3/0.713±0.0002)
1446±60 MY(Z.602.2)RA9 WR Granodiorite dike;
intrudes Shackleton Range Metamorphic Complex.
CLA72 REX72
391±31 MY(1)KAll WR Dolerite;--. HOF80
(isochron for samples (1) through (4) of HOF80=
402 MY; isochron for (1) through (4), and (6)=
357 MY)
417±33 MY(2)KAll WR Dolerite;
--. HOF80
(see comment for sample (1) of HOF80)
434±35 MY(3)KAll WR Amphibolite;
Herbert metamorphics. HOF80
(see comment for sample (1) of HOF80)
399±32 MY(4)KAll WR Amphibolite;
Herbert metamorphics HOF80
(see comment for sample (1) of HOF80)
268±21 MY(5)KAll FU Mica-quartz schist;
Herbert metamorphics. HOF80
(suggests argon loss likely)
351±28 MY(6)KAll WR Granitoid;
Herbert metamorphics HOF80
(see comment for sample (1) of HOF80)
470±36 MY RS 312/0.7277±0.0007 WR Mica schists;
Shackleton metamorphic complex. HOF81A
1414±185 MY RS212/0.7090±0.0044 WR Mica schists;
Shackleton metamorphic complex. HOF81A
1401±70 MY(7)KAll WR Granitoid, prophyroblastic;
--. HOF80
<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Age</th>
<th>Type of rocks</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatch Plain area, Read Mtns. RM</td>
<td>80°42S 24°45W</td>
<td>1763±32 MY</td>
<td>Gneissose granites; crystalline basement. PAN83A (SE part of outcrop)</td>
<td>PAN83A</td>
</tr>
<tr>
<td>Hatch Plain area, Read Mtns. RM</td>
<td>80°42S 24°45W</td>
<td>1599±38 MY</td>
<td>Gneissose granites; crystalline basement. PAN83A (west of 1763 MY samples)</td>
<td>PAN83A</td>
</tr>
<tr>
<td>Hatch Plain area, Read Mtns. RM</td>
<td>80°42S 24°45W</td>
<td>1820±160 MY</td>
<td>Granites; crystalline basement. PAN83A (none of 10 samples lies significantly below an 1850 MY reference line)</td>
<td>PAN83A</td>
</tr>
<tr>
<td>Read Mtns.</td>
<td>80°42S 24°45W</td>
<td>c.1900 MY, 1300 MY</td>
<td>Granodiorite dikes; intrude the basement rocks. PAN83A</td>
<td>PAN83A</td>
</tr>
<tr>
<td>80°45S 24°W</td>
<td>S. Shackleton Range</td>
<td>720 MY</td>
<td>Purple shale; Watts Needle Fm., Turnpike Bluff Gp. PAN83A</td>
<td>PAN83A</td>
</tr>
<tr>
<td>80°44S 23°31W*</td>
<td>(Mt. Wegener area RM)</td>
<td>526±6 MY</td>
<td>Slaty mudstones and siltstones; Mount Wegener Fm. PAN83A</td>
<td>PAN83A (*coords. from Antarct. J. U.S. 17(4), 1982, p.12)</td>
</tr>
<tr>
<td>Lundstrom Knoll</td>
<td>80°30S 20°15W</td>
<td>457±18 MY</td>
<td>Dolerite dike; intrudes schists of Shackleton Range Metamorphic Complex. CIA72 REX72</td>
<td>CIA72 REX72</td>
</tr>
</tbody>
</table>
GEOGRAPHIC AREA 15: Theron Moun-tenant Area (samples from west to east by coordinates)

79°09'S 28°50'W Theron Mountains
79°02'S 28°35'W Theron Mountains
78°59'S 28°15'W Theron Mountains
78°50'S 28°10'W Theron Mountains
78°55'S 27°45'W Theron Mountains
78°52'S 27°30'W Theron Mountains

164±6 MY (Z.500.1) K-A9 WR Dolerite sill; intrudes Theron Formation. REX72
162±6 MY (Z.481.1) K-A9 WR Dolerite sill; intrudes Theron Formation. REX72
158±6 MY (Z.471.13) K-A9 WR Dolerite dike; intrudes Theron Formation. REX72
161±6 MY, 169±6 MY (Z.498.8) K-A9 WR Dolerite sill; intrudes Theron Formation. REX72
154±6 MY (Z.489.4) K-A9 WR Dolerite sill; intrudes Theron Formation. REX72
161±6 MY (Z.487.1) K-A9 WR Dolerite sill; intrudes Theron Formation. REX72
GEOGRAPHIC AREA 16:

77°55'S 34°32'W G
Bertrab Nunatak
77°54'S 34°21'W M
Littlewood Nunataks
and Bertrab Nunatak
77°53.5'S 34°10'W R
Littlewood Nunataks

77°53.5'S 34°10'W R
Littlewood Nunataks

77°53'S 34°10'W G
Littlewood Nunataks

COATS LAND EXCLUDING THERON MOUNTAIN AREA (samples from west to east by coordinates)

998±19 MY("405")RS512/0.7042±0.0014 WR Acid volcanic or hypabyssal rocks; Littlewood Volcs. EAS71

1001±16 MY RS712/0.7042±0.0011 WR Acid volcanic or hypabyssal rocks; Littlewood Volcanics. EAS71
(pooled isochron for samples 234,367, and "405")

840±30 MY(235)K/A WR Rhyolite porphyry;
Littlewood Volcanics. AUG65 EAS71
(age is a minimum)

1044 MY(235)RSM2/0.7040 WR Rhyolite;
Littlewood Volcanics. FAU68 AUG65 EAS71
(prelim. result superseded by data in EAS71)

1036±28 MY(#?)R/S WR Acid volcanic rocks;
Littlewood Volcanics. EAS69
(prelim. result superseded by data in EAS71; combined isochron with Gorecki Rhyolites of the Pensacola Mts. = 1016±18 MY)

966-1035 MY(235,367)RSM2/0.7050 WR Acid volcanic or hypabyssal rocks; Littlewood Volcanics. EAS71
QUEEN MAUD LAND, FROM STANCOMB-WILLS GLACIER THROUGH NEW SCHWABENLAND (samples from west to east by coordinates)

168±6 MY(Specimen A)KA9 WR Dolerite; --. REX67
172±6 MY(Specimen B)KA9 WR Dolerite; --. REX67
259±10 MY; 256±10 MY(Z.388.1)KA9 WR Dolerite, slightly altered; intrudes basement. REX72
547±100 MY; 580±100 MY(Z.391.1)KA9 WR Dolerite; intrudes basement complex. REX72
231±10 MY(VF 89)KA9 WR Subaerial compound basalt lava flow; --. FUR78

200±6 MY(VF 95)KA9 WR Subaerial compound basalt lava flow; --. FUR78
219± MY(VF 119)KA9 WR Subaerial compound basalt lava flow; --. FUR78
201± MY(VF 140)KA9 WR Subaerial compound basalt lava flow; --. FUR78

156±4 MY(VF 44)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
158±3 MY(VF 41)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
158±2 MY(VF 45)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
162±2 MY(VF 110)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
164±2 MY(VF 34)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
164±3 MY(VF 82)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
164±2 MY(VF 120)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
166±2 MY(VF 83)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
169±5 MY(VF 30)KA9 WR Fresh basalt dike margin; cuts the dated lava sequence. FUR78
165±2 MY(VF 32)KA9 WR Fresh basalt dike, center of same dike as VF 30; cuts the dated lava sequence. FUR78
73°30S 14°10W G "Steinkjeften" (PM) Vestfjella
73°30S 14°10W G "Pagodromen" (PM) Vestfjella
73°30S 14°10W G "Nunatak A" Vestfjella
14°09'12"W R Vestfjella
73°23'47"S Vestfjella
13°02'43"W R Vestfjella
74°37S 10°02W Milorgfjella
74°36S 10°00W Milorgfjella
74°08S 8°15W Milorgfjella
72°325 6°18W G Annandagstoppane
72°325 6°18W G Annandagstoppane
72°235 5°33W R Annandagstoppane
72°235 5°33W R Annandagstoppane
73°54S 5°15W AR* Kirwanveggen

71°18S 3°57W G Boreas Nunatak
71°18S 3°57W G Boreas Nunatak
72°03S 2°50W G Fasettfjellet
72°03S 2°50W R Ytstenut Nunatak
168±2 MY(VF 116)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
171±3 MY(VF 40)KA9 WR Fresh basalt dike; cuts the dated lava sequence. FUR78
170±2 MY(VF 128)KA9 WR Fresh basalt dike, margin; cuts the dated lava sequence. FUR78
172±2 MY(VF 129)KA9 WR Fresh basalt dike, center of same dike as VF 128; cuts the dated lava sequence. FUR78
---. HJE72 (prelim. analysis by A. Ya. Krylov)
c.220 MY(68/69 Hj3G)K/A WR Dolerite sill; --. HJE72
173±7 MY(Z.371.7)KA9 WR Basalt lava; overlie(?) Permian sediments. REX72
173±5 MY(Z.372.1)KA9 WR Basalt lava; overlie(?) Permian sediments. REX72
172±7 MY(Z.308.4)KA9 WR Basalt lava; overlie(?) Permian sediments. REX72
179±7 MY(Z.353.7)KA9 WR Dolerite; cuts Permian sediments. REX72
452±15 MY(Z.313.4)KA9 WR Dolerite; cuts Precambrian basement. REX72
485±15 MY(Z.313.4)KA9 WR Dolerite; cuts Precambrian basement. REX72
162±6 MY(Z.349.1)KA9 WR Basalt lava; overlie(?) Permian sediments. REX72
---. BAR83
180±100 MY(RS8I3/0.7034±0.0009)WR Gabbro (suite 1); ---. BAR83
---. BAR83
2518±406 MY(RS4I3/0.6990±0.0033)WR Gabbro (suite 2); ---. BAR83
3060±80 MY(5(A) and 5(B))RSM4/0.7040 WR Biotite granite; ---. HAL70 SOL75
2840±10 MY(4(A) and 4(B))RSM4/0.7040 WR Pegmatite; ---. SOL75
192±10 MY(##?)K/A WR Basaltic lava; Kirwan Volcanics. AUC72
*(sample location not given but from Kirwan Volcanics; date from G. Faure, pers. comm.)
827 MY,824 MY(GA2092;B0)KA8 PL Dolerite; Borg metamafics. NEE69 ALL70 NEE72
827 MY,1012 MY(GA2092;B0)KA8 PY Dolerite; Borg metamafics. NEE69 ALL70 NEE72
1109-1280 MY(##?)R/S WR Lava; correlated with Krylen Intrusion. BRE82
(quoting MS thesis of Bowman, 1971)
<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>72°03S</td>
<td>2°47W</td>
<td>Grunehogna (Peaks)</td>
</tr>
<tr>
<td>72°03S</td>
<td>2°47W</td>
<td>(Grunehogna Peaks) *</td>
</tr>
<tr>
<td>72°03S</td>
<td>2°47W</td>
<td>(Grunehogna Peaks)</td>
</tr>
<tr>
<td>73°00S</td>
<td>2°45W</td>
<td>Penck Trough</td>
</tr>
<tr>
<td>72°00S</td>
<td>2°40W</td>
<td>Grunehogna (Peaks)</td>
</tr>
<tr>
<td>72°00S</td>
<td>2°40W</td>
<td>Grunehogna (Peaks)</td>
</tr>
<tr>
<td>72°00S</td>
<td>2°33W</td>
<td>(Jekselen Peak) *</td>
</tr>
<tr>
<td>72°00S</td>
<td>2°33W</td>
<td>(Jekselen Peak) *</td>
</tr>
<tr>
<td>72°00S</td>
<td>2°32W</td>
<td>Jekselen</td>
</tr>
<tr>
<td>71°50S</td>
<td>2°25W</td>
<td>Ahlmann Ridge</td>
</tr>
<tr>
<td>71°50S</td>
<td>2°25W</td>
<td>Ahlmann Ridge</td>
</tr>
<tr>
<td>72°00S</td>
<td>2°23W</td>
<td>Istend (Peak)</td>
</tr>
<tr>
<td>71°50S</td>
<td>2°10W</td>
<td>Krylen Nunatak</td>
</tr>
</tbody>
</table>

832±2 MY, 716+4 MY (#?) A/A WR Diorite sill; Ytaterut Intrusions. BRE73 BRE82
(second age component is less well-defined)

1426±47 MY ("GD1/81") RS1l13/0.7051±0.0013 WR Diorite; --. BAR83
(*loc. given as "Grunehogna Nunatak")

1008±11 MY ("GG1/81") RS101/3/0.7097±0.0003 WR Grano-
diorite; --. BAR83
(*loc. given as "Grunehogna Nunatak")

860 MY (99a) KA6 WR Schistose siltstone, slightly
metamorphosed; --. RAV46 RAV65

420 MY (114t) KA6 WR Pyroxene syenite (cutting lava
sequence); --. RAV46 RAV65

590 MY (81) KA6 WR Epidote-chlorite-biotite schist
(diaphthorite); --. RAV46 RAV65

590 MY (81d) KA6 WR Epidote-chlorite-biotite schist
(diaphthorite); --. RAV46 RAV65

(min. age=1339 MY; rocks in this subzone can
be classified as quartz andesites)

1079±87 MY RS413/0.7091±0.0015 WR Diorite (suite 1);
--. BAR83

(*loc. given as "Jekselen Nunatak")

984±120 MY RS613/0.7122±0.0015 WR Diorite (suite 2);
--. BAR83

(*loc. given as "Jekselen Nunatak")

c.1000 MY (N30A) U/P WR Quartz-carbonate vein in
dolerite in Bong Metamafics. ALL70 NEE72

1672±79 MY RS1I WR Undeformed mafic sill; --. BAR83
(date from T. Elworthy)

1000 MY R/S MC, WR Rock units; --. BAR83
(date from Barton and Copperthwaite, unpubl. data).
c.600 MY (N47A) A/A WR Altered lava flow;
Istend Member, Viddalen Formation. BRE82
(age of three major age components)

1701 MY, 1600 MY (GA2093; XX) KA8 HB Altered dolerite;
Bong metamafics. NEE69 ALL70 NEE72
71°33S 2°10W G 767±49 MY RS5I3/0.7128±0.0006 WR Diorite (suite 1);
(Krylen Hill) (*loc. given as "Krylen Nunatak")
71°33S 2°10W G 712±122 MY RS6I3/0.7122±0.0016 WR Diorite (suite 2);
(Krylen Hill) (*loc. given as "Krylen Nunatak")
71°33S 2°10W G 124±61 MY RS3I3/0.7077±0.0008 WR Diorite (suite 3);
(Krylen Hill) (*loc. given as "Krylen Nunatak")
71°35S 1°10W R 856±30 MY RS8I2/0.7097±0.0009 WR Andesitic lava;
(Utkikken) Trollkjellrygg Group. EAS70A NEE72
(also reported as 848±28 MY in NEE72, EAS70A)
71°31S 1°W R 1720 MY(484)RSM2/0.7100 WR Andesite (metamorphosed);
(Trollkjellrygg Volcanics. EAS70A
(also reported as 1760 MY in NEE72)
72°11S 0°15W G 145±10 MY(107k)KA16 BT Nepheline-syenite;
(Gburek Peaks) DEU64A PIC64
(loc. given as "Gburek Mountains"; age=140 MY in PIC64)
72°11S 0°15W G 165±10 MY(107k)RSM2 BT Nepheline-syenite; DEU64A
(Gburek Peaks) (loc. given as "Gburek Mountains"; revised to
155 MY, RSM4, in PIC64)
72°33S 0°30E G 475 MY(103)KA6 WR Migmatite derived from pyroxene
(Hermann Mountains schist; RAV65
72°22S 1°00E G 450 MY(729c)KA6 KF Migmatite vein material;
(Barkley Mountains RAV65)
72°05S 1°25E G 450 MY(552e)KA6 WR Veined granite; RAV65
(Mount Hedden) (reported as "Mount Khadden" in RAV65 and as
"Mount Hadden" in RAV64; infer=Mt. Hedden)
72°05S 1°25E G 425 MY(554)KA6 WR Alkaline granite; RAV65
(Mount Hedden) (rpted as "Mount Khadden" in RAV65 and as
"Mount Hadden" in RAV64; infer=Mt. Hedden)
72°05S 1°25E G 400 MY(69n)KA6 WR Granosyenite; RAV65
(Mount Hedden) (rpted as "Mount Khadden" in RAV65 and as
"Mount Hadden" in RAV64; infer=Mt. Hedden)
72°11S 2°22E G 475 MY(68a)KA6 WR Migmatite derived from pyroxene
(Mayr Range) schist; RAV65 (rpted as "Maier Mountains" in RAV65)
72°11S 2°22E G 420 MY(706)KA6 WR Migmatite derived from biotite
(Mayr Range) plagioclase-gneiss; RAV65
72°11S 2°22E G 420 MY(706b)KA6 WR Granite(migmatite vein material);
(Mayr Range) RAV65 (rpted as "Maier Mountains" in RAV65 and as
"Mayer Mountains" in RAV65; infer=Mayr Range)
72°11S 2°22E G 460 MY(704a)KA6 WR Biotite gneiss from xenolith in
(Mayr Range) granosyenite (charnockite); RAV65
72°01S 2°42E G 510 MY(705e)KA6 WR Migmatized schist; RAV65
(Bundermann Range) (loc. given as "Bundermann Mountains"; sample #
given as "Bundermann Mountains")
<table>
<thead>
<tr>
<th>Location</th>
<th>Age (My)</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>72°11S 3°24E*</td>
<td>1050</td>
<td>Argillite with thin interlayers of siltstone</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>unspecified mts</td>
<td>480</td>
<td>Migmatite derived from pyroxene schist</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Kaye Crest</td>
<td>455</td>
<td>Granosyenite (charnockite)</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Kaye Crest</td>
<td>445</td>
<td>Granosyenite (charnockite)</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Kaye Crest</td>
<td>420</td>
<td>Granosyenite</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Kaye Crest</td>
<td>315</td>
<td>Veined syenite-porphyry (cutting granosyenite)</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Kaye Crest</td>
<td>410</td>
<td>Veined granite (cutting granosyenite)</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Luz Range</td>
<td>400</td>
<td>Granosyenite (charnockite)</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Luz Range</td>
<td>450</td>
<td>Subalkaline skialithic migmatite</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Thlmann Mountains</td>
<td>515</td>
<td>Greisenized pegmatite vein</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Thlmann Mountains</td>
<td>485+15</td>
<td>Greisenized pegmatite vein</td>
<td>DEU64A RAV65</td>
</tr>
<tr>
<td>71°S 3°24E*</td>
<td>455</td>
<td>Subalkaline skialithic migmatite</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Bucksdenbrock Range</td>
<td>515</td>
<td>Greisenized pegmatite vein</td>
<td>DEU64A RAV65</td>
</tr>
<tr>
<td>71°20S 7°35E*</td>
<td>485+15</td>
<td>Greisenized pegmatite vein</td>
<td>DEU64A RAV65</td>
</tr>
<tr>
<td>Marble Nunatak</td>
<td>455</td>
<td>Granosyenite (charnockite)</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Kurze Mountains</td>
<td>415</td>
<td>Granosyenite</td>
<td>RAV64 RAV65</td>
</tr>
<tr>
<td>Location</td>
<td>Date</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatite derived from pyroxene schist; --. STA60 PIC63 RAV65 (rpted as 480 MY using KA6 in RAV65 and STA60)</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Veined pegmatite (cutting granosyenite); --. STA60 PIC63 RAV65 (rpted as 400 MY using KA6 in RAV65 and STA60)</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Veined biotite granite; --. STA60 PIC63 RAV65 (rpted as 450 MY using KA6 in RAV65 and STA60)</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Veined biotite granite; --. STA60 PIC63 RAV65 (rpted as 420 MY using KA6 in RAV65 and STA60)</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Porphyroblastic granite; --. STA60 PIC63 RAV65 (rpted as 460 MY using KA6 in STA60)</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Biotite granite; --. STA60 PIC63 RAV65 (rpted as 410 MY using KA6 in STA60)</td>
<td></td>
</tr>
<tr>
<td>Conrad Mountains</td>
<td>71°50S 9°40E G</td>
<td>Syenite porphyry; --. STA60 PIC63 RAV65 (rpted as 415 MY using KA6 in STA60)</td>
<td></td>
</tr>
<tr>
<td>Shcherbakov Range</td>
<td>71°50S 9°40E G</td>
<td>Migmatized schist; --. RAV64 RAV65 (loc.="Dalmann Mountains" in RAV64)</td>
<td></td>
</tr>
<tr>
<td>Shcherbakov Range</td>
<td>71°50S 9°40E G</td>
<td>Migmatized schist; --. RAV64 RAV65 (loc.="Shcherbakov Ridge" in RAV65)</td>
<td></td>
</tr>
<tr>
<td>Shcherbakov Range</td>
<td>71°50S 9°40E G</td>
<td>Migmatized schist; --. RAV64 RAV65 (loc.="Shcherbakov Ridge" in RAV65)</td>
<td></td>
</tr>
<tr>
<td>Shcherbakov Range</td>
<td>71°50S 9°40E G</td>
<td>Migmatized schist; --. RAV64 RAV65 (loc.="Shcherbakov Ridge" in RAV65)</td>
<td></td>
</tr>
<tr>
<td>Humboldt Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatized biotite-amphibole schist; --. RAV64 RAV65</td>
<td></td>
</tr>
<tr>
<td>Humboldt Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatized biotite-amphibole schist; --. RAV64 RAV65</td>
<td></td>
</tr>
<tr>
<td>Humboldt Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatized biotite-amphibole schist; --. RAV64 RAV65</td>
<td></td>
</tr>
<tr>
<td>Humboldt Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatized biotite-amphibole schist; --. RAV64 RAV65</td>
<td></td>
</tr>
<tr>
<td>Humboldt Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatized biotite-amphibole schist; --. RAV64 RAV65</td>
<td></td>
</tr>
<tr>
<td>Humboldt Mountains</td>
<td>71°50S 9°40E G</td>
<td>Migmatized biotite-amphibole schist; --. RAV64 RAV65</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- MY stands for million years.
- KA6 and RAV65 are laboratory codes.
- The date ranges are based on potassium-argon (K-Ar) dating, which measures the decay of potassium-40 to argon-40 in rocks to determine their age.
- The dates are in Myr (million years).
70°45'S 11°40'E G
Schirmacher Hills

70°45'S 11°50'E R
Schirmacher Hills

70°45'S 11°50'E R
Schirmacher Hills

72°30'S 12°00'E G
"Leningrad Mountains"
Queen Maud Land

72°30'S 12°00'E G
"Leningrad Mining Institute Mountains"
Queen Maud Land

72°30'S 12°00'E G
"Leningrad Mining Institute Mountains"
Queen Maud Land

72°30'S 12°00'E G
"Belolikov Rocks"
Queen Maud Land

71°43'S 12°00'E M
Humboldt Mts/
Pettermann Ranges

490 MY(863)K/A6 WR Migmatized biotite-amphibole schist;---. RAV65

460 MY(885)K/A6 WR Augen migmatite derived from plagioclase gneiss;---. RAV65

376 MY(34)K/A6 WR Cataclastic migmatized garnet-biotite gneiss;---. RAV60 PIC63
(rpted as 390 MY using K/A6 in RAV60)

640 MY, 623 MY, 651 MY,---(378X)UTP AT Pegmatite;
Precambrian crystalline basement. GRE83
(concordant near 630 MY)

C.1500 MY(395B)UTP2C 2R Quartzo-feldspathic gneiss;
Precambrian crystalline basement. GRE83
(”Tough” date is UT if LI=630 MY)

415 MY(38)K/A6 WR Migmatite derived from garnet-biotite gneiss;---. RAV64 RAV65

435 MY(141)K/A6 WR Granosyenite (charnockite);
---. RAV64 RAV65

450 MY(134)K/A6 WR Subalkaline skialitic migmatite;
---. RAV64 RAV65

365 MY(141e)K/A6 KF Granosyenite;
---. RAV64 RAV65

435 MY(196)K/A6 WR Granosyenite (charnockite);
---. RAV64 RAV65

500 MY(196p)K/A6 WR Biotite gneiss from xenolith in granosyenite (charnockite);---. RAV64 RAV65

445 MY(199k)K/A6 WR Biotite schist from xenolith in microcline granite;---. RAV64 RAV65

465 MY(93)K/A WR Weakly feldspathized gabbroid;
---. RAV72
(constants probably = K/A as in RAV65)

400 MY(44)K/A WR Biotitized gabbroid;---. RAV72
(constants probably = K/A as in RAV65)

390 MY(36)K/A WR Feldspathed gabbro-diorite;
---. RAV72
(constants probably = K/A as in RAV65)

460 MY(34)K/A WR Feldspathed gabbro-diorite;
---. RAV72
(constants probably = K/A as in RAV65)

360 MY(38a)K/A WR Porphyroblastic granosyenite;
---. RAV72
(constants probably = K/A as in RAV65)

400 MY(38)K/A WR Porphyroblastic granosyenite;
---. RAV72
(constants probably = K/A as in RAV65)
<table>
<thead>
<tr>
<th>Location</th>
<th>Date (My)</th>
<th>Description</th>
<th>Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>71°43S 12°00E M</td>
<td>390</td>
<td>'Giant-grained' porphyroblastic granosyenite; ---. RAV72</td>
<td>(constants probably = KA6 as in RAV65)</td>
</tr>
<tr>
<td>Humboldt Mts/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petermann Ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71°35S 12°20E G</td>
<td>530</td>
<td>PG Diopside-phlogopite rock; ---. RAV64 RAV65</td>
<td>(loc. given as "Wohlthat Massif")</td>
</tr>
<tr>
<td>Wohlthat Mountains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>530±20</td>
<td>MY(809)m KA16 PG Granosyenite; ---. DEU64A PIC64</td>
<td>(#=809m, descr="altered calciphyre" in PIC64; may be same as #809m from Wohlthat Mountains; loc. given as "Petermann Mountains")</td>
</tr>
<tr>
<td></td>
<td>505±15</td>
<td>MY(809) RSM2 PG Granosyenite; ---. DEU64A</td>
<td>(#=809m, descr="altered calciphyre" in PIC64; may be same as #809m from Wohlthat Mountains; loc.= "Petermann Mountains"; rev. to 470 My, RSM4, PIC64)</td>
</tr>
<tr>
<td>71°40S 12°20E G</td>
<td>490</td>
<td>MY(796)a KA6 WR Skaialithic granite derived from pyroxene plagioclase-gneiss; ---. RAV64 RAV65</td>
<td></td>
</tr>
<tr>
<td>(Petermann Ranges)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°00S 13°30E G</td>
<td>443</td>
<td>MY(16d) KA16 WR Veined plagioclase granite; ---. STA60 PIC63 RAV65</td>
<td>(rpted as 460 My using KA6 in RAV65 and STA60)</td>
</tr>
<tr>
<td>Weyprecht Mountains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71°25S 15°31E G</td>
<td>405</td>
<td>MY(254a) KA16 WR Veined granite; ---. STA60 PIC63 RAV65</td>
<td>(rpted as 420 My using KA6 in RAV65 and STA60)</td>
</tr>
<tr>
<td>Vorposten Peak "1"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71°25S 15°31E G</td>
<td>463</td>
<td>MY(253c) KA16 WR Diopside-phlogopite rock; ---. STA60 PIC63 RAV65</td>
<td>(rpted as 480 My using KA6 in RAV65 and STA60)</td>
</tr>
<tr>
<td>Vorposten Peak "1"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71°25S 15°31E G</td>
<td>458</td>
<td>MY(17c*) KA16 WR Migmatite derived from pyroxene schist; ---. STA60 PIC63 RAV65</td>
<td>(rpted as 475 My using KA6 in RAV65 and STA60; *infer sample # "19b" in RAV65 is typo. error)</td>
</tr>
<tr>
<td>Vorposten Peak "2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GEOGRAPHIC AREA 18: QUEEN MAUD LAND, VICINITY OF Sør Rondane AND BELIGCA MOUNTAINS (samples from west to east by coordinates)

72°05S 18°37E* Zhelanya Mountain 448 MY (19b) KA16 WR Amphibole-plagioclase gneiss; --. STA60 PIC63
(*coords. taken from listing in Atlas Antarktiki I: (rpted as 265 MY using KA6 in STA60)

72°04S 23°24E Viking Heights 790±15 MY, 814±25 MY, 875±45 MY (ANT5) UP2 ZR Embrechitic gneiss; Telet-Vigen group. PAS68 VAN72

72°06S 23°39E R Gunnestad Glacier 512±20 MY, 524±20 MY, 575±10 MY (GB) UP3 ZR Granite of intrusive type; --. PIC64A VAN69 (infer= #3 in DEU64A)

72°06S 23°39E R Gunnestad Glacier 474±15 MY (GB) RSM2 BT Granite of intrusive type (erratic boulder); --. PIC64A VAN69 (rev. to 445 MY, RSM4, in PIC64; appears to be same as 435 MY sample in PIC63 and #3 in DEU64A)

72°06S 23°39E R Gunnestad Glacier 472±14 MY (GB) RSM2 BH Granite of intrusive type (erratic boulder); --. PIC64A VAN69 (rev. to 443 MY, RSM4, in PIC64)

72°06S 23°39E R Gunnestad Glacier 480±160 MY (GB) RSM2 FD Granite of intrusive type (erratic boulder); --. PIC64A VAN69 (rev. to 451 MY, RSM4, in PIC64; infer SM= zircon in DEU64A is typo. error)

72°06S 23°39E R Gunnestad Glacier 476±15 MY (GB) RSM2 BT Porphyroblastic granite of intrusive type; --. PIC64A VAN69 (age=478 MY, revised to 454 MY, RSM4, in PIC63; age=480 MY in DEU64A, rev, to 451 MY, RSM4, PIC64)

72°06S 23°39E R Gunnestad Glacier 485±15 MY (GB) RSM2 BT Porphyroblastic granite of intrusive type; --. PIC64A VAN69 (age=473 MY, revised to 449 MY, RSM4, in PIC63)

72°06S 23°39E R Gunnestad Glacier 465±15 MY (91R) RSM2 BT Pegmatite vein in granite; --. PIC64A VAN69 (age revised to 442 MY, RSM4, in PIC63)

72°06S 23°39E R Gunnestad Glacier 488±15 MY (21c) RSM2 BT Syenite; --. PIC64A VAN69 (rev. to 460 MY, RSM4, in PIC64; loc. between peak 2380 and peak 2750)

72°06S 23°42E Gunnestad Glacier 607±12 MY, 608±25 MY, 610±100 MY (ANT 1 A) UP2 ZR Intrusive microcline granite; --. PAS68

72°02S 25°14E R Nordtoppen Nun. 1100 476±15 MY (99a) RSM2 BT Gneiss xenolith; in Smahausane gabbro-diorite. PIC64A VAN69 (rev. to 452 MY, RSM4, in PIC63)
<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Age</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>71°29S 25°14E R</td>
<td>Nordtoppen Nun. 1100</td>
<td>491±15 MY (S9b) RSM2 BT Gneiss xenolith; in Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°29S 25°14E R</td>
<td>Nordtoppen Nun. 1100</td>
<td>495±15 MY (S9c) RSM2 BT Biotitic segregation in gneiss xenolith; in Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°29S 25°14E R</td>
<td>Nordtoppen Nun. 1100</td>
<td>555±20 MY, 555±55 MY, 550±150 MY (S9) UF2 ZR Gneiss xenolith; in Smahausane gabbro-diorite. PIC64A PIC64 VAN69</td>
<td></td>
</tr>
<tr>
<td>71°47S 25°15E R</td>
<td>Austkampane Hills</td>
<td>492±15 MY (K16) RSM2 BT Banded muscovite-biotite-corundum gneiss;---. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°47S 25°15E R</td>
<td>Austkampane Hills</td>
<td>499±15 MY (K16) RSM2 MC Banded muscovite-biotite-corundum gneiss;---. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°47S 25°15E R</td>
<td>Austkampane Hills</td>
<td>519±15 MY (K16) RSM2 MC Banded muscovite-biotite-corundum gneiss;---. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°47S 25°15E R</td>
<td>Austkampane Hills</td>
<td>452 MY (K16) RSM4 MC Muscovite-biotite-corundum gneiss;---. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°29S 25°17E R</td>
<td>Nordtoppen Nun. 950</td>
<td>463±15 MY (S20a) RSM2 BT Granite dike; in Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°29S 25°17E R</td>
<td>Nordtoppen Nun. 950</td>
<td>510±20 MY, 508±20 MY, 500±30 MY (S20a) UF2 ZR Granite dike; in Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°29S 25°17E R</td>
<td>Nordtoppen Nun. 950</td>
<td>495 MY (K16) PT ZR Granite vein;---. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°29S 25°17E R</td>
<td>Nordtoppen Nun. 950</td>
<td>380±15 MY (S20a) KA16 WR Granite dike; in Smahausane gabbro-diorite. DEU64A PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°35S 25°21E R</td>
<td>"Nunatak 1180"</td>
<td>460±15 MY (S12) RSM2 BT Quartz diorite; Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°35S 25°21E R</td>
<td>"Nunatak 1180"</td>
<td>480±15 MY (S17) RSM2 BT Diorite; Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°35S 25°21E R</td>
<td>"Nunatak 1180"</td>
<td>475 MY (S12) KA16 WR Quartz diorite; Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°35S 25°21E R</td>
<td>"Nunatak 1180"</td>
<td>460±15 MY (S17) RSM2 BT Diorite; Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°35S 25°21E R</td>
<td>"Nunatak 1180"</td>
<td>475 MY (S12) KA16 WR Quartz diorite; Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
<tr>
<td>71°35S 25°21E R</td>
<td>"Nunatak 1180"</td>
<td>480±15 MY (S17) RSM2 BT Diorite; Smahausane gabbro-diorite. PIC64A VAN69</td>
<td></td>
</tr>
</tbody>
</table>
71°52S 25°36E R
E spur, Strandrud Mt.
457±15 MY(T7)RSM2 BT Migmatitic gneiss;--. PIC64A VAN69
(age=455 MY revised to 432 MY, RSM, in PIC63)
71°52S 25°36E R
E spur, Strandrud Mt.
483±15 MY(T4)RSM2 BT Fine-grained pink granite;
intrusive into gneiss series. PIC64A VAN69
(rev. to 459 MY, RSM4, in PIC63)
71°52S 25°36E R
E spur, Strandrud Mt.
460±90 MY(T4)RSM2 FD Fine-grained pink granite;
intrusive into gneiss series. PIC64A VAN69
(rev. to 433 MY, RSM4, in PIC64)
71°52S 25°36E R
E spur, Strandrud Mt.
488 MY, 548 MY, 464 MY, 503 MY(T4)RSM2 WR Fine-grained
pink granite; intrusive into gneiss. PIC64A VAN69
(avg. age=500±50 MY in PIC64A; ages rev. to 459 MY
515 MY, 436 MY, 473 MY using RSM4 in PIC64;
avg.(?) age=510 MY rev. to 482 MY, RSM, in PIC63)
71°52S 25°36E G
Strandrud Mountain
552±10 MY, 564±17 MY, 610±45 MY(ANT 6 A)UP2 ZR
Anatectic microcline granite; Teltet-Vengen Gp.
Pas68 VAN72
71°52S 25°36E G
Strandrud Mountain
521±10 MY, 534±20 MY, 590±65 MY(ANT 6 B)UP2 ZR
Anatectic microcline granite; Teltet-Vengen Gp.
Pas68 VAN72
71°52S 25°36E G
Strandrud Mountain
979±20 MY, 972±35 MY, 950±70 MY(ANT 7 A)UP2 ZR
Granitic gneiss; Teltet-Vengen Gp. PAS68 VAN72
71°52S 25°36E G
Strandrud Mountain
609±12 MY, 639±18 MY, 745±35 MY(ANT 7 B)UP2 ZR
Granitic gneiss; Teltet-Vengen Gp. PAS68 VAN72
71°52S 25°36E G
Strandrud Mountain
777±15 MY, 1026±35 MY, 1610±55 MY(ANT 8 A)UP2 ZR
Granodioritic gneiss; Teltet-Vengen Gp. PAS68 VAN72
71°47S 25°36E R
Strandrud Mountain
715±15 MY, 896±20 MY, 1376±20 MY(ANT 8 B)UP2 ZR
Granodioritic gneiss; Teltet-Vengen Gp. PAS68 VAN72
71°52S 25°36E G
Strandrud Mountain
570±2700 MY(ANT 8 B)UP2 C2 ZR Granodioritic gneiss;
Teltet-Vengen Group. PAS68 VAN72
71°52S 25°36E G
Strandrud Mountain
540±75 MY(ANT 6 B)P312 WR, XF, AP Anatectic microcline
granite; Teltet-Vengen Group. PAS68 VAN72
71°58S 25°05E R
Bautaen Peak
497±15 MY(A3)RSM2 BT Fine-grained pink granite
(fallen block);--. PIC64A VAN69
(age rev. to 472 MY, RSM4, in PIC63 and to 467 MY,
RSM4, in PIC64)
71°58S 25°05E R
Bautaen Peak
506±15 MY(A3)RSM2 BT Fine-grained pink granite
(fallen block);--. PIC64A VAN69
(age rev. to 481 MY, RSM4, in PIC63 and to 476 MY,
RSM4, in PIC64)
71°58S 25°05E R
Bautaen Peak
475±60 MY(A3)RSM2 FD Fine-grained pink granite
(fallen block);--. PIC64A VAN69
(age rev. to 446 MY, RSM4, in PIC64)
71°58S 25°05E R
Bautaen Peak
478±60 MY(A3)RSM2 FD Fine-grained pink granite
(fallen block);--. PIC64A VAN69
(age rev. to 450 MY, RSM4, in PIC64)
71°58S 25°05E R
Bautaen Peak
553 MY, 650 MY, 585 MY(A3)RSM2 WR Fine-grained pink
granite (fallen block);--. PIC64A VAN69
(avg. age given as 593±60 MY in PIC64A; ages rev.
to 520 MY, 611 MY, and 550 MY, RSM4, in PIC64)
71°58S 25°05E R
Bautaen Peak
475 MY(A3)RSM4 WR Fine-grained microcline granite;
--. PIC63 VAN69
/appears to be a prelim. result superseded by
other A3 results from this loc./
72°11'S 26°18'E R
Isachson Mountain
493±15 MY (G13) RSM2 BT Coarse pegmatite (fallen block); --. PIC64A VAN69
(age rev. to 468 MY, RSM4, in PIC64)
72°11'S 26°18'E R
Isachson Mountain
517±15 MY (G6) RSM2 BT Migmatitic gneiss;
--. PIC64A VAN69
(age rev. to 491 MY, RSM4, in PIC64)
72°11'S 26°18'E R
Isachson Mountain
440±15 MY (G6) RSM2 WR Migmatitic gneiss;
--. DEU64A PIC64A VAN69
71°40'S 27°26'E R
Trillingane Nun. 2240
473±15 MY (Tr7) RSM2 BT Dioritic gneiss-migmatite;
--. PIC64A VAN69
(age rev. from 471 MY to 447 MY, RSM4, in PIC63)
71°40'S 27°26'E R
Trillingane Nun. 1240
476±15 MY (Tr12) RSM2 BT Concordant pegmatite in migmatitic gneiss; --. PIC64A VAN69
(age rev. from 474 MY to 450 MY, RSM4, in PIC63)
72°35'S 31°15'E G
cen. NW massif, Belgica Mountains
442±22 MY (A79121411) KA17 WR Pyroxenite dike;
Belgica Group. K0382
72°35'S 31°15'E G
N. end, NW massif, Belgica Mountains
401±20 MY (A79121504) KA17 WR Hornblende-biotite gneiss; Belgica Group. KOJ82
72°35'S 31°15'E G
cen. SE Massif, Belgica Mountains
386±19 MY (K79121914) KA17 WR Pink granite dike;
Belgica Group. KOJ82
72°35'S 31°15'E G
NW part, SW massif, Belgica Mountains
382±19 MY (K79122014) KA17 WR Granitic gneiss;
Belgica Group. KOJ82
72°35'S 31°15'E G
cen. part, NW massif, Belgica Mountains
472±24 MY (A79122401) KA17 WR Hornblende-biotite gneiss;
Belgica Group. KOJ82
72°32'S 31°15'E G
N. Mt. Bastin
411±21 MY (K79122607) KA17 WR Syenite dike;
Belgica Group. KOJ82
GEORAPHIC AREA 19:

71°22S 35°29E R
Queen Fabiola Mts.

71°30S 35°40E G
Yamato Mountains
71°30S 35°40E G
"Massif C"
Yamato Mountains
71°30S 35°40E G
"Massif C"
Yamato Mountains
71°30S 35°40E G
"Massif C"
Yamato Mountains
69°38S 39°E R
E. Lutzow Holm Bay
69°38S 39°23E R
Skallen Hills
69°38S 39°23E R
Skallen Hills

69°01.5S 39°28E R
Kurumti Island
69°01.5S 39°28E R
Kurumti Island
69°00S 39°30F R
East Ongul Island
69°01S 39°30E R
West Ongul Island
69°01S 39°32E R
Ongul Island
69°01S 39°32E G
West Ongul Island
N part, West Ongul I.

QUEEN MAUD LAND, EAST OF THE BELGICA MOUNTAINS
(samples from west to east by coordinates)

486±15 MY(YD218)RSM2 BT Granitic gneiss;
--. PIC64 PIC66 TAT69
(age rev. to 457 MY, RSM4, in PIC64)

383 MY(A-08)RSM2/0.7115 FD Gneissic rock;
--. MAE68

363±18 MY(74121709)KA17 WR Augen gneiss;
Precambrian basement. YAN82

400±20 MY(K79112909)KA17 WR Syenite;
Precambrian basement. YAN82

359±18 MY(A79120102)KA17 WR Syenite;
Precambrian basement. YAN82

363±18 MY(N79120112)KA17 WR Syenite;
Precambrian basement. YAN82

526 MY(A-10)RSM2/0.7115 BT Gneissic rock; --.MAE68
(exact sample site not shown on RM)

530±16 MY(JARE 57102622)RSM1 BT Granitic pegmatite
in pyroxene gneiss; --. NIC61 TAT69

485±5 MY, 468±16 MY, 375±29 MY, 458±26 MY(#?)UTP4 EX
Granitic pegmatite in pyroxene gneiss; --.
SAE61 NIC61 TAT69
(sample from same pegmatite as JARE 57102622)

539 MY[A-4 68090706]KA11 BT Garnet-biotite plagioclase
rock; --. YAN74

515 MY[A-4 68090706]KA11 BT Garnet-biotite plagioclase
rock; --. YAN74

467 MY[A-7 68091201-1]KA11 PG Eclogite:
basement rocks. YAN74 YAN74A

560 MY[A-8 68022002]KA11 BT Biotite gneiss;
basement rocks. YAN74 YAN74B

500±30 MY(JARE 57122307)RSM1 BT Small BT-rich mass
in charnockite lens in gneiss; --. NIC61 TAT69
(rev. to 570 MY, RSM4, in PIC63)

25,840±2450 BP(#?)14C SH Adamussium colbecki, step
landform or raised beach, 3.5 m a.s.l.; --. OM077
(date from Dr. Nogami, pers. comm.)

GT 31,510 BP(#?)14C SH Laternula elliptica, step
landform or raised beach, 2.5 m a.s.l.; --. OM077
(date from Dr. Nogami, pers. comm.)

508 MY[A-02]RSM2/0.7115 BT Gneissic rock;
basement rocks. MAE68 YAN74B

465 MY[A-05]RSM2/0.7115 BT Gneissic rock;
basement rocks. MAE68 YAN74B

726 MY[A-02]RSM2/0.7115 KP Gneissic rock;
basement rocks. MAE68 YAN74B

930±90 BP(GA5-5832)14C2 SH Adamussium colbecki, below
8 m a.s.l.; --. YOS83
Compilation of Isotopic Dates from Antarctica

69°01S 30°31.5E R
West Ongul Island
69°29S 39°33E AR
Skarvsnes
69°26'36.5"S 39°33'15"E R
Lake Funazoko
69°26'36.5"S 39°33'15"E R
W, Funazoko-ike (Pond)
69°01.5S 39°31.5E R
West Ongul Island
69°26S 39°34E R
Skarvsnes Foreland
69°27S 39°34E M
Lake Hunazoko
69°27S 39°34E M
Lake Hunazoko
69°27S 39°34E M
Lake Hunazoko
69°01S 39°34E G
Kaino-hama, East Ongul Island RM
69°01S 39°34E G
Kitami Beach, East Ongul Island RM
69°01S 39°34E G
Kitami Beach, East Ongul Island RM
69°01S 39°34E G
Kitami Beach, East Ongul Island RM
69°01S 39°34E G
Kitami Beach, East Ongul Island RM
399 MY(A-9 68022014) KAl1 BT Microcline-biotite granite; basement rocks. YAN74 YAN74B
363 MY (A-11 68022609) KAl12 WR Garnet-biotite gneiss; --. YAN60
3200±130 BP(Th-051) 14C Shell fragments, shore terrace deposits. OMD76
4830±150 BP(Th-054) 14C SH Laternula elliptica, 1.7 m. below surface of shore terrace (or tidal delta terrace). OMD76
485 ±30 MY (JARE 57110704) RSM1 BT Granitic pegmatite in pyroxene gneiss; --. Nl61 TAI69 (age rev. to 479 MY, RSM4, in PIC63)
363 MY (A-11 68022609) KAl12 WR Garnet-biotite gneiss; --. YAN60
485 ±30 MY (JARE 57110704) RSM1 BT Granitic pegmatite in pyroxene gneiss; --. Nl61 TAI69 (age rev. to 479 MY, RSM4, in PIC63)
69°27'S 39°34'E M
Lake Hunazoko
69°27'S 39°34'E M
Lake Hunazoko
69°27'S 39°34'E M
SW coast, Lake Hunazoko
69°00'29"S 39°34'30"E R
Kitamihama
69°01'S 39°34'30"E R
Kitamihama
69°01'S 39°35'E AR
East Ongul Island
69°01'S 39°35'E AR
East Ongul Island
69°00'S 39°35'E R
East Ongul Island
69°00'S 39°35'E R
East Ongul Island
69°01'S 39°35'E G
East Ongul Island
69°01'S 39°35'E G
East Ongul Island
69°00'S 39°35'E M
N part, East Ongul Island
69°00'S 39°35'E G
Mizukumi Stream, East Ongul Island
69°03'S 39°35'E M
SW part, Skarvensnes
69°28'S 39°35'E M
Kizahashi Beach
69°28'S 39°35'E G
Kizahashi Beach
69°01'S 39°35'E G
East Ongul Island
69°28'S 39°35'E G
Kizahashi Beach
69°01'S 39°35'E AR
East Ongul Island
69°28'S 39°36'E FM
Skarvensnes
69°26'S 39°37'E FM
E. Lutzow-Holm Bay

4190+100 BP (GaK-2037) 14C2 SH Laternula elliptica, raised shoreline, 23 m a.s.l.; --. YOS70 YOS83
31,600+2800-2100 BP (GaK-2036) 14C2 SH Fragments of mollusca, raised shoreline, 8 m a.s.l.; --. YOS70 YOS83
2540+160 BP (GaK-5834) 14C2 SH Laternula elliptica, 4 m a.s.l.; --. YOS83
1450+110 BP (TH-021) 14C2 SH Adamussium colbecki, about 2 m a.s.l.; --. OM074
2510±110 BP (N-925) 14C2 SH Adamussium colbecki, about 2 m a.s.l.; --. OM074
(same sample as TH-021)
387 MY (AO2) Fa 12 WR Biotite-hornblende gneiss; --. KAN68
(infer $\lambda_g = 4.72 \times 10^{-10} \text{yr}^{-1}$)
350 MY (AO2) Fa 12 FD, Q2 Biotite-hornblende gneiss; --. KAN68
(infer $\lambda_g = 4.72 \times 10^{-10} \text{yr}^{-1}$)
517 MY (A-2) 68032704 KAI11 FG Pyroxenite; basement rocks. YAN74 YAN74A
533 MY (A-1) 68091201-2 KAI11 FG Hornblendeite; basement rocks. YAN74 YAN74A
3340±90 BP (GaK-3664) 14C2 Calcareous algae, high tide level; --. OM074 YOS83
(date from Dr. T. Hoshiai, pers. comm.)
3540±90 BP (GaK-3665) 14C2 Calcareous algae, 1 m. above GAK-3664; --. OM074 YOS83
(date from Dr. T. Hoshiai, pers. comm.)
5850±100 BP (GaK-2032) 14C2 SH Fragments of mollusca, raised shoreline, 16 m a.s.l.; --. YOS70 YOS83
30,700±2000 BP (GaK-2033) 14C2 SH Fragments of mollusca, raised shoreline, 12 m a.s.l.; --. YOS70 YOS83
3180±250 BP (GaK-2039) 14C2 SH Laternula elliptica, shore or inlet, 0.5 m a.s.l.; --. YOS70 YOS83
3600±250 BP (GaK-2035) 14C2 SH Adamussium colbecki, raised shoreline, 1.8 m a.s.l.; --. YOS70 YOS83
4700±100 BP (GaK-2034) 14C2 SH Adamussium colbecki, raised shoreline, 8 m a.s.l.; --. YOS70 YOS83
2400±90 BP (#?) 14C2 SH Adamussium colbecki, -9 m. a.s.l.; --. YOS83
5580±180 BP (GaK-5835) 14C2 SH Laternula elliptica, 11 m a.s.l.; --. YOS83
421 MY (AO2) Fa 12 WR Biotite-hornblende gneiss; --. KAN68
(infer $\lambda_g = 4.72 \times 10^{-10} \text{yr}^{-1}$)
1800 MY (3020204) RSME/0.7037 WR Pyroxene gneiss; crystalline basement. SH183
745 MY (A-04) RSME/0.7115 KF Gneissic rock; --. MAE68
<table>
<thead>
<tr>
<th>Location</th>
<th>Date (BP or MY)</th>
<th>Age Range</th>
<th>Sample Type</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>69°29S 39°37.5E R</td>
<td>6020±175</td>
<td>14 m a.s.l.</td>
<td>Laternula</td>
<td>(date from TH-020)</td>
</tr>
<tr>
<td>near Suribachi-ike</td>
<td>7450±135</td>
<td>14 m a.s.l.</td>
<td>Elliptica</td>
<td>(same sample as TH-020)</td>
</tr>
<tr>
<td>69°13S 39°38E R</td>
<td>525±40</td>
<td>494 MY</td>
<td>Granitic Pegmatite</td>
<td>(age rev. to 494 MY)</td>
</tr>
<tr>
<td>Langhovde Hills</td>
<td>1060±60</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°27S 39°38E RM</td>
<td>1080±40</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Skarvsnes</td>
<td>1060±60</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°05S 39°40E RM</td>
<td>1080±40</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°39E M</td>
<td>1180±40</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Lake Zakuro</td>
<td>1250±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°39E M</td>
<td>1350±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Lake Zakuro</td>
<td>1350±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Skarvsnes</td>
<td>1350±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°39E M</td>
<td>1490±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Lake Zakuro</td>
<td>1490±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Skarvsnes</td>
<td>1490±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°05S 39°40E RM</td>
<td>1590±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>E. Lutzow-Holm Bay</td>
<td>1690±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°40E M</td>
<td>1790±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Ko-minato Inlet</td>
<td>1790±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°40E M</td>
<td>1890±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Ko-minato Inlet</td>
<td>1890±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°40E M</td>
<td>1990±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Ko-minato Inlet</td>
<td>1990±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°40E M</td>
<td>2090±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Ko-minato Inlet</td>
<td>2090±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°40E M</td>
<td>2190±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Ko-minato Inlet</td>
<td>2190±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>69°11S 39°40E M</td>
<td>2290±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>Ko-minato Inlet</td>
<td>2290±20</td>
<td>WR Garnet-biotite gneiss; crystalline basement.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
<td></td>
</tr>
</tbody>
</table>

(Compiled by Isotopic Dates from Antarctica, 199)
<table>
<thead>
<tr>
<th>Location</th>
<th>Radiocarbon Age</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Suribachi</td>
<td>5860±170 BP(#?)14C</td>
<td>Laternula elliptica, step landform or raised beach, 15.5 m a.s.l.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Lake Suribachi</td>
<td>6630±230 BP(#?)14C</td>
<td>Serpuloid tubes, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Lake Suribachi</td>
<td>6700±180 BP(#?)14C</td>
<td>Laternula elliptica, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Lake Suribachi</td>
<td>5370±160 BP(#?)14C</td>
<td>Laternula elliptica, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Lake Suribachi</td>
<td>7680±250 BP(#?)14C</td>
<td>Serpuloid tubes, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Lake Suribachi</td>
<td>8130±200 BP(#?)14C</td>
<td>Laternula elliptica, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Lake Suribachi</td>
<td>6180±260 BP(#?)14C</td>
<td>Serpuloid tubes, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>shore, Lake Suribachi</td>
<td>5640±130 BP(GaK-2038)</td>
<td>Tubes of Polychaeta, raised shoreline</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>shore, Lake Suribachi</td>
<td>5870±210 BP(#?)14C</td>
<td>Serpuloid tubes, step landform or raised beach</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>shore, Lake Suribachi</td>
<td>6090±90 BP(GaX-5840)</td>
<td>Worm tubes, below 6 in a.s.l.;--.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>S coast, L. Suribachi</td>
<td>7830±280 BP(GaK-5837)</td>
<td>Worm tubes, 15±5 in a.s.l.;--.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>S coast, L. Suribachi</td>
<td>3120±110 BP(TH-186)</td>
<td>Laternula elliptica, terrace deposits, 3 m a.s.l.</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Kominato Inlet</td>
<td>3305±130 BP(TH-044)</td>
<td>Adamussium colbecki, raised beach.</td>
<td>(date from sample of MOR74 listed as 4290±90 BP)</td>
</tr>
<tr>
<td>Kominato (Bay)</td>
<td>526 MV(A-09)RSM2/0.7115 BT</td>
<td>Gneissic rock;--.</td>
<td>(date from sample of MOR74 listed as 4290±90 BP)</td>
</tr>
<tr>
<td>E. Lützow-Holm Bay</td>
<td>3730±220 BP(#?)14C</td>
<td>Laternula elliptica, raised beach, 5.5 m a.s.l.;</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Langhovde</td>
<td>4570±120 BP(#?)14C</td>
<td>Laternula elliptica, raised beach, 5.1 m a.s.l.;</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Langhovde</td>
<td>1030±100 BP(#?)14C</td>
<td>Laternula elliptica, raised beach, 1.4 m a.s.l.;</td>
<td>(date from Dr. Nogami, pers. comm.)</td>
</tr>
<tr>
<td>Langhovde</td>
<td>2000±220 BP(#?)14C</td>
<td>Fragments of mollusca, 2 m a.s.l.;--.</td>
<td>(infer = 2000±220 BP undescribed sample from Oyayubi Island in MOR74 and OMO77)</td>
</tr>
</tbody>
</table>
Compilation of Isotopic Dates from Antarctica

69°31'S 39°44'E M
southernmost Skarvsnes
69°16'S 39°45'E M
Simo-Kama Cove,
Langhovde
69°13'S 39°45'E R
Langhovde
69°22'S 39°48'E P
E. Lutzow-Holm Bay
68°45'S 40°30'E P
E. Lutzow-Holm Bay
68°45'S 40°30'E P
E. Lutzow-Holm Bay
68°28'S 41°23'E C
(Cape Akarui)

3370±120 BP (GaK-5836) 14C2 SH L. elliptica,
3 m a.s.l.; --. YOS83
3840±90 BP (GaK-4850) 14C2 SH L. elliptica, raised
beach deposit, 1.5 m a.s.l.; --. ISH74 ISH76 YOS83
463 MY (A-1 68013113) XAll BT Pyroxenite;
--. YAN74
508 MY (A-01) RSM2/0.7115 BT Gneissic rock;
--. MAE68
471 MY (A-03) RSM2/0.7115 BT Gneissic rock;
--. MAE68
442 MY (A-24) RSM2/0.7115 BT Gneissic rock;
--. MAE68
971 MY (A-01) RSM2/0.7115 KF Gneissic rock;
--. MAE68
1116 MY (A-24) RSM2/0.7115 KF Gneissic rock;
--. MAE68
448 MY (A-22) RSM2/0.7115 BT Gneissic rock;
--. MAE68
816 MY (A-22) RSM2/0.7115 KF Gneissic rock;
--. MAE68
7730±110 BP (GaK-5839) 14C2 SH Fragments, 10 m a.s.l.;
--. YOS83
(loc. given as "Akarui Point")
GEOGRAPHIC AREA 20:

67°04S 45°30E PM
Freeth Bay
67°04S 45°45E PM
Konovalov Mts.
67°04S 45°50E AR
nr Molodezhnaya station
67°04S 45°50E AR
nr Molodezhnaya sta.
67°04S 45°51E RM
nr Molodezhnaya sta.
67°04S 45°52E RM
nr Molodezhnaya sta.
67°04S 45°52E RM
Thala Hills
67°04S 45°54E RM
Thala Hills
67°04S 45°56E RM
Molodezhnaya sta. area
67°04S 45°56E RM
Molodezhnaya sta. area
67°05S 45°58E G
Thala Hills

ENDERBY LAND (samples from west to east by coordinates)

460±250 MY (287B) RSM4/0.715±0.010 WR Quartzo-feldspathic gneiss; Precambrian basement. GRE78
680±320 MY (354C) RSM4/0.715±0.010 WR Quartzo-feldspathic gneiss; Precambrian basement. GRE78
1500±500 BP (#?) 14C2 GO Penguin rookery (Abendberg), deepest layers (c. 30-40 cm). HER80
373 MY, 393 MY, 501 MY (4338) UTP6 PO Pegmatite; intrudes Precambrian basement. GRE79
(ages recal. from ATR67; appears to be same sample as 530 MY PO listing from Thala Hills)
512±155 MY RST4/0.713±0.0161 WR Granite dike cores; intrudes Precambrian basement. GRE78
423±2 MY, 508±3 MY, 554±20 MY (92X) UTP6 MZ Pegmatite dike; intrudes Precambrian basement. GRE78
460±20 MY (RM26A) RSM4/0.709 BT Clinopyroxene-hornblende gneiss; Precambrian basement. GRE78
1220±80 BP (LE-780) 14C2 Peaty moss; --. SEM72
467±20 MY (RM28) RSM4/0.708 BT Hornblende gneiss; Precambrian basement. GRE78
755±390 MY (179X) RSM4/0.715±0.010 WR Quartzo-feldspathic gneiss; Precambrian basement. GRE78
445 MY, --, 503 MY, -- (129B) UTP6 AT Pegmatite dike; intrudes Precambrian basement. GRE78
(450 MY model age)
708±200 MY (340) RSM4/0.710±0.0015 WR Granodioritic gneiss; Precambrian basement. GRE78
2120±130 MY (263) RSM4/0.715±0.010 WR Quartzo-feldspathic gneiss; Precambrian basement. GRE78
1410±350 MY (265E) RSM4/0.715±0.010 WR Quartzo-feldspathic gneiss; Precambrian basement. GRE78
460 MY (#?) K/A WR Biotitized two feldspar-charnockite; Nye Series. KAM72
(data taken from ATR67)
490 MY (#?) K/A BT Two feldspar-charnockite; Nye Series. KAM72
(data taken from ATR67)
465 MY (37?) K/A MN Pegmatite formed from aplite vein; cuts Nye Series. KAM72
(data taken from ATR67)
530 MY (#?) K/A BT Pegmatite formed from aplite vein; cuts Nye Series. KAM72
(data taken from ATR67)
540 MY (#?) K/A MC Pegmatite formed from aplite vein; cuts Nye Series. KAM72
(data taken from ATR67)
530 MY (#?) P/P PO Pegmatite formed from aplite vein; cuts Nye Series. KAM72
(data taken from ATR67)
987±60 MY RSM4/0.710±0.0015 WR Charnockitic gneiss; Precambrian basement. GRE78
67°40S 45°59E
and 67°40S 46°09E FM
Alasheev Bight area
67°40S 46°06E FM
("Mt. Vechernyaya")

512 MY−984 MY(323,109C)UP2C ZR Charnockitic gneiss;
Precambrian basement. GRE78 GRE81

514 MY, 547 MY, 549 MY, 703 MY(96C)UTP6 SP Pegmatite
dike; intrudes Precambrian basement. GRE78
(common lead correction assuming 450 MY model age)

1740±75 MY(322B)RSM4/0.715±0.010 WR Quartzofeldspar
igneous; Precambrian basement. GRE78

2120±155 MY(106Z)PSM4/0.715±0.010 WR Pegmatite veins;
cut the Precambrian basement. GRE78

1800 MY(106Z)UP1C WR Quartzofeldspathic gneiss;
Precambrian basement. GRE78 GRE81

(UT of chord on concordia plot assuming 150 MY)

2405±140 MY R/S WR Paragneiss; Napier complex. BLA83
(unpubl. data; age reflects D2 event)

2440±115 MY R/S WR Paragneiss; Napier complex. BLA83
(unpubl. data; age reflects D3 event)

520 MY(2109A,2105C)UP2C ZR Charnockitic gneiss;
Precambrian basement. GRE78 GRE81
(adjustment of age assuming 150 MY)

512 MY−984 MY(323,109C)UP2C ZR Charnockitic gneiss;
Precambrian basement. GRE78 GRE81

2405±140 MY R/S WR Paragneiss; Napier complex. BLA83
(unpubl. data; age reflects D2 event)

2440±115 MY R/S WR Paragneiss; Napier complex. BLA83
(unpubl. data; age reflects D3 event)

520 MY(2109A,2105C)UP2C ZR Charnockitic gneiss;
Precambrian basement. GRE78 GRE81
(adjustment of age assuming 150 MY)

1000 MY−2500 MY(2233a,b)UP2C ZR Pegmatite in gneiss;
Napier complex. GRE82A
(three samples)

3800±100 MY, 3900±100 MY, 3000±700 MY, 4000±100 MY(28a,c)
UTP2I WR Enderbites; Raggatt series, Napier complex.
SOB76

4200±500−200 MY(28c)UTP6I WR Enderbite;
Raggatt series, Napier complex. SOB76
(*samples used and methodology uncertain; last date
is reported as a Pb−206/Pb−207 age)

---, 1300±400 MY, 2800±200 MY("28")PPM* WR Basic
schists; Raggatt series, Napier complex. SOB76

204°22'S 49°12'E

Fyfe Hills

2500 MY(28-VIII)UPOC ZR 100-200 mesh size fraction from granulite; Napier complex. DEP82

204°22'S 49°12'E

Fyfe Hills

2550 MY(28-VIII)UP1C ZR Greater than 100 mesh size fraction from granulite; Napier complex. DEP82

(UI of chord assuming LL=500 MY)

204°22'S 49°12'E

Fyfe Hills

3870 MY(28-IV;28e)SNMD WR Garnet-two pyroxene granulite; Napier complex. DEP82

(crust formation age)

204°22'S 49°12'E

Fyfe Hills

3310 MY(28-II;28g)SNMD WR Mg-pyroxene granulite; Napier complex. DEP82

(crust formation age)

204°22'S 49°12'E

Fyfe Hills

3450 MY(28-III;28d)SNMD WR Mg-pyroxene granulite; Napier complex. DEP82

(crust formation age)

204°22'S 49°12'E

Fyfe Hills

3280 MY(28-VIII)SNMD WR Quartzofeldspathic granulite; Napier complex. DEP82

(crust formation age)

204°22'S 49°12'E

Fyfe Hills

3490 MY(28-VII;28v)SNMD WR Quartzofeldspathic granulite; Napier complex. DEP82

(crust formation age)

204°22'S 49°12'E

Fyfe Hills

3090 MY(28-V)SNMD WR Ironstone; Napier complex. DEP82

(crust formation age)

204°22'S 49°12'E

Fyfe Hills

c.4000 MY(#?)P/P ZR Charnockite; --. LOV79A GRE82B

3050+210 MY SNI/0.50776±14 WR Charnockite to leuconorite samples and gabbros; Napier complex. MCC83

482±3 MY RSI — K-rich alkali melasyenite dike;

in Napier complex. SHE81 BLA82 SHE83

293±146-127 MY(7828 5003)RSI/0.7105±0.0016 WR Enderbite; Napier Complex. BLA83

225±130 MY(7828 5003)RSI/0.7081±0.0006 WR Enderbite;

Napier complex. BLA83

2900 MY(#?)UPOC ZR Paragneiss; Napier complex. BLA83

(c.2900 MY(#?)P/P ZR Charnockite; --. LOV79A GRE82B)

2500 MY(78285017)UPOC ZR Seven fractions from leuconorite; Tula series, Napier complex. JAM81

(alternative models based on deletion of certain
fractions, assumed inaccurate, result in ages=
2474±63 MY and 2488±17-5 MY)

78°02'S 51°30'E

Mt. Sones

c.3100 MY(78285008)UP6C ZR Fractions from paragneiss;
Raggatt series, Napier complex. JAM81

(date=UI; adjustment for probable Pb-loss at 2500
MY yields equilibration age=3000-3050 MY, brown ZR)

(c.3100 MY(#?)P/P ZR Paragneiss; Napier complex. BLA79 JAM81

(minimum age of event)

2869 MY(78285008-250 NM+M) (brown)P/P ZR Fraction from paragneiss; Raggatt series, Napier complex. JAM81

2500 MY, c.3700 MY(78285007)UP6C ZR Enderbite;
Napier complex. BLA83

2500 MY, c.3700 MY(78285007)UP6C ZR Enderbite;
Napier complex. BLA83
67°00S 52°50E* "Mt. King"

2120 MY(#?)P/P CV Along fissures in mesoperthite-
charnockite of Raggatt Series. KAM72
(*coords. from listing in Atlas Antarktiki I)

67°30S 53°00E G
Enderby Land*

2350±48 MY RS813/0.7020±0.0008 WR High-Mg tholeiite
dikes; in Napier complex. SHE81
(*the 8 sample locations are given in SHE81)

67°30S 53°00E G
Enderby Land*

2400±250 MY RS913/0.702±0.001 WR Metatholeiite dikes;
in Napier complex. SHE81
(*the 9 sample locations are given in SHE81)

67°30S 53°00E G
Enderby Land*

1190±200 MY RS813/0.7041±0.0005 WR Tholeiite dikes;
Group I Amundsen dikes in Napier complex. SHE81
(*the 8 sample locations are given in SHE81)

67°30S 53°00E G
Enderby Land*

2500 MY (28-77)P/P ZR Dark fraction, from enderbite;
---. SOB83

66°58S 57°25E G
Øygarden Group

620 MY (12181)KA6 WR Migmatised biotite-garnet
gneiss;---. RAV64 RAV65 TRA69
(infer="Eiger Islands" 620 MY samples "from Oates
Coast" in STA61, rev. to 598 MY, KA16, in PIC63)

66°58S 57°25E G
Øygarden Group

615 MY (12110)KA6 WR Migmatite from pyroxene plagi-
oclase-gneiss;---. RAV64 RAV65 TRA69
(infer="Eiger Islands" 615 MY sample "from Oates
Coast" in STA61, rev. to 593 MY, KA16, in PIC63)

66°58S 57°25E G
Øygarden Group

535 MY (12171)KA6 WR Vein pegmatite;
---. RAV64 RAV65 TRA69
(infer="Eiger Islands" 535 MY sample "from Oates
Coast" in STA61, rev. to 516 MY, KA16, in PIC63)

66°58S 57°25E G
Øygarden Group

560 MY (397)KA6 EM6 ---. STA60. PIC63
(rev. to 540 MY, KA16, in PIC63)

68°0S 58°0E M

6150 MY (#?)FTK AP ---;
---. KEL79C

66°58S 57°25E G
Øygarden Group

560 MY (397)KA6 EM6 ---. STA60. PIC63
(rev. to 540 MY, KA16, in PIC63)
GEOGRAPHIC AREA 21: MACROBERTSON LAND - LAMBERT GLACIER - AMERICAN HIGHLAND AREA (samples from north to south by coordinates)

67°36'S 62°53'E Mawson Station
627 My(10%)KA16 WR Biotitized pyroxene plagiogneiss
(xenolith in charnockite); --. STA60 PIC63 RAV65
(rptd as 650 My, KA6, in STA60 and RAV65)

67°36'S 62°53'E Mawson Station
535 My(13%)KA16 WR Biotitized pyroxene plagiogneiss
(xenolith in charnockite); --. STA60 PIC63 RAV65
(rptd. as 555 My, KA6, in STA60 and RAV65)

67°36'S 62°53'E Mawson Station
476 My(10%)KA16 WR Garnet-biotite schist (xenolith
in charnockite); --. STA60 PIC63 RAV65
(rptd as 490 My, KA6, in STA60 and RAV65)

67°36'S 62°53'E Mawson Station
516 My(11%)KA16 WR Porphyroblastic charnockite;
--. STA60 PIC63 RAV65
(rptd as 535 My, KA6, in STA60 and RAV65)

67°36'S 62°53'E Mawson Station
1084±37 My RSI/0.729 -- Charnockite
Mawson charnockite. GRE79B SHE82
(P.A. Arriens, pers. comm.)

67°36'S 62°53'E Mawson Station
850 My(#?UP2C ZR, FR Pegmatite;
in Mawson charnockite. GRE79B
(date is UI; ZR data nearly concordant at 850 My)

67°40'S 63°30'E G Mawson Coast RM
930±18 My(#?)RS/0.736 -- Late Proterozoic metamorphics.
TIN82
(data inferred from RM, not discussed in text)

67°40'S 63°30'E G Mawson Coast RM
1098±48 My(#?)RS/0.736 -- Late Proterozoic
metamorphics. TIN82
(data inferred from RM, not discussed in text)

70°00'S 65°00'E G MacRobertson Land
500-700 My(#?)R/S MS, BT, KF Pegmatites; --. ARR75
(similar ages are given by WR RSI for massive
granites in various localities)

70°00'S 65°00'E G MacRobertson Land
51.8±2 My, 49.1±2 My(73281594)KA9 WR Leucite tris-
tanite lava flow; in late Proterozoic metamorphics.
TIN76 SHE83
(c.500 My(#?)R/S BT "Older rocks"; --. ARR75
(ages are reset)

70°47'S 67°53'E G Fox Ridge
504±20 My(69280225)KA9 FY Alkali basalt dike;
in late Proterozoic metamorphics. TIN76 SHE83

70°52'S 68°00'E G Radok Lake
C.960 My(221/4)RSM4/0.705 WR Pegmatitic granite
boulder; Permian basal conglomerate. HAL75

70°52'S 68°00'E G Radok Lake
110±3 My(69280153)KA9 FG Alnöite;
in late Proterozoic metamorphics. SHE83
(may be sill in TIN76)

70°52'S 68°00'E G Radok Lake
110±3 My(69280152)KA9 FG Alnöite;
in late Proterozoic metamorphics. SHE83
(may be sill in TIN76)

70°52'S 68°00'E G Radok Lake
108±3 My(69280334)KA9 FG Alnöite;
in late Proterozoic metamorphics. SHE83
(may be sill in TIN76)

71°01'S 67°09'E G Taylor Platform
246±6 My(71281026)KA9 PL Calc-alkali basalt dike;
in late Proterozoic metamorphics. TIN76 SHE83

71°24'S 70°47'E G Pickering Nunatak
765 My("552")RS/0.707 WR Plagiogneiss, leucogranite,
and pegmatite granite; Precambrian basement. HAL75
(date is for a "reference isochron line")
Amery Ice Shelf
Mt.
Prince Charles
72°OOS 67°OOE
923±179 MY RSI/0.743 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts. RM
945±36 MY RSI/0.712 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts. RM
1005±87 MY RSI/0.708 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts.
1068±354 MY RSI/0.707 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts.
834±304 MY RSI/0.710 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts.
72°OOS 67°OOE G
961±96 MY RSI/0.704 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts. RM
891±70 MY RSI/0.706 WR Late Proterozoic metamorphics. TIN82
Prince Charles Mts. RM
1197±238 MY RSI/1.113 WR "Archean" basement rocks. TIN82
Prince Charles Mts. RM
2766±92 MY RSI/0.721 WR (Archean) basement rocks. TIN82
Prince Charles Mts. RM
2809±411 MY RSI/0.708 WR (Archean) basement rocks. TIN82
Prince Charles Mts.
2822±227 MY RSI/0.705 WR (Archean) basement rocks. TIN82
Prince Charles Mts.
873 MY(#?)P/P MS Pegmatite in gneiss; Precambrian rocks. GRE76A
Prince Charles Mts.
2600-2800 MY RSI WR Gneisses;
--. ARR75
Prince Charles Mts.
1000-1200 MY RSI WR Gneisses and granites;
--. ARR75
Prince Charles Mts. RM
500-700 MY RSI WR Gneisses and granites;
--. ARR75
Prince Charles Mts. RM
73°OOS 66°00E G
1110 MY RSI/1.1 WR Granite;--. ARR75
Mt. Rymill* (*sample described as "the Mt. Rymill granite")
73°O4S 66°24E G
1035±2 MY(M44)P/P YX Nodule from pegmatite; basement complex. GRE76 GRE82
(McAuley)
(date from W.I. Manton, unpublished date)
73°OSS 66°20E G
2580 MY(#?)R/S MC Pegmatite;
--. ARR75 GRE82 TIN82
nr Edwards Pillar RM
Archean age of metasedimentary rocks is based on this single date)
78°07'130"S 66°15E R
442 MY,509 MY,589 MY, -- (544) UTP WR Nodule in pegmatite; basement complex. GRE83
Mt. Stinear (discordant; UI=850 MY if LIA)
980 MY(#?)K/A WR Amphibolite;--. GRE82B
(quoted from LOP77)
73°O1S 63°15E G
495 MY(222)RSM4/0.705 WR Muscovite pegmatite; intrudes schist sample 222a. HAL75
Mt. Scherger RM (if IR=0.750, age=490 MY)
493 MY(222 muscovite) RSM4/0.705 MC Muscovite pegmatite; intrudes schist sample 222a. HAL75
Mt. Scherger RM
465-865 MY(222a)RSM4/0.710-0.750 WR Fibrolite-biotite-quartz schist;--. HAL75
Mt. Scherger RM
495 MY(216d,216g,216z)RSM4/0.738 WR Phyllite;
Late Precamb./lower Paleozoic gneiss schist fac. HAL75

73°O1S 63°15E G
980 MY(#?)K/A WR Amphibolite;--. GRE82B
73°O1S 63°15E G
493 MY(222 muscovite) RSM4/0.705 MC Muscovite pegmatite; intrudes schist sample 222a. HAL75
Mt. Scherger RM
465-865 MY(222a)RSM4/0.710-0.750 WR Fibrolite-biotite-quartz schist;--. HAL75
Mt. Scherger RM
495 MY(216d,216g,216z)RSM4/0.738 WR Phyllite;
Late Precamb./lower Paleozoic gneiss schist fac. HAL75
203°25S 65°40E G
NW Mt. Rubin RM
73°25S 65°40E G
cen. Mt. Rubin RM
73°26S 62°50E R
Mt. Bayliss
73°26S 62°50E R
Mt. Bayliss
73°32S 62°44E G
Mt. Bayliss
73°40S 64°30E G
Mt. Ruker
73°40S 64°30E G*
east N slope,
Mt. Ruker
73°40S 64°30E G*
mid. N slope,
Mt. Ruker
73°40S 64°30E G
Mt. Ruker
73°40S 64°30E G
Mt. Ruker
73°40S 64°30E G
Mt. Ruker

520 MY(209a)RSM4/0.740 WR Phyllite;
Late Precamb/lower Paleozoic greenschist fac. HAL75

800 MY RS4I4/0.730 WR Plagiogranite(2),
granitoid rock
(1), granitic gneiss (1); boulder clasts from meta-
conglomerate overlying phyllite. HAL75

414±10 MY, 413±10 MY(73281545)KA9 MG Alkali melasyenite
dike; in late Proterozoic metamorphics.
TIN76 SHE80 SHE83
(sample material=K-richerite in SHE80 and SHE83)

430±12 MY(73281545)KA9 RI Alkali melasyenite dike;
in late Proterozoic metamorphics. TIN76 SHE80 SHE83
(sample material=K-arfvedsonite in SHE80 and SHE83)

2630 MY(#?)R/S -- Metamorphic basement. SHE76
(from studies by P.A. Arriens)

796±80 MY(1)KA17 -- Metabasite;--. HOF80A
(*coordinates given in text="74°25S, 64°30E")

992±99 MY(2)KA17 -- Metabasite;--. HOF80A
(*coords. given in text="74°25S, 64°30E")

1040 MY(#?)K/A WR Metabasite (tholeiitic);--. GRE82B
(quoted from FED77)

830 MY(#?)K/A WR Dike;--. GRE82B
(quoted from FED77)

1442±152 MY RS1/0.8902 -- Archean granitic
basement rocks. TIN82
(P.A. Arriens, pers. comm. and J.W. Sheraton, pers.
comm.; considered a metamorphic age)
Geographic Area 22:

<table>
<thead>
<tr>
<th>Location</th>
<th>Geographic Coordinates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Bluff</td>
<td>70°28S 72°27E R</td>
<td>Reinbolt Hills</td>
</tr>
<tr>
<td>Reinbolt Hills</td>
<td>70°30S 72°30E AR</td>
<td>94-896 MY("556-1")ZRT Pegmatite lens in gneiss; bedrock. GRE81 GRE79B</td>
</tr>
<tr>
<td>Reinbolt Hills</td>
<td>70°10S 72°33E G</td>
<td>94-896 MY(557 and 565A)ZRT Reinbolt Hills charnockite. GRE81</td>
</tr>
<tr>
<td>Jennings Promontory</td>
<td></td>
<td>*(samples lie on the chord defined by "556-1")</td>
</tr>
<tr>
<td>Reinbolt Hills</td>
<td></td>
<td>405 MY(1202)KA16 WR Intermediate charnockite;</td>
</tr>
<tr>
<td>Larsemann Hills</td>
<td></td>
<td>(reported as 420 MY using KA6 in RAV65; infer= 420 MY sample from "Larsemann Hills" in STA61)</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>70°10S 72°40E E</td>
<td>500 MY R/S -- Granite;</td>
</tr>
<tr>
<td>nr Amery Ice Shelf</td>
<td></td>
<td>*(may be same as 504 MY Landing Bluff Adamellite)</td>
</tr>
<tr>
<td>Larsemann Hills</td>
<td>68°34S 77°50E G</td>
<td>504±17 MY RS1/0.7184 -- Landing Bluff Adamellite. SHE83A</td>
</tr>
<tr>
<td>Larsemann Hills</td>
<td>68°34G 76°13E G</td>
<td>*(prob. loc. inferred; dated by P.A. Arriens)</td>
</tr>
<tr>
<td>Larsemann Hills</td>
<td>68°34S 76°13E G</td>
<td>405 MY(1199)KA16 WR Migmatized gneiss;</td>
</tr>
<tr>
<td>Larsemann Hills</td>
<td>68°34S 76°13E G</td>
<td>*(may be same as sample 560(Ch) from STA60)</td>
</tr>
<tr>
<td>Larsemann Hills</td>
<td>68°34S 76°13E G</td>
<td>458 MY(560(Ch))KA16 MC Unspecified;</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E G</td>
<td>*(recalc. from 475 MY in STA60; may be same as sample 1194K in RAV65)</td>
</tr>
<tr>
<td>Rauer Islands</td>
<td>68°34G 77°50E G</td>
<td>c.1100 MY R/S -- Gneisses;</td>
</tr>
<tr>
<td>Filla Island</td>
<td>68°34G 77°50E G</td>
<td>1073±111 MY RS/0.7086±0.0013 -- In felsic gneisses;</td>
</tr>
<tr>
<td>Rauer Islands</td>
<td>68°34G 77°50E G</td>
<td>*(dated by P.A. Arriens)</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>3500±86 BP(ZDL96)14C SH Laternula, from terrace;</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>*(postglacial deposits. ZHA83)</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>2410±90 BP(SUA 1411)14C SH Marine Laternula, on terrace. ADA83</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>*(infer revised from 2800±85 BP in ZHA83)</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>3325±103 BP(ZDL66)14C SH Laternula from terrace;</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>*(postglacial deposits. ZHA83)</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>3062±212 MY(81-260)RS1013/0.7012±0.0002 WR Granulite facies, Mossel gneisses;</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>Vestfold Block. COL83A</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>2456±163 MY RS1013/0.7015±0.0001 GR Granulite facies, Mossel gneisses; Vestfold Block. COL83A</td>
</tr>
<tr>
<td>Mule Peninsula</td>
<td>68°34S 77°50E E</td>
<td>8355±250 BP(Beta 4760)14C MO Freshwater aquatic. ADA83</td>
</tr>
<tr>
<td>W end, "Clear Lake"</td>
<td>68°34S 77°50E RM</td>
<td>7310±150 BP(Beta 4759A)14C MO Freshwater aquatic. ADA83</td>
</tr>
<tr>
<td>W end, "Clear Lake"</td>
<td>68°34S 77°50E RM</td>
<td>*(cold HCl treatment)</td>
</tr>
<tr>
<td>W end, "Clear Lake"</td>
<td>68°34S 77°50E RM</td>
<td>7745±285 BP(Beta 4759B)14C MO Freshwater aquatic. ADA83</td>
</tr>
<tr>
<td>W end, "Clear Lake"</td>
<td>68°34S 77°50E RM</td>
<td>*(full pretreatment of alkali and acid)</td>
</tr>
<tr>
<td>E end, "Laternula Lake"</td>
<td>68°34S 77°50E RM</td>
<td>3470±80 BP(ANU 1010)14C SH Marine Laternula, in lower-most of five layers. ADA83</td>
</tr>
<tr>
<td>E end, "Laternula Lake"</td>
<td>68°34S 77°50E RM</td>
<td>3270±90 BP(ANU 1009)14C SH Marine Laternula, in upper-most layer. ADA83</td>
</tr>
<tr>
<td>E end, "Laternula Lake"</td>
<td>68°34S 77°50E RM</td>
<td>5600±77 BP(ZDL79)14C SH Laternula, from terrace which is 6 m a.s.l. ZHA83</td>
</tr>
<tr>
<td>Lake Dingle</td>
<td>68°34S 77°50E G</td>
<td></td>
</tr>
</tbody>
</table>
Minze Stiver and Thomas F. Brazunas

68°36S 78°05E G
S side, Ellis Fjord
68°34S 78°08E G
SW end, L. Stinear

68°34S 78°08E G
SW end, Lake Stinear
68°38S 78°08E RM
"Marine Plain"
68°31S 78°10E G
Partisan Island RM
68°35S 78°10E RM
Vestfold Hills area
68°33S 78°10E RM
Vestfold Hills area
68°33S 78°10E RM
Vestfold Hills area
68°38S 78°10E RM
"Marine Plain"
68°34S 78°11E RM
Deep Lake" btwn. Club Lake and
"Deep Lake"
68°36S 78°14E G
Langnes Peninsula
68°28S 78°15E G
Langnes Peninsula

68°34S 78°08E G
SW end, Lake Stinear
68°38S 78°08E RM
"Marine Plain"
68°31S 78°10E G
Partisan Island RM
68°35S 78°10E RM
Vestfold Hills area
68°33S 78°10E RM
Vestfold Hills area
68°33S 78°10E RM
Vestfold Hills area
68°38S 78°10E RM
"Marine Plain"
68°34S 78°11E RM
Deep Lake" btwn. Club Lake and
"Deep Lake"
68°36S 78°14E G
Langnes Peninsula
68°28S 78°15E G
Langnes Peninsula

6225±85 BP(Beta 4761)14C Marine organic sediment. ADA83
5440±110 BP(SUA 1239)14C SH Marine Laternula, from
flank of terrace. PIC82 ADA83
(infer revised from 5740±105 BP given in ZHA83;
est. reservoir correction would be 1100 yrs)
4710±70 BP(ANU1011)14C SH Marine Laternula. ADA83
31,000±474 BP(ZDL68)14C SH --;
within marine section. ZHA83
7370±95 BP(Beta 4767)14C SH Marine, fragments. ADA83
2400 MY(81-390)SNMC1 WR Granulite facies gneiss;
Tyrne Metavolcanics. COL83A
2661 MY(72-630)SNMC1 WR Granulite facies gneiss;
Mossel gneisses. COL83A
2599 MY(81-331)SNMC1 WR Granulite facies gneiss;
Mossel gneisses. COL83A
6632±118 BP(ZDL80)14C SH From
terrace which is 4 m a.s.l. ZHA83
5340+90 BP(SUA 1237)14C Serpulid worm tubes, from
flank of marine terrace. PIC82 ADA83
(est. reservoir correction would be 1100 yrs)
6100+108 BP(ZDL70)14C SH From terrace;
postglacial deposits. ZHA83
6141±90 BP(ZDL78)14C SH Laternula, from terrace which
is 3 m a.s.l. ZHA83
7616±104 BP(ZDL85)14C Calcareous tufa from terrace.
ZHA83
1782 MY(9)KA16 WR Eluvial loam, 1-0.25 mm size
fraction, rocky edge of beach;--. VOR61 KRY62 PIC63
(dscrpt.=arkosic sand in VOR61; recal. from
1830 MY)
1792 MY(9)KA16 WR Eluvial loam, less than 0.25 mm
size fraction;--. VOR61 KRY62 PIC63
(dscrpt.=arkosic sand in VOR61; recal. from
1840 MY)
1220 MY(?)K/A WR Morainic loam with eluvial-glacial
material, 1-3 mm size fraction;--. KRY62
1000 MY(?)K/A WR Morainic loam with eluvial-glacial
material, 0.1-1 mm size fraction;--. KRY62
460 MY(?)K/A WR Morainic loam with eluvial-glacial
material, less than 0.05 mm size fraction. KRY62
1418 MY(6;1242)KA16 WR Migmatite leucogranite vein
material;--. VOR61 PIC63 RAV65
(rptd as 1460 MY using KA6 in RAV65)
1433 MY(14;1243)KA16 WR Gneissic hypersthene-
plagioclase granite;--. VOR61 PIC63 RAV65
(rptd as 1475 MY using KA6 in RAV65)
Compilation of Isotopic Dates from Antarctica

68°28S 78°15E G
Langnes Peninsula
1312 MY(85A)KA16 WR Vein leucogranite (pegmatoidal);
--. VOR61 PIC63 RAV65
(rptd as 1350 MY using KA6 in RAV65 and STA61,
and as 1270 MY in STA59)

68°28S 78°15E G
Langnes Peninsula
1242 MY(20a)KA16 WR Migmatite leucogranite
material from gneiss;--. VOR61 PIC63 RAV65
(rptd as 1525 MY in RAV65)

68°28S 78°15E G
Langnes Peninsula
1147 MY(72)KA16 WR Vein alaskitic granite;
--. VOR61 PIC63 RAV65
(rptd as 1185 MY in RAV65 and 1070 MY in STA59)

68°33S 78°15E G
(Vestfold Hills)
1104 MY(71;1244)KA16 WR Granite rock;--. STA60 PIC63
(rptd as 1140 MY, KA6, from "Langenset oasis"
in STA60)

68°33S 78°15E G
(Vestfold Hills)
1300 MY(?)KA6 WR Dolerite dikes;--. ARR75
(preliminary result reported as "Archaean")

1030±220 MY("GA5429")RS612 WR
6
dolerite dikes (from a suite of analyses)

500 MY/S BT Pegmatite dikes;--. ARR75
(from more than one sample; ages are reset)

2599±68 MY RS(I) (WR) Archaean (metamorphic)
basement rocks. TIN82

2692±162 MY R/S -- Mafic granulites; high-grade
gneiss complex. COL79

2275±102 MY R/S -- Weakly foliated gneiss; high-grade gneiss complex. COL79

2477±44 MY RS1/0.7018±0.0003 -- Layered grey gneisses;
component of gneiss complex. COL79

2559±68 MY RS(I) (WR) Archaean (metamorphic)

2454±117 MY RS611/0.50827±0.00075 WR
Orthogneisses; Tyrne metavolcanics. COL83A
(calc. using "McIntyre et al. method")

2923±570 MY SN611/0.50827±0.00049 WR Orthogneisses;
Tyrne metavolcanics. COL83A
(calc. using "McIntyre et al. method")

2810±271 MY SN12I1/0.50836±0.00021 WR Orthogneisses;
Mossel gneisses and Tyrne metavolcanics. COL83A
(calc. using "McIntyre et al. method")
212

Minze Stuiver and Thomas F. Braziunas

68°33S 78°15E G
Vestfold Hills area RM
2859+355-256 MY SN1211/0.50832+0.00019-0.00025 WR
Mossel gneisses and Tyrne metavolcanics. COL83A
(calc. using "Cameron et al. method")

68°33S 78°15E G
Vestfold Hills area RM
2411+212 MY SN611/0.50866+0.00014 WR Orthogneisses;
Crooked Lake gneisses. COL83A

68°37S 78°15E RM
E end, "Watts Lake"
8260+110 BP(SUA 1410)14C Marine algal sediment, from
title below terrace. ADA83
(infer revised from 8700+100 BP in ZHA83)

68°37S 78°15E RM
E end, "Watts Lake"
7680+120 BP(SUA 1828A)14C CsCO3, Marine worm tubes,
from title below terrace. ADA83

68°37S 78°15E RM
E end, "Watts Lake"
7380+250 BP(SUA 1828B)14C AL Sieved from SUA 1828A,
from title below terrace. ADA83

68°37S 78°15E RM
E end, "Watts Lake"
7305±130 BP(Beta 4768)14C SH Marine scallops, from
title below terrace. ADA83

68°37S 78°15E RM
"Lake Lebed"
6500+105 BP(Beta 4765)14C SH Marine, from title below
terrace. ADA83

68°37S 78°15E RM
E end, "Watts Lake"
6452±160 BP(Beta 4763)14C Algal mud. ADA83

68°37S 78°15E RM
E end, "Watts Lake"
6150±95 BP(Beta 4764)14C Marine serpulid worm tube
(Merceriella enigmatica), from title below terrace.
ADA83

68°37S 78°15E RM
E end, "Watts Lake"
5795±85 BP(Beta 4766)14C SH Marine Laternula, from
title below terrace. ADA83

68°37S 78°15E RM
E end, "Watts Lake"
4670±190 BP(SUA 1824)14C AL Marine, from title below
terrace. ADA83

68°37S 78°15E RM
E end, "Watts Lake"
2800±80 BP(SUA 1409)14C Non-marine stromatolites, from
title below terrace above SUA 1410. ADA83

68°37S 78°15E G
Vestfold Hills vic.
c.1300 MY, c.1850 MY R/S — Suites of dolerite
dikes; cut Archaean gneisses. SHE83A
(preliminary and unpubl. data)

68°38S 78°18E G
Tryne Crossing area RM
2349±50 MY RS913/0.7027±0.0001 WR Mossel gneiss retro-
gressed to amphibolite facies; Vestfold Block.
COL83A

68°38S 78°18E G
tx Tryne Crossing RM
68°26S 78°20E RM
Vestfold Hills area
2416±21 MY RS711/0.7022±0.0003 WR Crooked Lake
gneisses; cut Tryne metavolcanics. COL83A

68°29S 78°20E RM
Vestfold Hills area
2659 MY(81-358)SNMC1 WR Granulite facies gneiss;
Tyrne metavolcanics. COL83A

68°29S 78°20E RM
Vestfold Hills area
2283 MY(81-309)SNMC1 WR Granulite facies gneiss;
Tyrne metavolcanics. COL83A

68°29S 78°20E RM
Vestfold Hills area
2287 MY(81-326)SNMC1 WR Granulite facies gneiss;
Tyrne metavolcanics. COL83A

68°29S 78°20E RM
Vestfold Hills area
2165 MY(81-306)SNMC1 WR Granulite facies gneiss;
Tyrne metavolcanics. COL83A

68°29S 78°20E RM
Vestfold Hills area
2540 MY(81-397)SNMC1 WR Granulite facies gneiss;
Mossel gneisses. COL83A

68°29S 78°20E RM
Vestfold Hills area
2397 MY(81-253)SNMC1 WR Granulite facies gneiss;
Mossel gneisses. COL83A

68°29S 78°20E RM
Vestfold Hills area
2642 MY(81-283)SNMC1 WR Granulite facies gneiss;
Crooked Lake gneisses. COL83A

68°29S 78°20E RM
Vestfold Hills area
2462 MY(81-287)SNMC1 WR Granulite facies gneiss;
Crooked Lake gneisses. COL83A

68°29S 78°20E RM
Vestfold Hills area
2492 MY(81-267)SNMC1 WR Granulite facies gneiss;
Crooked Lake gneisses. COL83A
Compilation of Isotopic Dates from Antarctica

68°31S 78°25E RM
"Calendar Lake"
68°34S 78°25E RM
"Thalatine Lake"
68°31S 78°28E RM
nr "Platcha Hut"
68°28S 78°30E R
Vestfold Hills
68°35S 78°30E RM
"Graticule Lake"
68°22S 78°32E
Vestfold Hills area
68°18S 86°25E
Mount Brown
66°48S 89°11E G
Gaussberg

1200±170 BP (Beta 1831) 14C AL --. ADA83
1340±140 BP (SUA 1412) 14C AL Freshwater. ADA83
5677±94 BP (ZDL81) 14C AL From dry basin. ZHA83
2169±217 MY (3) KA9 WR Basite; --. HOF80A
405±95 BP (Beta 4762) 14C AL MO Freshwater, aquatic. ADA83
2498 MY (81-247) SNMC1 WR Granulite facies gneiss;
Crooked Lake gneisses. COL83A
2511 MY (81-344) SNMC1 WR Granulite facies gneiss;
Crooked Lake gneisses. COL83A
2506 MY (81-346) SNMC1 WR Granulite facies gneiss;
Crooked Lake gneisses. COL83A
458 MY (7:1185) KA16 WR Alaskitic porphyroblastic
granite; --. STA60 PIC63
(reported as 475 MY using KA6 in STA60)
477 MY (9:1086) KA16 WR Pegmatite in charnockite;
--. STA60 PIC63
(reported as 495 MY using KA6 in STA60)
675 MY (1165g) KA16 WR Amphibolized and biotitized
plagioclase-gneiss; --. STA61 PIC63 RAV65
(reported as 700 MY using KA6 in RAV65)
9 MY (1152c) KA6 WR Leucite basalt; --. RAV65
20 MY (K,1152s) KA6 WR Leucite basalt; --. RAV64
(appears to be rev. to 9 MY -- see 1152c above; infer=20 MY samples of RAV59 and STA61)
9.0 MY (#?) K/A LE Leucite basalt flow;
intrusive in metamorphic basement. TIN76
(may refer to sample 1152s of RAV65 listed above)
0.052±0.003 MY (#?) K/A LE Leuciteite; --. COL83
(*prob. loc. inferred; Tingey et al., in press)
0.059±0.002 MY (#?) K/A LE Leuciteite; --. COL83
(*prob. loc. inferred; Tingey et al., in press)
1973-2152 MY (#?) SNMC Samples of granitic inclusions;
in Gaussberg lavas. COL83
(700-1093 Mt Tm Sr model ages also calc.)
1220-1280 MY (#?) SNMD -- Gaussberg lavas. COL83
(dates time of enrichment event)
GEOGRAPHIC AREA 23:

QUEEN MARY COAST AND WILKES LAND WEST OF 120°00E

(samples from west to east by coordinates)

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66°33S 93°00E R</td>
<td>"Haswell Islet"</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Haswell Island</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Haswell Island</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Haswell Island</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Stroyteley Island</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Morennaya Hill</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Morennaya Hill</td>
</tr>
<tr>
<td>66°31S 93°00E G</td>
<td>Morennaya Hill</td>
</tr>
<tr>
<td>66°33S 93°00E R</td>
<td>Mirny, Haswell I.</td>
</tr>
<tr>
<td>66°33S 93°00E R</td>
<td>Mirny, Haswell I.</td>
</tr>
<tr>
<td>66°33S 93°00E AR</td>
<td>Mirny Station</td>
</tr>
<tr>
<td>66°33S 93°00E AR</td>
<td>Mirny Station</td>
</tr>
</tbody>
</table>

QUEEN MARY COAST AND WILKES LAND WEST OF 120°00E

(143°00E)

- **Mirnyy Station**
 - **Pegmatite**
 - 463 MY(#?)KA16 WR Charnockite-mangerite series; (recalc. from 455 MY in STA59 and 480 MY in STA61; loc.="Mirny" in STA61)
 - 415 MY(#?)KA16 WR Pegmatite; (recalc. from 430 MY in STA61; infer=#1014a, vein pegmatite in RAV65; infer=430 MY, FD from pegmatite, in KRY61; infer=#K.1014a in RAV64)
 - 550 MY(1058d)KA6 BT Pyroxene plagioclase-gneiss xenolith in charnockite; (RAV64 RAV65) (infer=#?, 509 MY in RAV58 and PIC63)
 - 520 MY(1062)KA6 BT Pegmatitic cross-cutting vein; (RAV64 RAV65) (infer=?, 468 MY in RAV58 and PIC63)
 - 600 MY, 550 MY, 440 MY(#?)U/P Accessory allanite; (RAV64 RAV65) (650 MY(#?)208-Pb/232-Th)
 - 458 MY(1106c)KA16 WR Pegmatoidal vein granite; (STAY9 PIC63 RAV65) (reported as 475 MY, KA6, in RAV65 and others) (650 MY(#?)208-Pb/232-Th)
 - 443 MY(1145b)KA16 WR Pyroxene-plagioclase schist; (STA61 PIC63 RAV65) (recalc. from 430 MY in STA61 and 460 MY in STA61 and others; loc.=Moraine Cliff in STA61; loc.=Morennaya Rock in RAV65)
 - 439 MY(1145c)KA6 WR Plagioclase granite from migmatite vein material; (STA61 PIC63 RAV65) (recalc. from 455 MY in STA61 and others; loc.=Moraine Cliff in STA61; loc.=Morennaya Rock in RAV65)
 - 443 MY(1145b)KA16 WR Pyroxene-plagioclase schist; (STA61 PIC63 RAV65) (recalc. from 430 MY in STA59 and 460 MY in STA61 and others; loc.=Moraine Cliff in STA61; loc.=Morennaya Rock in RAV65)
 - 439 MY(1145c)KA6 WR Plagioclase granite from migmatite vein material; (STA61 PIC63 RAV65) (recalc. from 455 MY in STA61 and others; loc.=Moraine Cliff in STA61; loc.=Morennaya Rock in RAV65)
 - 443 MY(#?)KA16 BT Pegmatite; (STA60 PIC63) (recalc. from 460 MY in STA60)
 - 424 MY(82)KA16 WR Pegmatite (Quartz-feldspar); (STA60 PIC63) (recalc. from 440 MY in STA60)
 - 515 MY(#?)KA WR Morainic loam, 1-3 mm size fraction; (KR62) (coors. for Mirnyy from PIC63)
 - 425 MY(#?)KA WR Morainic loam, 0.1-1.0 mm size fraction; (KR62) (coors. for Mirnyy from PIC63)
<table>
<thead>
<tr>
<th>Location</th>
<th>Age/Formation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirnyy Station</td>
<td>520 MY (#?) K/A WR Morainic loam, 0.1-3 mm size fraction; --. KRY62 (coods. for Mirny from PIC63)</td>
<td></td>
</tr>
<tr>
<td>Mirnyy Station</td>
<td>502±24 MY ("9U12") RS14/0.7194±0.0007 WR Charnockite rocks; --. MOQ72</td>
<td></td>
</tr>
<tr>
<td>"Hoadley Island"</td>
<td>480 MY (12a) KA6 WR Acid charnockite; --. RAV65 (reported as "Godley Island" in RAV64; coords. for Mirnyy from PIC63)</td>
<td></td>
</tr>
<tr>
<td>David Island</td>
<td>318 MY (866a) KA16 WR Granite-porphyry; --. STA61 PIC63 RAV65 (recalc. from 330 MY in STA61 and others; descrpt.=syenite-porphyry in RAV65)</td>
<td></td>
</tr>
<tr>
<td>David Island</td>
<td>453 MY (866) KA16 WR Pegmatoid granite; --. STA61 PIC63 RAV65 (recalc. from 470 MY in STA61 and others; descrpt.=acid charnockite in RAV65)</td>
<td></td>
</tr>
<tr>
<td>David Island</td>
<td>443 MY (858 MY) KA16 WR Granite; --. STA61 PIC63 RAV65 (recalc. from 460 MY in STA61 and 430 MY in STA59; descrpt.=acid charnockite in RAV65)</td>
<td></td>
</tr>
<tr>
<td>David Island</td>
<td>540 MY (865) KA16 WR Granite; --. STA61 PIC63 RAV65 (recalc. from 560 MY in STA61 and 525 MY in STA59; descrpt.=acid charnockite in RAV65)</td>
<td></td>
</tr>
<tr>
<td>David Island</td>
<td>670 MY (#?) KA16 WR Shadow migmatite; --. STA61 PIC63 (recalc. from 695 MY in STA61; not included in later reports such as RAV65)</td>
<td></td>
</tr>
<tr>
<td>Mount Strathcona</td>
<td>684 MY (1173) KA16 WR Porphyroblastic plagioclase granite; --. STA61 PIC63 RAV65 (recalc. from 710 MY in STA61 and RAV65)</td>
<td></td>
</tr>
<tr>
<td>Mount Strathona</td>
<td>583 MY (1175e) KA16 WR Vein pegmatite; --. STA61 PIC63 RAV65 (recalc. from 605 MY in STA61 and RAV65)</td>
<td></td>
</tr>
<tr>
<td>Mount Strathona</td>
<td>949 MY (1p) KA16 WR Biotite-schist xenolith in plagioclase granite; --. STA61 PIC63 RAV65 (recalc. from 925 MY in STA59 and 980 MY in STA61 and RAV65)</td>
<td></td>
</tr>
<tr>
<td>Obruchev Hills center,</td>
<td>1099 MY (21b) KA16 WR Leucogranite from migmatite vein material; --. STA61 PIC63 RAV65 (recal. from 1070 MY in STA59, and 1135 MY in STA61 and RAV65; loc.="Obruchev Oasis" in STA59 and "Obruchev Island" in STA61)</td>
<td></td>
</tr>
<tr>
<td>Obruchev Hills center,</td>
<td>523 MY (26) KA16 WR Cross-cutting leucocranitic vein; --. STA61 PIC63 RAV65 (recal. from 515 MY in STA59, and 545 MY in STA61 and RAV65; loc.="Obruchev Oasis" in STA59 and "Obruchev Island" in STA61)</td>
<td></td>
</tr>
<tr>
<td>Mount Sandow</td>
<td>610 MY (11781) KA6 WR Sericitic quartzite; --. RAV65</td>
<td></td>
</tr>
<tr>
<td>Mount Sandow</td>
<td>530 MY (#?) K/A WR Sandstone; --. KRY62 (loc. given as "Sandau")</td>
<td></td>
</tr>
<tr>
<td>Grace Rocks</td>
<td>675 MY (46) KA16 WR Charnockite; --. STA61 PIC63 RAV65 (recal. from 700 MY in STA61; loc.="Harris Cliffs in STA61 and PIC63 but infer=sample from Grace Rocks in RAV65; loc.="Grace Crag" in RAV64)</td>
<td></td>
</tr>
<tr>
<td>(Mount Amundsen)</td>
<td>595 MY (#?) K/A WR Red siltstone; --. KRY62 (loc. given as "Amundsen")</td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>Longitude</td>
<td>Age</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>67°14S</td>
<td>100°45E</td>
<td>565 My(?)</td>
</tr>
<tr>
<td>67°14S</td>
<td>100°45E</td>
<td>500 My(?)</td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>516 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>549 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>675 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>1190 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>1262 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>1215 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>1310 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>968-1137 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>713 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>747 My(117a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>747 My(104)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>708 My(18a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>723 My(328b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>777 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66°17S</td>
<td>100°47E</td>
<td>602 My(?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>66°17"S 100°47"E</td>
<td>Burger Hills</td>
<td>627 MY(720c)KA16 WR Vein leucogranite;</td>
</tr>
<tr>
<td>66°17"S 100°47"E</td>
<td>Burger Hills</td>
<td>617 MY(173)KA16 WR Pyroxene schist;</td>
</tr>
<tr>
<td>66°17"S 100°47"E</td>
<td>Burger Hills</td>
<td>704 MY(247)KA16 WR Feldspathized pyroxene schist;</td>
</tr>
<tr>
<td>1041 MY(622b)KA16 WR</td>
<td>SW Burger Hills</td>
<td>1041 MY(622b)KA16 WR Skialithic granite from pyroxene schist;</td>
</tr>
<tr>
<td>66°17"S 100°47"E</td>
<td>Burger Hills</td>
<td>1137 MY(847a)KA16 WR Migmatite from pyroxene schist;</td>
</tr>
<tr>
<td>1094 MY(626)KA16 WR</td>
<td>Burger Hills</td>
<td>1094 MY(626)KA16 WR Migmatite from quartzite;</td>
</tr>
<tr>
<td>968 MY(88)KA16 WR</td>
<td>Burger Hills</td>
<td>968 MY(88)KA16 WR Migmatized quartzite;</td>
</tr>
<tr>
<td>973 MY(184a)KA16 WR</td>
<td>Burger Hills</td>
<td>973 MY(184a)KA16 WR Biotite schist -- skialithic migmatite substrate;</td>
</tr>
<tr>
<td>689 MY(561)KA16 WR</td>
<td>"Druzhba Island,"</td>
<td>689 MY(561)KA16 WR Intermediate charnockite;</td>
</tr>
<tr>
<td>963 MY(560)KA16 WR</td>
<td>"Druzhba Island,"</td>
<td>963 MY(560)KA16 WR Migmatite from gneiss;</td>
</tr>
<tr>
<td>1225 MY(560a)KA16 WR</td>
<td>"Druzhba Island,"</td>
<td>1225 MY(560a)KA16 WR Skialithic granite from gneiss;</td>
</tr>
<tr>
<td>750 MY(#?)K/A WR</td>
<td>Burger Hills</td>
<td>750 MY(#?)K/A WR Morainic loam, 3-0.1 mm size fraction;</td>
</tr>
</tbody>
</table>
66°17S 100°47E G
Bunger Hills

560 MY(?) K/A WR Morainic loam, less than 0.005 mm size fraction; --. KRY62
(loc. given as "Banger Oasis")

860 MY(?) K/A WR Eolian sand, 1-3 mm size fraction; --. KRY62
(loc. given as "Banger Oasis")

830 MY(?) K/A WR Eolian sand, less than 1 mm size fraction; --. KRY62
(loc. given as "Banger Oasis")

835 MY(?) K/A WR Eolian sand, 1-3 mm size fraction; --. KRY62
(loc. given as "Banger Oasis")

850 MY(?) K/A WR Eolian sand, less than 1 mm size fraction; --. KRY62
(loc. given as "Banger Oasis")

920-970 MY(?) K/A WR 3 specimens of crystalline schists; --. RAV58
(data appears superseded by later reports)

910 MY(?) K/A HR Pegmatite vein in migmatite; --. RAV58

920 MY(?) K/A HR Pegmatite vein in migmatite; --. RAV58

1016 MY(925) K/A WR Skialithic granite from pyroxene schist; --. STA61 PIC63
(RECALC. from 1050 MY in STA61 and RAV65; loc."SE end of Figurnoe Lake" in RAV65)

516 MY(925) K/A WR Feldspathized biotite-garnet gneiss; --. STA61 PIC63
(RECALC. from 535 MY in STA61; not included in later reports such as RAV65)

774 MY(152) K/A WR Pyroxene-schist;
--. STA61 PIC63 RAV65
(RECALC. from 800 MY in STA61 and RAV65; descrpt. = garnet gneiss in STA61)

612 MY(565a) K/A WR Shadow polymigmatite;
--. STA61 PIC63 RAV65
(RECALC. from 635 MY in STA61 and RAV65; loc. given as "Kashalot Island")

718 MY(?) K/A WR Charnockite-mangerite series;
--. STA61 PIC63
(RECALC. from 745 MY in STA61; loc. given as "Kashalot Island"; may be same sample as #681, 745 MY charnockite from Booth Pen. in RAV65)

472 MY(?) K/A WR Feldspathized granite-gneiss;
--. STA61 PIC63
(RECALC. from 490 MY in STA61)

472 MY(?) K/A WR Pegmatite; --. STA61 PIC63
(RECALC. from 490 MY in STA61)

472 MY(?) K/A WR Pegmatite; --. STA61 PIC63
(RECALC. from 490 MY in STA61)

745 MY(681) K/A WR Intermediate charnockite; --. RAV65
(may be same sample as 745 MY charnockite from Fuller Island; loc. given as "Charnokitovy Island" in RAV65 and as "Charnokitovy Peninsula" in RAV64)
Compilation of Isotopic Dates from Antarctica

66°06S 101°11E G (Booth Peninsula) 564 MY (674) KA16 WR Vein leucogranite; --. STA61 PIG63 RAV65 (recal. from 585 MY in STA61 and RAV65; loc. given as "Charnockite Island")

66°39S 108°26E R 1070 MY (GA 383) KA10 BT Adamellite; --. WEB64

66°S 110°E M 1600-3100 MY (#?) P/P ZR Ion microprobe determinations on "a wide variety of rocks." IOV79

66°S 110°E M 1100-1400 MY RSI WR Gneisses of upper amphibolite to granulite facies; --. ARR75

Areas of Windmill I.'s, Casey, Wilkes Sta.'s 1100 MY (#?) RSM MC, BT Pegmatites; --. ARR75

66°S 110°E M c.1100 MY (#?) RSM MC, BT Pegmatites; --. ARR75

66°14S 110°09E Charlton Island 1050 MY (GA 738) KA10 Granulite; --. WEB64

66°14S 110°11E R Nelly Island 1130 MY (GA 737) KA10 BT Schist; --. WEB64

66°12S 110°23E R Lilienthal Island 1140 MY (GA 736) KA10 BT Schist; --. WEB64

66°11S 110°25E R Chappel Island 1050 MY (GA 737) KA10 BT Schist; --. WEB64

Chappel Island 1450+70-90 MY, 2990+230-190 MY (7810/28;234A) UP3C5 ZR Paragneiss; Windmill Metamorphics. WIL83 (from rim and core of same grain; max. age of rim = 1817±27 MY, min. age of core = 276±30 MY; the 3 apparent ages for each fraction are in WIL83)

66°11S 110°25E G Chappel Island 1763±103 MY (7810/28;234) UP3C5 ZR Paragneiss; Windmill Metamorphics. WIL83 (UP ages: 1763 MY, 1751 MY, 1737 MY)

66°11S 110°25E G Chappel Island 1270 MY, 1289 MY, 1322 MY (7810/28;227A) UP5 ZR Paragneiss; Windmill Metamorphics. WIL83

66°11S 110°25E G Chappel Island 1192 MY, 1230 MY, 1297 MY (7810/28;231-4) UP5 ZR Paragneiss; Windmill Metamorphics. WIL83

66°11S 110°25E G Chappel Island 1128 MY, 1200 MY, 1334 MY (7810/28;231-3) UP5 ZR Paragneiss; Windmill Metamorphics. WIL83

66°11S 110°25E G Chappel Island 1366 MY, 1404 MY, 1463 MY (7810/28;246) UP5 ZR Paragneiss; Windmill Metamorphics. WIL83

66°22S 110°27E G Ardery Island 1050 MY, 1100 MY (1) KA15* BT Quartz diorite; --. CAM60 (*constants corrected for inferred misprint)

66°21S 110°27E G Pidgeon Island 1477±73 MY RS13/0.7032±0.0004 WR Layered tonalitic orthogneisses; Windmill Metamorphics. WIL83 ("model two isochron age")

66°21S 110°27E G Pidgeon Island 1465±34 MY (#?) SNMC1 WR Tonalitic gneiss; oldest orthogneiss sequence, Windmill metagranites. WIL83

66°20S 110°28E G 5 mi. N, Wilkes Sta., Windmill Islands 1120 MY (2) KA15* BT Contorted migmatite; --. CAM60 (*constants corrected for inferred misprint)
1045 MY(141)KA16 WR Leucogranitic vein material from migmatite;—. STA61 PIC63 RAV65 (recalc. from 1080 MY in STA61 and RAV65, and 1020 MY in STA59)

741 MY(#?)KA16 WR Granodiorite;—. STA61 PIC63 (recalc. from 765 MY in STA61 and 780 MY in STA59)

731 MY(#?)KA16 WR Gneiss;—. STA61 PIC63 (recalc. from 755 MY in STA61)

818 MY(192(Ch))KA16 WR Porphyritic granite;—. STA60 PIC63 (recalc. from 845 MY in STA60)

905 MY(210(Ch))KA16 WR Biotite gneiss;—. STA60 PIC63 (recalc. from 935 MY in STA60)

741 MY(146(V))KA16 WR Granite gneiss;—. STA60 PIC63 (recalc. from 765 MY in STA60)

852 MY(187)KA16 WR Acid charnockite;—. STA60 PIC63 RAV65 (recalc. from 880 MY in STA60 and RAV65; descrpt. = granite in STA60)

866 MY(222)KA16 WR Acid charnockite;—. STA60 PIC63 RAV65 (recalc. from 895 MY in STA60 and RAV65; descrpt. = granite in STA60)

915 MY(251)KA16 WR Acid charnockite;—. STA60 PIC63 RAV65 (recalc. from 945 MY in STA60 and RAV65; descrpt. = granite in STA60)

1200 MY(#?)RSM WR Charnockite;—. WEB64

1800±130 BF(#?)14C SE Cranium muscles, mumified sea elephant, 30 m. high coastal bench. VOR62 KOR71 (date is based on more than one WR age)

1110 MY(GA 733)KA10 BT Adamellite;—. WEB64

1100–1140 MY(#?)RSM WR Pink, prophyritic granite;—. WEB64

230–270 MY(#?)FTK AP Coastal rocks;—. KEL79C

950 MY(1)KA15* BT Garnet–biotite–gneiss;—. CAM60

(*constants corrected for inferred misprint)
<table>
<thead>
<tr>
<th>Location</th>
<th>Age (My) and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haupt Nunatak</td>
<td>720±300-650 My, 1540±780-220 My (7810/21)UFS2 ZR</td>
</tr>
<tr>
<td></td>
<td>Granitic orthogneiss; Windmill Metamorphics. WIL83</td>
</tr>
<tr>
<td></td>
<td>(the 3 apparent ages for each fraction are in ref)</td>
</tr>
<tr>
<td>Balaena Islands</td>
<td>1110 My (GA 741) KA10 BT Adamellite;</td>
</tr>
<tr>
<td></td>
<td>--. WEB64</td>
</tr>
<tr>
<td>Balaena Islands</td>
<td>1060 My (GA740) KA10 BT Adamellite;</td>
</tr>
<tr>
<td></td>
<td>--. WEB64</td>
</tr>
<tr>
<td>Balaena Islands</td>
<td>510 My (GA739) KA10 PL Gabbro;</td>
</tr>
<tr>
<td></td>
<td>--. WEB64</td>
</tr>
</tbody>
</table>
GEOGRAPHIC AREA 24:

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Sample Description</th>
</tr>
</thead>
</table>
| 66°53S 120°38E G Henry Islands | 731 MY(1230) KA16 WR Granite (altered charnockite);
STA61 PIC63 RAV65
(recalc. from 755 MY in STA61 and RAV65, and
720 MY in STA59; loc.=Henry Bay in STA61) |
| 66°47S 121°00E G Chick Island | 675 MY(1229) KA16 WR Intermediate charnockite;
STA61 PIC63 RAV65
(recalc. from 700 MY in STA61 and RAV65, and
660 MY in STA59; loc.=Henry Bay in STA61) |
| 66°28S 126°45E G Al'bov Rocks | 1055 MY(1232) KA16 WR Leucogranitic migmatite vein
material from gneiss;
STA61 PIC63 RAV65
(recalc. from 1090 MY in STA61; "1070 MY" in
RAV65 appears to be misprint; may be the same
as the 1044 MY sample from STA59 and PIC63) |
| 66°28S 126°45E G Al'bov Rocks | 1044 MY(#?) KA16 WR Pegmatoid granite;
STA59 PIC63
(recalc. from 1020 MY in STA59; appears to be
the same sample as #1232 above) |
| 66°37S 139°44E G Helene Island | 1530 MY(DS 395) RSM4 BT Pegmatite vein;
BEL62 |
| 66°40S 140°01E G Petrel Island | 1543 MY(DS 394) RSM4 BT Granite vein in gneiss;
BEL62 |
| 66°40S 140°01E* Dumont d'Urville | 280 MY(#?) FTK AP Unspecified;
KEL79C
(*coords. from "Polar Regions Atlas") |
| 66°40S 140°01E* Dumont d'Urville | 466 MY(#?) FTK AP Erratic boulder;
KEL79C
(*coords. from "Polar Regions Atlas") |
GEOGRAPHIC AREA 25: GEORGE V COAST (samples from west to east by coordinates)

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67°00S</td>
<td>142°40E</td>
<td>428±103 MY, 2366±30 MY (786-T60) UP4C5 ZR Biotite gneiss; -- OL183 (loc. given as w/in a few meters of Mawson's Hut; the 3 discordant ages for each fraction are in ref)</td>
</tr>
<tr>
<td>66°54S</td>
<td>142°40E</td>
<td>1540 MY *(#?) R/S MC, BT Pegmatites; -- JAM83</td>
</tr>
<tr>
<td>Commonwealth Bay area</td>
<td>67°00S 142°40E G</td>
<td>(avg. age from Arriens, unpubl. data; prob. part of the 1500-1700 MY samples from Cape Denison)</td>
</tr>
<tr>
<td>66°54S</td>
<td>142°40E</td>
<td>1500-1700 MY *(#?) R/S MC, BT Unspecified. ARR75 (infer=1600-1700 MY R/S MC ages and 1550 MY BT ages from pegmatites cutting gneiss in Commonwealth Bay area -- Arriens, pers. comm., in OL183)</td>
</tr>
<tr>
<td>67°00S</td>
<td>142°40E</td>
<td>1300-1700 MY *(#?) RSM WR? Erratic boulders from moraine; -- ARR75 (unspecified number of samples)</td>
</tr>
<tr>
<td>Commonwealth Bay</td>
<td>66°54S 142°40E G</td>
<td>320 MY *(#?) FTK AP Unspecified. KEL79C</td>
</tr>
<tr>
<td>67°48S</td>
<td>146°34E</td>
<td>487 MY (1235) KA16 WR Granite; -- STA60 PIC63 RAV65 (recalc. from 505 MY in STA60; infer "#1135" in STA61 is misprint)</td>
</tr>
<tr>
<td>Ainsworth Bay</td>
<td>67°48S 146°37E G</td>
<td>463 MY (1234) KA16 WR Rose granite; -- STA60 PIC63 RAV65 (recalc. from 480 MY in STA60; loc.="Cape Ploskii" in RAV65)</td>
</tr>
<tr>
<td>67°48S</td>
<td>146°37E</td>
<td>337 MY *(#?) KA16 WR Gray granite; -- STA61 PIC63 (recalc. from 350 MY in ST61)</td>
</tr>
<tr>
<td>Ainsworth Bay</td>
<td>67°48S 146°37E G</td>
<td>755 MY *(#?) KA16 WR Pink granite; -- STA61 PIC63 (recalc. from 780 MY in STA61)</td>
</tr>
<tr>
<td>Ainsworth Bay</td>
<td>67°48S 146°37E G</td>
<td>461 MY *(#?) KA16 WR Porphyroblastic granite; -- STA59 PIC63 (recalc. from 450 MY in STA59)</td>
</tr>
<tr>
<td>Commonwealth Bay</td>
<td>67°51S 146°55E G</td>
<td>458 MY (1239p) KA16 WR Xenolith in porphyroblastic granite; -- STA61 PIC63 RAV65 (recalc. from 475 MY in STA61 and RAV65, and 450 MY in STA59)</td>
</tr>
<tr>
<td>Cape Webb, Ainsworth Bay area</td>
<td>67°51S 146°55E G</td>
<td>458 MY (1240b) KA16 WR Porphyroblastic granite; -- STA61 PIC63 RAV65 (recalc. from 475 MY in STA61 and RAV65, and 450 MY in STA59; infer "745 MY" in STA61 is error)</td>
</tr>
<tr>
<td>Cape Webb, Ainsworth Bay area</td>
<td>67°51S 146°55E G</td>
<td>458 MY (1239) KA16 WR Porphyroblastic granite; -- STA61 PIC63 RAV65 (recalc. from 475 MY in STA61 and RAV65, and 445 MY in STA59)</td>
</tr>
<tr>
<td>Cape Webb, Ainsworth Bay area</td>
<td>67°51S 146°55E G</td>
<td>453 MY (1239e) KA16 WR Biotite-schist xenolith in granite; -- STA61 PIC63 RAV65 (recalc. from 470 MY in STA61 and RAV65, and 445 MY in STA59)</td>
</tr>
<tr>
<td>Horn Bluff</td>
<td>68°21S 149°45E G</td>
<td>191 MY (5r) KA16 WR Dolerite; -- Beacon Group Sill. STA61 PIC63 RAV65 (recalc. from 195 MY in STA61 and RAV64; infer "165 MY" in RAV65 is misprint)</td>
</tr>
</tbody>
</table>
69°54'S 154°10'E G
Mt. Obruchev

175 MY(15) KA16 WR Dolerite;
Beacon Group sill. STA59 PIC63 RAV65
(recalculated from 170 MY in STA59; infer=same sample
as 175 MY, "Anyuta Cape" sample in STA61)
<table>
<thead>
<tr>
<th>GEOGRAPHIC AREA 26:</th>
<th>OCEAN SITES WITHIN C. 250 KM OF THE EAST ANTARCTIC COAST, EXCLUDING ROSS SEA (SAMPLES FROM WEST TO EAST BY COORDINATES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69°S 15°E RM</td>
<td>340 MY(235*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>nr Queen Maud Land</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>c. 68°S 20°E M</td>
<td>295±35 MY(226*) K/A Terrigenous minerals in iceberg silt; --. KRY61A</td>
</tr>
<tr>
<td>Queen Maud Land Sector</td>
<td>(*=station number; more info. in Russian in ref.)</td>
</tr>
<tr>
<td>67°S 46°E RM</td>
<td>380 MY(206*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>nr Enderby Land</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>67°S 70°E RM</td>
<td>640 MY(198*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>nr Mac. Robertson Land</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>c. 68°S 75°E M</td>
<td>475±40 MY(193*) K/A Terrigenous minerals in iceberg silt; --. KRY61A</td>
</tr>
<tr>
<td>Mac. Robertson Land Sector</td>
<td>(*=station number; more info. in Russian in ref.)</td>
</tr>
<tr>
<td>66°S 79°E RM</td>
<td>460 MY(185*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>nr Christensen Coast</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>65°30S 93°30E RM</td>
<td>610 MY(23*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>Davis Sea</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>65°S 104°E RM</td>
<td>650 MY(330*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>nr Knox Coast</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>65°30S 115°30E RM</td>
<td>690 MY(43*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>nr Sabrina Coast</td>
<td>(*=station number)</td>
</tr>
<tr>
<td>65°S 132°E RM</td>
<td>350±50 MY(51*) K/A Terrigenous minerals in iceberg silt; --. KRY61A</td>
</tr>
<tr>
<td>nr Clarie Coast</td>
<td>(*=station number; more info. in Russian in ref.)</td>
</tr>
<tr>
<td>c. 65°S 145°E M</td>
<td>500 MY(57*) K/A WR Iceberg silt; --. KRY62 CRA70</td>
</tr>
<tr>
<td>George V Coast Sector</td>
<td>(*=station number; age also given as 505 MY in Table 2 of KRY62)</td>
</tr>
<tr>
<td>68°S 155°E RM</td>
<td>290±120 MY(373*) K/A Terrigenous minerals in iceberg silt; --. KRY61A</td>
</tr>
<tr>
<td>nr George V Coast</td>
<td>(*=station number; more info. in Russian in ref.)</td>
</tr>
<tr>
<td>c. 68°S 165°E M</td>
<td>40±20 MY(377*) K/A Terrigenous minerals in iceberg silt; --. KRY61A</td>
</tr>
<tr>
<td>Oates Coast Sector</td>
<td>(*=station number; more info. in Russian in ref.)</td>
</tr>
<tr>
<td>c. 69°S 175°E M</td>
<td>"Skotta Island"</td>
</tr>
</tbody>
</table>
GEOGRAPHIC AREA 27:

226°22S 168°38E R
Ross Ice Shelf
Site J9

78°03.8S 166°25.2E G
near east end,
Minna Bluff

78°09.3S 166°26.1E R
Black I.

78°10.7S 166°27.4E R
Black I.

78°12.5S 166°44.2E R
nr E. Black I.

78°12.5S 166°44.2E R
nr E. Black I.

78°10.8S 166°30.2E R
btw Black Island
and Brown Pen.

78°10.8S 166°30.2E R
nr N Black I.

78°10.8S 166°30.2E R
btw Black Island
and Brown Pen.

78°10.8S 166°30.2E R
nr Black I.

78°10.8S 166°30.2E R*
nr NE shore, Black I.

78°09.3S 166°19.8E R
Black I.

77°53.8S 165°15.0E R
nr Dailey Islands

77°53.8S 165°15.0E R
nr Dailey Islands

77°53.8S 165°15.0E R
nr Dailey Islands

77°53.8S 166°41.0E G
Observation Hill RM

ROSS ICE SHELF, McMurdo Sound, and Ross Sea;
Black, White, Ross, and Franklin Islands
(samples from south to north by coordinates)

174±75 MY (PMW-23A, PMW-23B) RS213/0.7155±0.0023 FD
Glacial-marine sediments. FAU79 FAU83
("provenance date")

GT 51,000 BP (K76-58; QL-1129) 14C1 Macrofossils in Ross
Ice Shelf, assoc. with Globocassidulina biora.
KEL79A

3.8±0.09 MY (VW21205; YU-McM-21205) KA9 WR Pyroxene
trachyte; Aurora Trachyte Fm. WEB72 ARM78

3.35±0.14 MY (VW21208; YU-McM-21208) KA9 WR Alkali
olivine basalt; Nubian Basalt Fm. WEB72 ARM78

3590±80 BP (QL-1222) 14C1 SH Mixture of shells from
debris band on surface of McMurdo Ice Shelf. STU81

3610±40 BP (QL-1132) 14C1 SH Mixture of shells from
debris band on surface of McMurdo Ice Shelf. STU81

3770±40 BP (QL-1130) 14C1 SH Mixture of shells from
debris band on surface of McMurdo Ice Shelf. STU81

1260±30 BP (QL-1128) 14C1 SH Mixture of shells from
debris band on surface of McMurdo Ice Shelf. STU81

3130±40 BP (QL-167) 14C1 SH Mixture of shells from debris
band on surface of McMurdo Ice Shelf. STU81

1290±50 BP (QL-79) 14C1 SH Mixture of shells from debris
band on surface of McMurdo Ice Shelf. KEL77 STU81

3630±40 BP (QL-1125) 14C1 SH Mixture of shells from debris
band on surface of McMurdo Ice Shelf. STU81

10.9±0.4 MY (YM-W21205; YU-McM-21205) KA9 WR Alkali olivine basalt;
Melania Basalt Fm. ARM78

511181 1260±30 BP (QL-1123) 14C1 SH Mixture of shells from debris
band of McMurdo Ice Shelf. STU81

511181 10.0 MY (K-57g) KA6 WR Trachyte; --. POL76
(mean age of 3 trachytes in FOR74=1.18±0.03 MY)

511181 1370±50 BP (QL-77) 14C1 SH Mixture of shells from debris
band of McMurdo Ice Shelf. STU81

511181 1340±30 BP (QL-1225) 14C1 SH Mixture of shells from debris
band on surface of McMurdo Ice Shelf. STU81

511181 3370±80 BP (QL-97) 14C1 AL Mat, nonmarine, stranded on ice-cored moraine, McMurdo Ice Shelf. STU81

1.17±0.03 MY (OH1-12-63; 73028) KA12 WR Trachyte; --. FOR74
(mean age of 3 trachytes in FOR74=1.18±0.03 MY)

1.16±0.03 MY (OH1-8-63; 73030) KA12 WR Trachyte; --. FOR74
(mean age of 3 trachytes in FOR74=1.18±0.03 MY)

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74
(mean age of 3 trachytes in FOR74=1.18±0.03 MY)

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.17±0.03 MY (OH1-12-63; 73028) KA12 WR Trachyte; --. FOR74

1.16±0.03 MY (OH1-8-63; 73030) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.17±0.03 MY (OH1-12-63; 73028) KA12 WR Trachyte; --. FOR74

1.16±0.03 MY (OH1-8-63; 73030) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.17±0.03 MY (OH1-12-63; 73028) KA12 WR Trachyte; --. FOR74

1.16±0.03 MY (OH1-8-63; 73030) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74

1.17±0.03 MY (OH1-12-63; 73028) KA12 WR Trachyte; --. FOR74

1.16±0.03 MY (OH1-8-63; 73030) KA12 WR Trachyte; --. FOR74

1.22±0.04 MY (OH51-1-63; 73029) KA12 WR Trachyte; --. FOR74
Compilation of Isotopic Dates from Antarctica

77°51S 166°38E G Hut Pt. Promontory RM
0.85 MY(K-66)KA6 WR Plagiobasalt;---. POL76
(more info. in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 2, Ross I.
1.32±0.16 MY(#)KA17 WR Basanite clast;
nor top of hyaloclastite unit 16, 173.93 m deep.
KYL78

77°50.59.68S 166°40.28.77'E* DVDP hole 2, Ross I.
1.16±0.03 MY(#)KA17 WR Ne-bemoreite;
flow unit 7, 62.38 m deep. KYL78

77°50.59.68S 166°40.28.77'E* DVDP hole 2, Ross I.
0.57±0.03 MY(YU-MdM-HP26;22900)KA9 WR Olivine basalt;
nor top of hyaloclastite unit 16, 173.93 m deep.
KYL78

77°50.59.68S 166°40.28.77'E* DVDP hole 2, Ross I.
0.43±0.07 MY(YU-MdM-HP18;22892)KA9 WR Olivine basalt;
nor top of hyaloclastite unit 16, 173.93 m deep.
KYL78

77°50.59.68S 166°40.28.77'E* DVDP hole 2, Ross I.
1.34±0.23 MY(#)KA17 WR Basanite clast;
nor top of hyaloclastite unit 40, 148.81 m deep.
KYL78

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
1.21±0.11 MY(#)KA17 WR Ne-hawaiite;
flow unit 10, 25.52 m deep. KYL78

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
4630±80 BP(QL-1127)14C1 SH Mixture of shells from
beach band on surface of McMurdo Ice Shelf. STU81

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
6310±50 BP(QL-1126)14C1 SH Mixture of shells from
beach band on surface of McMurdo Ice Shelf. STU81

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
6600±60 BP(QL-166)14C1 SH Mixture of shells from debris
band on surface of McMurdo Ice Shelf. KEL77

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
4140±60 BP(QL-85)14C1 AL Mat, nonmarine, stranded
on ice-coated debris band, McMurdo Ice Shelf. STU81

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
5670±100 BP(QL-84)14C1 SH Mixture of shells from debris
band on surface of McMurdo Ice Shelf. KEL77

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
0.40 MY(K-46a)KA6 WR Gray olivine basalt;---. POL76
(more info. in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
3.40 MY(K-45v)KA6 WR Speckled olivine basalt;---. POL76
(more info. in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
1.0±0.15 MY(YU-MdM-HP14;22878)KA9 WR Hornblende basalt
(or trachybasalt); Melania Basalt Fm. ARM78

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
4.70 MY(K-53)KA6 WR Hornblende basalt;
---. POL76
(more info in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
2.20 MY(K-42)KA6 WR Amphibole basalt;---. POL76
(more info in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
0.50 MY(K-76)KA6 WR Amphibole basalt;---. POL76
(more info in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
1.21±0.05 MY(22879)KA17 WR Basanite dike;
---. KEL74 KYL81

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
5.00 MY(K-2)KA6 WR Kemyte;---. POL76
(more info in Russian in POL76)

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
1570±90 BP(#?)14C1 AL Remains. YAM57 DOR81

77°50.59.68S 166°40.28.77'E* DVDP hole 1, Ross I.
2760±100 BP(Y-2643)14C1 GB Mat, alt. 70 m on surface
of ice-coored Ross Sea Drift. DEN70 STU81
("Y-2623" in DEN70 should read Y-2643)
77°35S 166°14E RM
Cape Barne, Ross Island
77°35S 166°14E RM
Cape Barne, Ross Island
77°35S 166°14E RM
Cape Royds, Ross Island
77°34S 166°12E G
Backdoor Bay, Ross Island
77°34S 166°13E G
N of Deep Lake, Cape Barne
77°33.5S 166°16.2E R
Cape Barne*
77°33.4S 166°16.9E R
Cape Barne*
77°33S 166°09E R
Cape Royds
77°32.0S 167°07.6E R
2nd Crater, Mt. Erebus
77°32.0S 167°07.6E R
2nd Crater, Mt. Erebus
77°31.9S 167°08.8E R
summit Mt. Erebus
77°31.9S 167°08.8E R
summit, Mt. Erebus
77°31.9S 167°08.8E R
summit, Mt. Erebus
77°31.9S 167°07.1E R
summit, Mt. Terra Nova
77°31.0S 169°19.4E R
Cape Crozier
77°31S 169°24E G
Cape Crozier area RM
77°30S 168°00E G
Ross Island and vicinity*
77°29.3S 167°11.5E R
Fang Ridge, Mt. Erebus
77°28.7S 167°11.2E R
Fang Ridge, Mt. Erebus
77°28.2S 169°11.9E R
Cape Crozier
77°27.8S 169°18.6E R
Cape Crozier

GT 49,000 BP (Y-2642) 14C SH mixture, in sponge mat resting on ice core, overlain by kenyte-rich Ross Sea ablation drift, 59 m a.s.l. DEN70 STU81
GT 47,000 BP (Y-2641) 14C SH mixture, in sponge mat resting on ice core, overlain by kenyte-rich Ross Sea ablation drift, 28.0-32.0 m a.s.l. DEN70 STU81
36,300+1200-1000 BP; 39,000+2100-1700 BP (QL-83) 14C SH mixture, in sponge mat resting on ice core. STU81
120,000+6000 BP (Y-2576) U/T Mollusk in uplifted marine sediments with Globocassidulina biora. KEL79A STU81
36,000-2300 BP (Y-2576) CA Mollusca and Bryozoa from marine sediment above the permafrost table. HEN69

0.8±0.2 MY (YU-McM-PK15;22909) KA9 WR Basalt; --. ARM78
0.94±0.05 MY (YU-McM-PK15;22910) KA9 FD Kanyte; --. ARM78
0.68±0.14 MY (#) KA9 AN Trachyte (Antarctic kenyte) flow; youngest flow exposed. TRE67 TRE68
0.20±0.07 MY (YU-McM-E15) KA9 WR Glassy kenyte; McMurdo Volcanic Group. ARM78
0.15±0.05 MY (YU-McM-E5) KA9 WR Glassy kenyte; McMurdo Volcanic Group. ARM78
0.44±0.09 MY (YU-McM-E5) KA9 AN Decomposed glass froth; McMurdo Volcanic Group. ARM78
0.45±0.2 MY (YU-McM-13170) KA9 GS Trachyte; McMurdo Volcanic Group. ARM78
0.55±0.15 MY (YU-McM-13710) KA9 AN Trachyte; McMurdo Volcanic Group. ARM78
0.8±0.5 MY (YU-McM-14970) KA9 AN Pyroxene trachyte; McMurdo Volcanic Group. ARM78
1.29±0.05 MY (YU-McM-PK15;22955) KA9 WR Pyroxene trachyte; Aurora Trachyte Fm. ARM78
1.71 MY (#) KA9 -- Volcanic rock sample(s); McMurdo Volcanic Group. KYL81
(c. sample taken from RM, source not determined)

0.81±0.02 MY (YU-McM-E10) KA9 WR Fine grained plagioclase basalt; McMurdo Volc. Gp. (oldest rk. on ridge). ARM78
0.73±0.07 MY (YU-McM-3AA) KA9 WR Porphyritic plagioclase basalt; McMurdo Volc. Gp. (youngest flows on ridge). ARM78
1.31±0.04 MY (YU-McM-FK140;22934) KA9 WR Hornblende trachyte; Aurora Trachyte Fm. ARM78
0.8±0.14 MY (YU-McM-FK173;22976) KA9 WR Olivine basalt; Melania Basalt Fm. ARM78
<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Date and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>77°21.7S 172°04.0E</td>
<td>77°26.48S, 178°30.19W R</td>
<td>Site 270, SE Ross Sea</td>
</tr>
<tr>
<td>77°26.1S 174°47.7E R</td>
<td>27°9.4±0.4 MY, 25.9±0.4 MY (73-1184)</td>
<td>GU Calcareous greensand; unit 3, MCD76 (DSDP Leg 28, Sample 270-43-6, 125-135 cm (364 m subbottom depth), c. 2% impurities)</td>
</tr>
<tr>
<td>77°21.7S 172°04.0E, 77°25.5S 173°46.5E, 77°26.1S 174°47.7E R</td>
<td>27°9.4±0.4 MY, 25.9±0.4 MY (73-1184)</td>
<td>GU Calcareous greensand; unit 3, MCD76 (DSDP Leg 28, Sample 270-43-6, 125-135 cm (364 m subbottom depth), c. 8% impurities)</td>
</tr>
<tr>
<td>77°17.1S 166°43.2E</td>
<td>77°17.0S 166°21.9E R Cape Bird</td>
<td>7360±3700-2500 BP (QL-1125)</td>
</tr>
<tr>
<td>77°15.1S 166°22.2E R Cape Bird</td>
<td>77°10.3S 166°06E R Ross Sea</td>
<td>4.5±0.6 MY (YU-MCM-15970)</td>
</tr>
<tr>
<td>77°10S 168°05E R Ross Sea</td>
<td>77°10S 168°05E R Ross Sea</td>
<td>3.15±0.09 MY (YU-MCM-FA32; 22935)</td>
</tr>
<tr>
<td>77°10S 168°05E R Ross Sea</td>
<td>77°10S 168°05E R Ross Sea</td>
<td>3.0±0.15 MY (YU-MCM-FA31; 22934)</td>
</tr>
<tr>
<td>76°22S 166°53E R Ross Sea</td>
<td>76°22S 166°53E R Ross Sea</td>
<td>3.7±0.2 MY (YU-MCM-FA29; 22932)</td>
</tr>
<tr>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>5600±120 BP (QL-1288)</td>
</tr>
<tr>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>43,000±6700 BP (558)</td>
</tr>
<tr>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>7490±120 BP (QL-1287)</td>
</tr>
<tr>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>76°05S 168°19E RM W side, Franklin I.</td>
<td>3480±80 BP (QL-1286)</td>
</tr>
<tr>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>6490±100 BP (QL-1285)</td>
</tr>
<tr>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>1750±70 BP (QL-170)</td>
</tr>
<tr>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>3150±80 BP (QL-169)</td>
</tr>
<tr>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>5340±50 BP (QL-141)</td>
</tr>
<tr>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>76°00.7S 168°21E R Franklin I.</td>
<td>4.8±2.0 MY (YU-MCM-22C)</td>
</tr>
</tbody>
</table>
GEOGRAPHIC AREA 28:

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>78°09S 155°18W R</td>
<td>Tennant Peak</td>
</tr>
<tr>
<td>78°04S 155°07W R</td>
<td>Breckenridge Peak</td>
</tr>
<tr>
<td>77°52S 154°58W R</td>
<td>Mt. Jackling</td>
</tr>
<tr>
<td>78°05'S 154°48W R</td>
<td>Mt. Franklin</td>
</tr>
<tr>
<td>78°02S 154°36W R</td>
<td>Mt. Paterson</td>
</tr>
<tr>
<td>77°02S 154°36W R</td>
<td>Prezbecheski I.</td>
</tr>
<tr>
<td>76°25S 147°22W G</td>
<td>Mitchell Peak</td>
</tr>
<tr>
<td>76°25S 147°22W G</td>
<td>Mitchell Peak</td>
</tr>
<tr>
<td>76°54S 146°45W R</td>
<td>Radford I.</td>
</tr>
<tr>
<td>76°29S 146°20W G</td>
<td>Birchall Peaks*</td>
</tr>
<tr>
<td>76°29S 146°20W G</td>
<td>Birchall Peaks*</td>
</tr>
<tr>
<td>76°03S 145°05W R</td>
<td>Fosdick Mountains</td>
</tr>
<tr>
<td>76°05S 145°48W R</td>
<td>Saunders Mtn.</td>
</tr>
<tr>
<td>76°15S 145°28W R</td>
<td>West Nunatak</td>
</tr>
<tr>
<td>77°04S 145°36W R</td>
<td>The Billboard</td>
</tr>
<tr>
<td>76°15S 145°36W R</td>
<td>Phillips Mountains RM</td>
</tr>
<tr>
<td>76°04S 145°30W R</td>
<td>Chester Mtns.</td>
</tr>
<tr>
<td>76°06'S 145°08W R</td>
<td>Webster Bluff</td>
</tr>
<tr>
<td>76°16S 145°07W G</td>
<td>Mt. June area</td>
</tr>
<tr>
<td>and Phillips Mtns.*</td>
<td></td>
</tr>
<tr>
<td>76°16S 145°07W G</td>
<td>Mt. June area</td>
</tr>
<tr>
<td>and Phillips Mtns.*</td>
<td></td>
</tr>
<tr>
<td>76°16S 145°02W R</td>
<td>Mt. June</td>
</tr>
<tr>
<td>77°03S 145°00W R</td>
<td>Mt. West</td>
</tr>
</tbody>
</table>

MARIE BYRD LAND (samples from west to east by coordinates)

<table>
<thead>
<tr>
<th>Age</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92±5 MY(#?) K/A BT Granite;</td>
<td>WAD69 WAD72A</td>
</tr>
<tr>
<td>(from C. Craddock, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>102±3 MY(?) K/A BT Schist;</td>
<td>WAD69 WAD72A</td>
</tr>
<tr>
<td>(from C. Craddock, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>104±4 MY(?) K/A BT Granite;</td>
<td>WAD69 WAD72A</td>
</tr>
<tr>
<td>(from C. Craddock, pers. comm.)</td>
<td></td>
</tr>
<tr>
<td>95±3.5 MY(?) K/A BT Granitoid rock;</td>
<td>WAD72</td>
</tr>
<tr>
<td>102±4 MY(?) K/A BT Granite (basis segregation);</td>
<td>WAD69 WAD72A</td>
</tr>
<tr>
<td>107±4 MY(?) K/A BT Granitoid rock;</td>
<td>WAD72</td>
</tr>
<tr>
<td>101±4 MY(?) K/A BT Granitoid rock;</td>
<td>WAD72</td>
</tr>
<tr>
<td>95±5 MY(66-D-172) RSM4/0.707* BT Biotite-quartz-feldspar schist;</td>
<td>HAL72</td>
</tr>
<tr>
<td>(*calculated from total-rock-mineral data)</td>
<td></td>
</tr>
<tr>
<td>102±5 MY(66-D-166) RSM4/0.706* BT Quartz-biotite-schist;</td>
<td>HAL72</td>
</tr>
<tr>
<td>(*calculated from total-rock-mineral data)</td>
<td></td>
</tr>
<tr>
<td>355±12 MY(?) K/A BT Granodioritic pluton;</td>
<td>WAD72</td>
</tr>
<tr>
<td>98±5 MY(66-D-164) RSM4/0.710 BT Gneiss;</td>
<td>HAL72</td>
</tr>
<tr>
<td>(*south runs.)</td>
<td></td>
</tr>
<tr>
<td>100±5 MY(66-D-159) RSM4/0.715 BT Gneiss;</td>
<td>HAL72</td>
</tr>
<tr>
<td>(*cen. runs.)</td>
<td></td>
</tr>
<tr>
<td>130 MY(K-182) K/A WR Amphibolite;</td>
<td></td>
</tr>
<tr>
<td>Proterozoic gneiss-migmatite complex.</td>
<td>IOP76</td>
</tr>
<tr>
<td>348±12 MY(?) K/A BT Granodioritic pluton;</td>
<td>WAD72</td>
</tr>
<tr>
<td>134±5 MY(?) K/A BT Granodioritic pluton;</td>
<td>WAD72</td>
</tr>
<tr>
<td>120 MY(K-186v) K/A6 WR Porphyroscopic granite;</td>
<td>IOP76</td>
</tr>
<tr>
<td>intrusive "Chalky complex."</td>
<td>KRY70</td>
</tr>
<tr>
<td>98.4±3.6 MY(?) K/A BT Granitoid rock;</td>
<td>WAD72</td>
</tr>
<tr>
<td>88±3.4 MY(?) K/A WR Granitoid rock;</td>
<td></td>
</tr>
<tr>
<td>35±21 MY RS8I4/0.706±0.0168 WM Quartz diorite;</td>
<td>HAL68</td>
</tr>
<tr>
<td>(*northmost nun. in W. Phillips Mtns.)</td>
<td></td>
</tr>
<tr>
<td>320±40 MY RS3I4 WR Quartz diorite;</td>
<td>HAL68</td>
</tr>
<tr>
<td>(*northmost nun. in W. Phillips Mtns.)</td>
<td></td>
</tr>
<tr>
<td>328±5 MY(?) K/A BT Granodioritic pluton;</td>
<td>WAD72</td>
</tr>
<tr>
<td>475 MY(K-144) K/A6 WR Phyllite-like schist;</td>
<td></td>
</tr>
<tr>
<td>metasedimentary/metavolcanic complex. KRY70 IOP76</td>
<td></td>
</tr>
</tbody>
</table>
77°33'S 145°00'W
Mt. West
77°26'S 145°00'W
Mt. West
76°30'S 144°50'W
midway between Mt.'s Colombo and Lockhart
76°28'S 144°50'W
N Flank, Fosdick Mtns.
76°30'S 144°50'W
Fosdick Mountains
77°10'S 144°48'W
Asman Ridge
77°10'S 144°48'W
Asman Ridge
76°34'S 144°12'W
Fosdick Mtns.
76°34'S 144°39'W
W of Mt. Perkins
76°36'S 144°30'W
Fosdick Mountains
76°49'S 144°26'W
Wiener Peaks
76°31'S 144°21'W
Fosdick Mountains
76°50'S 144°12'W
Wiener Peaks
76°32'S 144°08'W
W of Mt. Perkins
76°32'S 144°08'W
W of Mt. Perkins
76°32'S 144°08'W
Mt. Perkins
76°30'S 144°00'W
Mt. Perkins
76°30'S 144°00'W
Mt. Perkins
76°30'S 144°00'W
Mt. Perkins
76°30'S 144°00'W
Mt. Perkins
76°56'S 143°48'W
Mt. Swan
76°57'S 143°45'W
Mt. Swan
77°16'12"S
142°18'54"W
Mt. Atwood, Clark Mtns.
470 MY (K-144-A) KA6 WR Phyllite-like schist;
metasedimentary/metavolcanic complex. KRY70 LOP76
445 MY (K-159) KA6 WR Phyllite-like schist;
metasedimentary/metavolcanic complex. KRY70 LOP76
92±5 MY (66-D-98) RSM4/0.724* BT Biotite-feldspar
gneiss;--. HAL72
(*calculated from total-rock-mineral data)
77°33'S 145°00'W
Mt. West
77°26'S 145°00'W
Mt. West
76°30'S 144°50'W
midway between Mt.'s Colombo and Lockhart
76°28'S 144°50'W
N Flank, Fosdick Mtns.
76°30'S 144°50'W
Fosdick Mountains
76°30'S 144°50'W
Fosdick Mountains
77°10'S 144°48'W
Asman Ridge
77°10'S 144°48'W
Asman Ridge
76°34'S 144°41'W
Fosdick Mtns.
76°34'S 144°39'W
W of Mt. Perkins
120 MY (K-167) KA6 WR Amphibolite;
Proterozoic gneiss-migmatite complex. LOP76
100 MY (K-167) KA6 WR Biotite-cordierite schist;
Proterozoic gneiss-migmatite complex. KRY70 LOP76
115 MY (K-177) KA6 WR Porphyrocratic granite;
--. KRY70
155 MY (K-181-A) KA6 WR Quartzite;
--. KRY70
110 MY (K-176) KA6 WR Mica schist in contact with
granites;--. KRY70
92±5 MY (#7) KA6 WR Mica schist in contact with
granites;--. WAD69 WAD72A
(from C. Craddock, pers. comm.)
96±5 MY (66-D-88A) RSM4/0.716* MC Muscovite granite
--. HAL72
(*calculated from total-rock-mineral data)
76°36'S 144°30'W
Fosdick Mountains
76°49'S 144°26'W
Wiener Peaks
76°31'S 144°21'W
Fosdick Mountains
76°50'S 144°12'W
Wiener Peaks
76°32'S 144°08'W
W of Mt. Perkins
100 MY (K-172) KA6 WR Biotite-granite-gneiss;
Proterozoic gneiss-migmatite complex. KRY70 LOP76
299±11 MY (#7) KA6 WR Granitoid rock;
--. WAD72
190 MY (K-202-L) KA6 WR Magmatized-biotite-gneiss;
Proterozoic gneiss-migmatite complex. KRY70 LOP76
290 MY (K-134) KA6 WR Biotite granite;
Mid. Paleozoic intrusive. KRY70 LOP76
96±5 MY (66-D-63) RSM4/0.725* BT Granodiorite-gneiss;
--. HAL72
(*calculated from total-rock-mineral data)
93±5 MY (66-D-64) RSM4/0.714* BT Quartz-monzonite-gneiss;
--. HAL72
(*calculated from total-rock-mineral data)
76°32'S 144°08'W
Mt. Perkins
110.0 MY (K-151v) KA6 WR Basalt from a fragment in tuff;
Cenozoic volcanics. POL76 LOP76
4.5±0.5 MY (66-D-30) KA6 WR Basalt in hyaloclastite;
upper part, 40m thick hyaloclastite section. LEM82
3.4±0.3 MY (66-D-28) KA6 WR Basalt in hyaloclastite;
stratigraphically below sample 66-D-30. LEM82
19±2 MY (66-D-27) KA6 WR Basalt nodule in hyaloclastite;
stratigraphically below 66-D-28. LEM82
334±12 MY (#7) KA6 WR Granodioritic pluton;
--. WAD72
325 MY (K-125) KA6 WR Granite;
Mid. Paleozoic intrusive. LOP76
(Klimov, pers. comm.)
77°16'12"S
142°18'54"W
Mt. Atwood, Clark Mtns.
137±9 MY (BTB-30;523F) RSM4 KA6 Adamellite within pluton;
intrudes metasediments. BOU66 WAD69
116+10 MY (BTB-30; 523R; F5*) RSM4 WR Adamellite within pluton; intrudes metasediments. BOU66 WAD69

143+4 MY (BTB-30; 523B) KA13 BT Adamellite within pluton; intrudes metasediments. BOU66 WAD69

140 MY (K-143) KA6 WR Leucocratic granite; intrusive "Chalky complex." KK70 LOP76

156 MY R/S WR Diabasitic metaporphryrite; metasedimentary/metavolcanic complex. CRA70 LOP76

100 MY (#?) KA WR Diabasitic metaporphryrite; metasedimentary/metavolcanic complex. CRA70 LOP76

(only one 100 MY sample is listed in CRA70 while LOP76 also lists a 100 MY syenite; infer one or both of these=100+2 MY metavolcanic in SP81)

100 MY (#?) KA WR Quartzose syenite; intrusive "Chalky complex." CRA70 LOP76

(only one 100 MY sample is listed in CRA70 while LOP76 also lists a 100 MY metaporphryrite; infer one or both of these=100+2 MY metavolcanic in SP81)

103+4 MY (#?) KA WR Metavoletic rocks; --. SP81

(may= Mt. Hartkopf syenite in CRA70, LOP76)

103 MY (#?) KA WR Quartzose syenite; intrusive "Chalky complex." CRA70 LOP76

(may= Mt. McCoy metavolcanic in SP81)

109+9 MY (7677Tr; RC1A) KA9 WR Andesite dike; Cretaceous Volcanic Rocks. GRI83

121 MY (#?) RSM/0.705 BT Plutonic igneous rock; --. HAL79

101 MY (#?) RSM/0.705 BT Plutonic igneous rock; --. HAL79

268+0.13 MY (51C) KA7 WR Subaerial basalt nr top of 150 m section; overlies 100+ m hyaloclastite. LEM53

128 MY (#?) RSM/0.705 BT Plutonic igneous rock; --. HAL79

104+3 MY (7682Tr; RC23B) KA9 WR Dolerite dike; Cretaceous Volcanic Rocks. GRI83

91+2 MY (7668Tr; RC7A) KA9 WR Cambonite dike; Cretaceous Volcanic Rocks. GRI83

102 MY (#?) RSM/0.705 BT Plutonic igneous rock; --. HAL79

94+12 MY RS513/0.7054+0.0013 WR Plutonic igneous rocks; --. HAL79

113+1 MY (#?) KA WR Porphyritic basalt; --. SP81

(infer=113 MY syenite of intrusive "Chalky complex" cited from CRA70 by LOP76)

98+1 MY (#?) KA WR Rhyolite porphyry; --. SP81

(infer=98 MY syenite of intrusive "Chalky complex" cited from CRA70 by LOP76)

92 MY (#?) R/S --* Granite; --. MET78

(* infer=92 MY BT from syenite of the intrusive "Chalky complex" cited from CRA70 by LOP76)
77°00'S 140°00'E G nunataks,*
Ford Ranges

75°29'S 139°45'E G
Ickes Mtns.

75°20'S 138°25'W R
Mt. Shirley
Ruppert Coast
75°24'S 137°54'W R
Lambert nun. RM
75°05'S 137°45'W R
Mt. Giles
75°09'S 137°27'W G
Mt. Giles,
and 75°01'S 136°42'W G
Mt. Gray
75°09'S 137°37'W G
Mt. Giles
75°09'S 137°37'W G
Mt. Giles
74°45'S 136°50'W
Cape Burks RM
75°05'S 136°00'W R
Mt. Gray
75°01'S 136°16'G
Mefford Knoll
76°04'S 136°11'W G
Kraut Rocks
76°03'S 136°03'W G
Merrem Peak
75°57'S 136°00'W R
Brandenberger Bluff
75°57'S 136°00'W R
Brandenberger Bluff
75°57'S 136°00'W R
Brandenberger Bluff
76°06'S 135°56'W G
Wedemeyer Rocks
76°03'S 135°52'W G
Berlin Crater
75°00'S 135°40'W R
Bower Butte
75°09'S 135°18'G
Edwards Spur
76°03'S 135°08'W G
Mt. Moulton
76°03'S 135°08'W G
Mt. Moulton

98±3 MY RS6I4/0.7060±0.0015 WR Monzonite, quartz
diorite, granodiorite, and adamellite; (Andean oro-
genic belt). HAL68
(*Mt. Corey, Mt. Peddie, O'Connor Nun., Hutcheson
Nun.)

76°29'S 139°10'W R
Mt. Corey, Mt. Peddie, O'Connor N.,
Hutcheson N.
96 MY(#?) K/A Alkali granite; --. MET78

75°29'S 139°45'E R
75°05'S 137°45'W R
Mt. Giles
75°09'S 137°37'W G
Mt. Giles,
and 75°01'S 136°42'W G
Mt. Gray
75°09'S 137°37'W G
Mt. Giles
75°09'S 137°37'W G
Mt. Giles
74°45'S 136°50'W
Cape Burks RM
75°05'S 136°00'W R
Mt. Gray
75°01'S 136°16'G
Mefford Knoll
76°04'S 136°11'W G
Kraut Rocks
76°03'S 136°03'W G
Merrem Peak
75°57'S 136°00'W R
Brandenberger Bluff
75°57'S 136°00'W R
Brandenberger Bluff
75°57'S 136°00'W R
Brandenberger Bluff
76°06'S 135°56'W G
Wedemeyer Rocks
76°03'S 135°52'W G
Berlin Crater
75°00'S 135°40'W R
Bower Butte
75°09'S 135°18'G
Edwards Spur
76°03'S 135°08'W G
Mt. Moulton
76°03'S 135°08'W G
Mt. Moulton

103 MY(#?) RSM3/0.705 BT Plutonic igneous rock;--. HAL79
133 MY(#?) RSM3/0.705 BT Plutonic igneous rock;--. HAL79
99±3 MY, 95±3 MY (7672Tr; CB7A) KA9 WR Andesite
dike; Cretaceous Volcanic Rocks. GRI83

75°09'S 137°37'W G
Mt. Giles

2.5±0.2 MY (23C) KA7 WR Subaerial lava, 1300 m above ice
level;--. LEM80
4.8±0.4 MY (2A) K/A GS Volcanic rock;--. SEM80
(same or closely adjacent to sample 2A, FTK date)
Bowyer Butte RM

75°00'S 135°00'W

Prahl Crags

76°04'S 134°30'W

Bennett Bluff

74°58'S 134°10'W

Mt. Prince

74°58'S 134°10'W

Holmes Bluff

75°00'S 133°45'W

N side, Holmes Bluff

74°59'S 133°45'W

Holmes Bluff

74°59'S 133°45'W

Holmes Bluff

71°14'S 133°42'W

Patton Bluff RM

71°13'S 133°42'W

Patton Bluff

75°20'S 133°40'W

Coleman Nunatak

75°20'S 133°40'W

Coleman Nunatak

75°20'S 133°40'W

Coleman Nunatak

75°10'S 133°35'W

Shibuya Peak

75°10'S 133°35'W

Shibuya Peak

75°40'S 133°30'W

Shibuya Peak,

Hobbs Coast RM

76°00'S 133°10'W

Starbuck Crater

76°01'S 133°10'W

Starbuck Crater

76°00'S 133°04'W

Koerner Bluff

76°00'S 133°04'W

E of Koerner Bluff

75°58'S 133°02'W

Syrstad Rock

13±2 MY(5) KA7 WR Basalt in hyaloclastite;
"single subaerial(?) flow on basement." LEM72 LEM82
(previously reported as 23.2±2.1 MY in LEM72)

4.8±0.4 MY(67-2A) KA7 WR Subaerial lava, 450 m above ice
level; --. LEM83

101 MY(#?) RSM3/0.705 BT Plutonic igneous rock;
--. HAL79

75 MY(#?) RSM3/0.705 BT Plutonic igneous rock;
--. HAL79

91±3 MY(7673Tr;HC17) KA9 WR Microdiorite dike;
Cretaceous Volcanic Rocks. GRI83

6.0 MY(K-268d) KA6 WR Basalt;
Cenozoic volcanics. POL76 LOP76

8.21±0.33 MY(47B) KA7 WR Subaerial lava, 180 m above ice
level; --. LEM83

8.17±0.33 MY(50A) KA7 WR Basalt lava flow, 20 m. tk, with
1 m. of basal hyaloclastite. LEM83

99 MY(#?) RSM3/0.705 BT Plutonic igneous rock;
intrudes metasedimentary and metaigneous rks. HAL79

101 MY(#?) RSM3/0.705 BT Plutonic igneous rock;
intrudes metasedimentary and metaigneous rks. HAL79

99±4 MY(7669Bi;HC8) KA9 BT Microdiorite dike;
Cretaceous Volcanic Rocks. GRI83

9.97±0.40 MY(37A) KA7 WR Basalt flow, 5 m. tk, with 1 m
of basal hyaloclastite; rests on peneplain. LEM83

2.63±0.11 MY(35K) KA7 WR Basalt lens or nodule in hyalo-
clastite; top of section. LEM83

3.19±0.33 MY(35E) KA7 WR Basalt lens or nodule in hyalo-
clastite; middle portion of section. LEM83

2.34±0.11 MY(35m) KA7 WR Basalt lens or nodule in hyalo-
clastite; middle portion of section. LEM83

4.66±0.50 MY(38A) KA7 WR Basalt lens or nodule in hyalo-
clastite; middle of section, at top of tillite. LEM83

4.75±0.20 MY(38C) KA7 WR Basalt lens or nodule in hyalo-
clastite; middle of section at top of tillite. LEM83

4.4±0.2 MY(6C) KA7 WR Basalt in hyaloclastite;
upper part of the 100-200 m subaquatic basal succes-
sion. LEM73 LEM82
(previously reported as 6.6±0.7 MY, 75°10'S 133°45'W
in LEM72)

8.54±0.34 MY(25A) KA7 WR Subaerial lava, 100 m above ice
level; --. LEM83

9.0±1.0 MY(67A-7) KA7 WR Subaerial lava, 100 m above ice
level; --. LEM83

9.42±0.40 MY(67A-21) KA7 WR Subaerial lava, 450 m above
ice level; --. LEM83

9.31±0.37 MY(29A) KA7 WR Cinder cone, 400 m above ice
level; --. LEM83

10.4±0.4 MY(24A) KA7 WR Subaerial lava, 30 m above ice
level; --. LEM83
76°00S 132°46W G
Heaps Rock
74°25S 132°43W G
Mt. Petinos
76°01S 132°39W G
Hutt Peak
74°25S 132°33W G
Mathewson Pt.
74°25S 132°30W G
Mathewson Pt.
74°25S 132°30W R
Shepard Island
74°25S 132°30W R
Shepard Island
74°25S 132°30W R
Shepard Island
75°35S 132°20W R
W Mt. Kauffman
75°00S 132°20W R
W end, Lind Ridge, Mt. Andrus
75°00S 132°20W R
W end, Lind Ridge, Mt. Andrus
75°00S 132°20W R
WSW spur, Mt. Andrus
75°00S 132°20W R
South Caldera wall, Mt. Andrus
75°00S 132°20W R
ctr., Lind Ridge, Mt. Andrus
75°00S 132°20W R
E end, Lind Ridge Mt. Andrus
75°00S 132°20W R
NW Mt. Andrus
75°43S 132°15W R
W Mt. Kosciusko
75°43S 132°14W G
Mt. Bursey
75°35S 132°00W R
N end, Ames Range
75°45S 132°00W R
cen. Ames Range

6.04±0.24 MY(27A)KA7 WR Subaerial lava, 400 m above ice level;—. LEM83
0.6 MY(10*)K/A -- Basaltic hyaloclastite;
—. LEM80
(0.6±0.1 MY date given for Hawaiian in MCI81 may be based on this sample)
0.43±0.06 MY(28A)KA7 WR Cinder cone, 650 m above ice level;—. LEM83
0.6 MY(#?)K/A — Thin basalt flow or cinder cones;
overlie hyaloclastites. LEM80
1.5 MY(#?)K/A -- Basaltic hyaloclastite;
—. LEM80
0.6±0.1 MY(68E)KA7 WR Basalt lens or nodule in hyaloclastite; from +100 m level of the section. LEM83
0.42±0.06 MY(9F)KA7 WR Basalt lens or nodule in hyaloclastite; from +300 m level of the section. LEM83
0.6±0.1 MY(10D)KA7 WR Late subaerial trachyte flow, at sea level. LEM83
5.5±0.5 MY(67B-8)KA7 WR Subaerial lava, 350 m above ice level;—. LEM83
11.1±0.5 MY(61C)KA7 FD Subaerial lava, 300 m above ice level;—. LEM83
14.3±2.2 MY(67B-2)KA7 WR Subaerial lava, 200 m above ice level;—. LEM83
10.5±0.4 MY(58D)KA7 WR Subaerial lava, 1100 m above ice level;—. LEM83
10.0±0.4 MY(59B)KA7 WR Subaerial lava, 900 m above ice level;—. LEM83
10.0±0.4 MY(40A)KA7 WR Subaerial lava, 200 m above ice level;—. LEM83
8.66±0.35 MY(40E)KA7 WR Cinder cone, 200 m above ice level;—. LEM83
8.5±0.5 MY(67B-6)KA7 WR Subaerial lava, 200 m above ice level;—. LEM83
10.3±0.4 MY(43A)KA7 WR Cinder cone, 800 m above ice level;—. LEM83
10.8±0.5 MY RSJ/0.7035 WR Trachyte and obsidian; supraglacial stratovolcano. HAL70A LEM72A
3.8 MY(OG-21.67)KA7 WR Olivine-basalt; supraglacial stratovolcano. GN72 LEM72A
5.5±0.5 MY(67B-8)KA7 WR Trachyte;
stratovolcano succession. LEM76
8.5±0.5 MY(67B-6)KA7 WR Trachyte;
stratovolcano succession. LEM76
74°25S 131°50W R
Grant Island

75°55S 129°46W R
Navarette Pk. RM

75°52S 128°39W G
1 km S of
Mt. Petras summit RM

75°52S 128°39W G
1 km S of
Mt. Petras summit

75°50S 128°30W R
Mt. Petras

77°10S 127°00W R
S peak, Mt. Waesche

77°10S 127°00W R
N caldera, Mt. Waesche

76°54S 126°06W G
vicinity of Mt. Sidley

76°40S 126°06W R
Mt. Cumming

76°30S 126°00W R
Whitney Pk., Mt. Hampton

76°30S 126°00W R
SE caldera, Mt. Hampton

76°54S 126°00W R
Mt. Hartigan

75°55S 125°45W R
Mt. Galla

75°50S 125°30W R
USAS Escarpment

76°03S 124°30W R
Mt. Aldaz RM

76°03S 118°00W R
Mt. Steere RM

0.7±0.1 MY (11E) KA7 WR Basalt lens or nodule in hyaloclastite; from phreatomagmatic tuff cone. LEM83
(infer—from Mt. Obiglio, mentioned in LEM82A)

104±3 MY (7671Hb; MP7A) KA9 HB Microdiorite dike;
Cretaceous Volcanic Rocks. GRI83

25.3±1.0 MY (PT67E) KA WR Palagonite-tuff-breccia
(hyaloclastite); c.150-200m thick section overlying erosion surface of rhyodacite. LEM81

23.0±1.0 MY (PT67M) KA WR Palagonite-tuff-breccia
(hyaloclastite); c.150-200m thick section overlying erosion surface of rhyodacite. LEM81

84.7±4.7 (?) MY (13d) KA WR Coarsely crystalline basalt flow; topographically above 13b. LEM72

80.8±5.7 MY (12C) KA PL Rhyodacite ash flow;
Mesozoic Suite. LEM76

22±1 MY (13b) KA7 WR Basalt in hyaloclastite;
from thin blanket of subaquatic basal succession that overlies basement. LEM72 LEM82
(previously reported as 22.2±1.6 MY in LEM72)

1.0±0.1 MY (33c) KA WR Basalt (Hawaiite);
---. LEM72B LEM76

0.2±0.2 MY (39A') KA WR Basalt (Permoreite);
Stratovolcano succession. LEM72B LEM76

0.93±0.18 MY, 1.48±0.33 MY (32A) FTK GS Volcanic rock;
---. LEM72B SEW80
(natural age and corrected age, respectively, for annealed sample)

1.6±0.2 MY (32A) KA7 SN Rhyolite;---. LEM72B LEM76 SEW80
(same or closely adjacent to sample 32A, FTK date)

6.2 MY (#?) KA8 WR Anorthoclase-trachyte boulder;
stratovolcano. DOU64 COM72

9.7±0.5 MY (27A) KA WR Trachyte;
stratovolcano succession. LEM76

13.4±0.5 MY (24A) KA AN Volcanic rock;
stratovolcano succession, NW caldera. LEM76

8.3±0.5 MY (20D) KA AN Volcanic rock;
stratovolcano. LEM76

7.6±0.5 MY (46B) KA WR Mugearite;
stratovolcano succession. LEM76

87.6±4 MY (37) KA FD Vitrophyric rhyolite;
Mesozoic Suite. LEM76

27±1 MY (58b) KA7 WR Basalt in hyaloclastite;
from poorly exposed, subaqueous basal succession. LEM72 LEM76 LEM82
(previously reported as 31.3±2.0 MY in LEM72 LEM76)

51.5±1.5 MY (56b) KA7 WR Holocrystalline basalt;
100 m thick subaqueous basal succession over basement. LEM72 LEM76 LEM82
(76°00S 124°30W in LEM76)

8.3±0.3 MY (73) KA7 WR Holocrystalline basalt;
base of 1,200m thick subaqueous basal succession. LEM72 LEM82
(previously rpt. as 7.0±1.1 MY in LEM72)
Mt. Frakes 76°48'S 117°42'W R 6.0 MY(39)K/A WR Basalt; Cenozoic volcanics. FOL76 LDP76
Boyd Ridge 76°57'S 116°57'W R 11.0 MY(36)K/A WR Hyaloclastite tuff; Cenozoic volcanics. FOL76 LDP76
Toney Mtn. RM 75°30'S 116°00'W R 0.50±0.2 MY(76B)K/A WR Felsite; subaerial stratovolcano succession. LEM72 LEM72A
Toney Mtn. 75°30'S 116°00'W R 0.5±0.1 MY(75)K/A WR Benmoreite; stratovolcano succession. LEM76
Toney Mtn. 75°50'S 115°51'W R 11.5 MY(47a)K/A WR Alkali trachyte; Cenozoic volcanics. POL76 LDP76
S slope, Toney Mtn. 75°48'S 115°48'W R 0.5±0.2 MY(76D)K/A GS Volcanic rock; (same or closely adjacent to sample 76D, FTK date)
Toney Mtn. 75°48'S 115°48'W G 0.24±0.05,0.29±0.10 MY(76D)FTK GS Volcanic rock;--. SEW80
Toney Mtn. 75°48'S 115°48'G 12.0 MY(43v)K/A WR Basalt; Cenozoic volcanics. FOL76 LDP76
"Schist Ridge," Jones Mountains 74°07'S 114°55'W R 370 MY(21v)K/A WR Metaporphyrite; metametasedimentary/metavolcanic complex. LDP76
Martin Peninsula 75°06'S 114°23'W R 13.0 MY(22)K/A WR Olivine basalt; Cenozoic volcanics POL76 LDP76
Kohler Range 74°25'S 114°10'W G 118±6 MY(10*)RS214/0.706 BT,WR Quartz-diorite; Martin Pen. PM lower part, 200m thick subaerial basal succession. LEM72 LEM76
Martin Pen. RM 75°00'S 114°00'W R 9.8±1.7 MY(84)K/A WR Holocrystalline basalt; basal succession. LEM72 LEM76
Leister Peak RM 75°11'S 113°50'W R 90 MY(3)K/A WR Adamellite; Kohler Range 75°11'S 113°50'W R 150 MY(3v)K/A WR Principal dike; intrusive "Chalky complex." LDP76
Kohler Range 75°11'S 113°49'W R 101±4 MY(?#)K/A BT Granitoid rock; Early Bluff 75°04'S 113°44'W R 295 MY(4)K/A WR Metaporphyr; Kohler Range 74°59'S 113°43'G R 174 MY(?#)BSM3/0.705 BT Plutonic igneous rock; WAD72--. HAL79
Mt. Isherwood 74°59'S 113°36'W R 283±10 MY(?#)K/A BT Granitoid rock; Mt. Isherwood 74°58'S 113°21'W R 265±20 MY(246)RS314/0.705 WR,BT,MC Quartz-diorite; Mt. Strange 74°10'S 113°20'W R 95 MY(8)K/A WR Adamellite; Kohler Range 74°10'S 113°20'W R 90 MY(8)K/A BT Adamellite; intrusive "Chalky complex." LDP76
<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Age (Ma)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohler Range</td>
<td>74°40'S 113°20'W</td>
<td>90</td>
<td>Diorite; intrusive complex. LOP76</td>
</tr>
<tr>
<td>Wunneburger Rk.</td>
<td>74°42'S 113°02'W</td>
<td>101±4</td>
<td>Myrtite; BT Granitoid rock; —. WAD72</td>
</tr>
<tr>
<td>Mt. Takahe</td>
<td>74°40'S 113°20'W</td>
<td>0.2±0.2</td>
<td>Myrtite; intraglaciar volcanic deposits. LEM72 LEM82</td>
</tr>
<tr>
<td>Mt. Takahe</td>
<td>74°42'S 113°02'W</td>
<td>0.14±0.11</td>
<td>Myrtite; Aegerine syenite; inclusion; subaquatic stratovolcano succession. LEM72 LEM72A LEM82</td>
</tr>
<tr>
<td>Mt. Takahe</td>
<td>76°38'S 112°38'W</td>
<td>0.3±0.3</td>
<td>Myrtite; Intracanal volcanic deposits. LEM72 LEM72A LEM82</td>
</tr>
<tr>
<td>Jeffrey Head</td>
<td>74°40'S 113°20'W</td>
<td>130</td>
<td>Myrtite; intrusive "Chalky complex." LOP76</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°38'S 113°28'W</td>
<td>295</td>
<td>Myrtite; Diorite; Late Paleozoic intrusive. LOP76</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°38'S 113°28'W</td>
<td>290</td>
<td>Myrtite; Diorite; Late Paleozoic intrusive. LOP76</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°40'S 113°28'W</td>
<td>244±44</td>
<td>Myrtite; Aegerine syenite; in the gabbro described for sample 60A. LEM82</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°38'S 113°28'W</td>
<td>13±3</td>
<td>Myrtite; WA77; in the gabbro described for sample 60A. LEM82</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°40'S 113°28'W</td>
<td>475</td>
<td>Myrtite; Amphibolite; Proterozoic gneiss-migmatite complex. LOP76</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°38'S 113°28'W</td>
<td>44±2</td>
<td>Myrtite; 42±2 Myrtite; Coarse-grained alkaline gabbro; subvolcanic pluton. LEM72 LEM82</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°38'S 113°28'W</td>
<td>28±2</td>
<td>Myrtite; Aegerine syenite; in the gabbro described for sample 60A. LEM82</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°40'S 113°28'W</td>
<td>45.0</td>
<td>Myrtite; Gabbro-dolerite; Cenozoic volcanics. LOP76</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°40'S 113°28'W</td>
<td>225</td>
<td>Myrtite; Porphyroblastic granodiorite; Proterozoic gneiss-migmatite complex. LOP76</td>
</tr>
<tr>
<td>Bear Peninsula</td>
<td>74°40'S 113°28'W</td>
<td>250</td>
<td>Myrtite; Porphyroblastic granodiorite; Proterozoic gneiss-migmatite complex. LOP76</td>
</tr>
<tr>
<td>Dorrel Rock</td>
<td>74°38'S 113°28'W</td>
<td>9.0</td>
<td>Myrtite; WA77; Cenozoic volcanics. POL76 LOP76</td>
</tr>
<tr>
<td>Dorrel Rock</td>
<td>74°38'S 113°28'W</td>
<td>145</td>
<td>Myrtite; WA77; Andesitic porphyrite; metasomatized/metavolcanic complex. LOP76</td>
</tr>
<tr>
<td>Dorrel Rock</td>
<td>74°38'S 113°28'W</td>
<td>0.9±0.14</td>
<td>Myrtite; Holocrystalline basalt; middle of 2,000m thick subaquatic basal succession. LEM72 LEM82</td>
</tr>
<tr>
<td>Dorrel Rock</td>
<td>74°38'S 113°28'W</td>
<td>5.0</td>
<td>Myrtite; Olivine basalt; Cenozoic volcanics. POL76 LOP76</td>
</tr>
<tr>
<td>Dorrel Rock</td>
<td>74°38'S 113°28'W</td>
<td>225</td>
<td>Myrtite; Porphyroblastic granodiorite; Proterozoic gneiss-migmatite complex. LOP76</td>
</tr>
<tr>
<td>Dorrel Rock</td>
<td>74°38'S 113°28'W</td>
<td>250</td>
<td>Myrtite; Porphyroblastic granodiorite; Proterozoic gneiss-migmatite complex. LOP76</td>
</tr>
<tr>
<td>Location</td>
<td>Age</td>
<td>Material Details</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>74°40S 110°20W RM</td>
<td>240±20 MY</td>
<td>Biotite-quartz-feldspar gneiss; basement rocks. HAL73 HAL74</td>
<td></td>
</tr>
<tr>
<td>NE Marie Byrd Land</td>
<td></td>
<td>(ref. isochron age for #'s 10e, 26, and 26d=240 MY)</td>
<td></td>
</tr>
<tr>
<td>74°40S 110°20W RM</td>
<td>238±17 MY</td>
<td>Pegmatitic quartz and K-feldspar; basement rocks. HAL73 HAL74</td>
<td></td>
</tr>
<tr>
<td>NE Marie Byrd Land</td>
<td></td>
<td>(sample #="26e" in HAL74; ref. isochron age for #'s 10e, 26, and 26d = 240 MY)</td>
<td></td>
</tr>
<tr>
<td>Geographic Area 29:</td>
<td>Ellsworth Land, North of 77°00S (samples from west to east by coordinates)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°10S 103°36W G</td>
<td>Brownson Island RM and 74°25S 103°36W G Backer Island RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°07S 101°50W R</td>
<td>McKinzie Island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°55S 101°22W R</td>
<td>Mount Nickens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73°37S 103°14W R</td>
<td>Lindsey Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°08S 100°50W R</td>
<td>W. Thurston Island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°07S 100°50W R</td>
<td>Mt. Simpson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°07S 100°50W R</td>
<td>Thurston Island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°07S 100°50W R</td>
<td>Hodgson Nunatak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°07S 100°50W R</td>
<td>Hodgson Nunatak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°07S 100°50W R</td>
<td>Hodgson Nunatak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°08S 100°50W R</td>
<td>Mt. Noxon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°08S 100°50W R</td>
<td>Mt. Noxon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°30S 100°50W R</td>
<td>Hudson Mountains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°47S 99°41W R</td>
<td>Mount Manthe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°47S 99°41W R</td>
<td>Mount Manthe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°47S 99°41W R</td>
<td>Mount Manthe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°47S 99°41W G</td>
<td>Mount Manthe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74°47S 99°41W G</td>
<td>Mount Manthe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINERALIZATION:

- **60 MY (151) K/A WR Biotite granite; intrusive "Chalky complex."** LOP76
- **125 MY (151a) K/A WR Lamprophyre dike; intrusive "Chalky complex."** LOP76
- **146 MY (151 v) K/A WR Porphyry dike; intrusive "Chalky complex."** LOP76
- **105 MY (151b) K/A WR Biotite granite; intrusive "Chalky complex."** LOP76
- **5.0 MY (155a) K/A WR Basalt (pillow lava); Cenozoic volcanics.** POL76 LOP76
- **347 MY (#?) R/S AM Paleozoic (?) intrusives and/or metamorphics.* CRA70 CRA72**
- **190 MY (68-50-1) K/A AM Amphibole-biotite granite; early Mesozoic intrusive complex.** CRA70 LOP76
- **220 MY (181) K/A WR Amphibole-biotite granite; early Mesozoic intrusive complex.** LOP76
- **9.0 MY (159) K/A WR Hyaloclastite tuff; Cenozoic volcanics.** POL76 LOP76
- **12.0 MY (159a) K/A WR Basalt from a fragment in hyaloclastite tuff; Cenozoic volcanics.** POL76 LOP76
- **18.0 MY (159b) K/A WR Olivine basalt; Cenozoic volcanics.** POL76
- **184 MY (68-51-1) K/A HT Biotite granite; early Mesozoic intrusive complex.** CRA70 LOP76
- **166 MY (68-51-1) R/S HT Biotite granite; early Mesozoic intrusive complex.** CRA70 LOP76
- **20+4 MY (#?) R/S AM Basalt; sub-glacial section.** LEM72A
- **9.0 MY (208v) K/A WR Basalt from crust; Cenozoic volcanics.** POL76 LOP76
- **64.0 MY (207a) K/A WR Basalt from a fragment in tuff; Cenozoic volcanics.** LOP76
- **4.8±0.3 MY (42-6A) K/A7 WR Basalt in hyaloclastite; top of 200m hyaloclastite section.** LEM82
- **4.5±0.2 MY (42-5A) K/A7 WR Basalt in hyaloclastite; below sample 42-6A.** LEM82
- **4.9±1.6 MY (42-4A) K/A7 WR Basalt in hyaloclastite; below sample 42-5A.** LEM82
- **5.5±1.9 MY (H6) K/A7 WR Basalt, subaerial flow-rocks; overlies hyaloclastite sequence.** LAU82
- **8.3±1.0 MY (H4) K/A7 WR Basalt, nodule within hyaloclastite; c. 50m from top of 200m section.** LAU82
- **4.8±1.6 MY (H2) K/A7 WR Basalt, flow rock within hyaloclastite sequence; c. middle of 200m section.** LAU82
Compilation of Isotopic Dates from Antarctica

74°22S 99°00W R
Velie Nunatak
72°04S 99°00W R
Guy Peak, Thurston I.
72°26S 98°42W R
Boker Rock, Thurston I.
71°44S 98°27W R
"Mt. Fury," Thurston I.
72°09S 98°09W R
Kohler Range
72°27S 98°12W R
Mt. Dowling, Thurston Island
72°12S 97°50W R
"Mt. Babbier,"
Thurston Island
72°28S 97°42W R
Belknap Nunatak
72°27S 97°42W R
Shelton Head
72°07S 97°42W R
Shelton Head
73°09S 96°47W G
Long Glacier, Thurston Island
72°15S 96°20W R
Thurston Island
72°12S 96°00W G
SE wall, Morgan Inlet, Thurston Island RM
72°15S 96°00W R
Thurston Island
72°15S 96°00W R
Thurston Island
73°09S 95°45W R
Thurston Island
73°09S 95°45W R
Thurston Island
72°02S 95°00W RM
E. Thurston Island
73°12S 94°27G
below Snowplume Pk.
73°12S 94°27G
Snowplume Peak
73°12S 94°27G
Snowplume Peak
73°09S 94°26W R
"Mt. Jones"
73°09S 94°24G
Granite Spur
73°09S 94°24G
Granite Spur
73°09S 94°24G
Granite Spur

3.6±0.2 MY (28-3A) K/A WR Basalt in hyaloclastite; intraglacial volcanic deposits. LEM82
266 MY (68-54-1) K/A AM Quartzose diorite; late Paleozoic intrusive complex. CRA70 LOP76
145 MY (195) K/A WR Gabbro; intrusive complex. LOP76
140 MY (198a) K/A WR Gabbro; intrusive complex. LOP76
230 MY (68) K/A WR Granodiorite; early Mesozoic intrusive complex. LOP76
200 MY (179) K/A WR Andesitic porphyry; metasedimentary/metavolcanic complex. LOP76
348 MY (#?) K/A WR Gabbro; late Paleozoic intrusive complex. CRA70 LOP76
160 MY (68-63-1) K/A PY Belknap Nunatak
140 MY (191) K/A WR Adamellite; intrusive "Chalky complex." CRA70 LOP76
60 MY (191 g) K/A WR Principal dikes; intrusive "Chalky complex." LOP76
13.2 MY (M-228) RSM2/0.706 BT Granodiorite; Long Glacier, --. MJN72
233 MY (60-11-7) K/A BT Gneiss; Thurston Island Proterozoic gneiss-migmatite complex. CRA70 LOP76
280±10 MY (60-10-8) RSM4/0.707 BT Quartz diorite gneiss; SE wall, Morgan Inlet, CRA64A
502 MY (68-57-1) R/S CL Gneiss; Proterozoic gneiss-migmatite complex. CRA70 LOP76
200 MY (60-12-8) K/A CL Gneiss; Proterozoic gneiss-migmatite complex. CRA70 LOP76
314 MY (68-31-1) K/A AM Amphibolite; Proterozoic gneiss-migmatite complex. CRA70 LOP76
430 MY (60-9-1) K/A AM Gneiss; Proterozoic gneiss-migmatite complex. CRA70 LOP76
138 MY (#?) K/A WR Paleozoic (?) intrusives and/or metamorphics. * CRA70 CRA72
(*"unpubl. data" shown on generalized RM)
9.6±0.5 MY (69-C-18) K/A WR Basaltic flow; Jones Mts. volc. sequence. RUT72
24±12 MY (61-1-1) K/A WR Olivine basalt; Jones Mts. volc. sequence. RUT68 RUT72
10.4±1.2 MY, 8.5±2.8 MY (69-C-17) K/A WR Basaltic flow; Jones Mts. volcanic sequence. RUT72
210 MY (201) K/A WR Biotite granite; early Mesozoic intrusive complex. LOP76
225±50 MY (64-Jones-TB) K/A WR Olivine basalt; Jones Mts. volcanic sequence. RUT68 RUT72
252±30 MY (64-Jones-TB) K/A WR Olivine basalt; Jones Mts. volcanic sequence. RUT68 RUT72
210±8 MY (#?) R/S WR Granite; Basement Complex. RUT72
73°30'S 94°22'W G
Avalanche Ridge
73°30'S 94°22'W G
Avalanche Ridge
73°31'S 94°20'W G
Pillsbury Tower
73°31'S 94°20'W G
Pillsbury Tower
73°32'S 94°17'W RM
"Plant Spur"
Jones Mountains
73°32'S 94°17'W RM
"Plant Spur"
Jones Mountains
73°36'S 94°12'W G
"K Peak",
W. of Forbidden Rocks
73°26'S 94°05'W G
"Peeler's Pinnacle"
72°34'56"S 93°23'00"W R
"Peeler's Pinnacle"
72°34'56"S 93°23'00"W R
"Peeler's Pinnacle"
68°46'S 90°42'W R
Cape Ingrid,
Peter I Island
75°27'S 73°17'W G
N. of Mt. Gwola RM
75°14'S 73°15'W R
W. of Behrendt Mts.
75°14'S 73°15'W R
W. of Behrendt Mts.
75°22'S 72°32'W G
Mount Brice RM
75°19'S 72°32'W G
Luck Nunatak RM
199±6 MY (61-159) K/A MC Porphyritic granite;
Basement Complex. CRA64 RUT68
269±10 MY, 332±15 MY (69-C-10) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
10.5±0.3 MY, 9.6±0.3 MY (69-C-19) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
6.8±0.3 MY, 9.6±0.2 MY (69-C-20) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
52.2±5 MY, 42.9±6 MY (69-C-12) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
141±10 MY, 148±15 MY (69-C-13) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
9.5±0.3 MY, 10.8±0.6 MY (69-C-17) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
6.9±0.3 MY, 6.1±0.15 MY, 7.5±0.4 MY (69-C-9) K/A WR
Basaltic flow; Jones Mts. volcanic sequence. RUT72
(unnamed peak about 30 km west at Forbidden Rocks)
14.8±1.3 MY, 14.7±3 MY (69-C-15) K/A WR Basaltic flow;
Jones Mts. volcanic sequence. RUT72
210 MY (#?) R/S WR Mesozoic intrusive rocks. CRA70 CRA72
(*unpubl. data" shown on generalized RM)
22±12 MY (61-225-4) K/A WR Olivine basalt;
Jones Mts. volcanic sequence. CRA64 RUT68 RUT72
12.1±1.7 MY (#?) FTK GS Basaltic;
---. RUT73
104±4 MY (61-214-1) K/A WR Quartz-latite dike;
intrudes extrusives of Basement Complex. CRA64 RUT68
70°20 MY (361Z) PAI ZR Quartz diorite;
composite batholith. CRA64
97±5 MY (361B) KA13 BT Quartz diorite;
composite batholith. CRA64
(from same sample as 361Z)
12.5±1.5 MY (FI-5) KA11 WR Olivine basalt;
---. BAS76 BAS76A
(infer=#?, 13 MY, in CRA70 and CRA72 with
strat.=Miocene volcanic rocks)
102±6 MY RS2I2/0.706 WR, BT Quartz diorite;
intrudes folded Jurassic sed. rocks. HAL67 IAU69
108.9±1.6 MY (Ke193d) KA17 HB Granodiorite;
west Behrendt batholith. FAR80
104±1.5 MY (Ke193d) KA17 BT Granodiorite;
west Behrendt batholith. FAR80
103±6 MY (H-66-9) RS2I2 WR, BT Quartz monzonite;
intrudes folded Jurassic sed. rocks. HAL67 IAU69
(combined with samples H-66-15 and H-66-9, age=
102±2 MY, RS6I2/0.7060±.0010)
103±5 MY (H-66-15) RS2I2 WR, BT Granodiorite;
intrudes folded Jurassic sed. rocks. HAL67 IAU69
(combined with samples H-66-15 and H-66-9, age=
102±2 MY, RS6I2/0.7060±.0010)
<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Feature</th>
<th>Age (My)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°18S</td>
<td>72°25W</td>
<td>Mount Caywood RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°07S</td>
<td>72°04W</td>
<td>E. of Mt. Boyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°04S</td>
<td>71°57W</td>
<td>Mount Berger RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°05S</td>
<td>71°19W</td>
<td>SE Ski-Hi Nunataks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°16S</td>
<td>70°14W</td>
<td>Mount Smart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°28S</td>
<td>69°21W</td>
<td>Witte Nunataks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°28S</td>
<td>69°21W</td>
<td>Witte Nunataks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°18S</td>
<td>68°11W</td>
<td>Hagerty Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°18S</td>
<td>68°11W</td>
<td>Hagerty Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°09S</td>
<td>65°02W</td>
<td>Scaife Mountains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°09S</td>
<td>65°02W</td>
<td>Scaife Mountains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102±2</td>
<td>WR, BT Granodiorite; intrudes folded Jurassic sed. rocks. HAL67 IAU69 (combined with samples H-66-15 and H-66-9, age=102±2 MY, RS612/0.7060±0.0010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>109±10</td>
<td>WR, BT Diorite; intrudes folded Jurassic sed. rocks. HAL67 IAU69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120.5±1.7</td>
<td>KA17 HB Granodiorite; Ski-Hi stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>123.1±1.8</td>
<td>KA17 HB Granodiorite; Ski-Hi stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>103.4±1.5</td>
<td>KA17 BT Quartz monzonite; Smart stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110.8±1.5</td>
<td>KA17 BT Quartz monzonite; Smart stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108.8±1.6</td>
<td>KA17 HB Granodiorite; interior of Witte stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110.3±1.6</td>
<td>KA17 HB Granodiorite; interior of Witte stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>112.6±1.5</td>
<td>KA17 HB Quartz monzonite; interior of Hagerty stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>116.0±1.6</td>
<td>KA17 BT Quartz monzonite; interior of Hagerty stock. FAR80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>99.4±2.1</td>
<td>KA9 BT Granodiorite; Terwileger pluton. MEH75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102.8±2.2</td>
<td>KA9 HB Granodiorite; Terwileger pluton. MEH75</td>
</tr>
</tbody>
</table>
ELLSWORTH LAND, SOUTH OF 77°00S, INCLUDING WHITMORE MOUNTAIN AREA (samples from north to south by coordinates)

1018±28 My (E.4690.1) KA9 HB Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
991±22 My (E.4690.1) KA9 BT Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
745±18 My (E.4690.1) KA9 BT Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
628±18 My (3.4690.2) KA9 BT Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
1031±14 My (3.4690.2) KA9 BT Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
1002±24 My (E.4690.2) KA9 BT Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
731±18 My (E.4690.2) KA9 BT Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
595±16 My (3.4690.2) KA9 PL Gneiss; may be metamorphic basement of Ellsworth Mts. CLA77
308±15 My (MY79120701) KA9 WR Muscovite-chlorite phyllite; --. YOS82
(*location given in text="Fraser Ridge")

396±20 My (MY80010602) KA9 WR Weakly altered dolerite; intrudes Heritage Group. YOS82
278±14 My (MY80010707) KA17 WR Chlorite-muscovite phyllite; --. YOS82
237±12 My (MY80010801A) KA17 WR Strongly cleaved and altered andesite dike; intrudes Heritage Gp. YOS82
254±13 My (MY80010801) KA17 WR Cleaved and altered basaltic dike; intrudes Heritage Gp. YOS82
298 My (#?) KA17 WR Paleozoic strata.* CRA70 CRA72
272±14 My (MY69123033) KA17 WR Altered massive dolerite; intrudes Heritage Group. YOS82
381±19 My (MY69123033) KA17 WR Altered massive dolerite; intrudes Heritage Group. YOS82

(*"unpubl. data" shown on generalized PM)

176 My (#?) KA17 BT Mesozoic intrusive rocks.* CRA70 CRA72
167 My (#?) KA17 MC Mesozoic intrusive rocks.* CRA70 CRA72
166 My (#?) KA17 BT Mesozoic intrusive rocks.* CRA70 CRA72
163 My (#?) KA17 MC Mesozoic intrusive rocks.* CRA70 CRA72
175 My (#?) KA17 BT Mesozoic intrusive rocks.* CRA70 CRA72
174 My (#?) KA17 FD Mesozoic intrusive rocks.* CRA70 CRA72
172 My (#?) KA17 BT Mesozoic intrusive rocks.* CRA70 CRA72
177±5 My (#?) RS2II/0.7070 BT, WR Granite; thought to intrude metasediments. HAL66
82°28S 103°54W G
Mount Seelig
82°35S 105°55W R
Mount Chapman
Whitmore Mts.
82°41S 104°12W G
Linck Nunataks

190±8 MY (W-65-45) KA13 BT Granite, coarsely crystalline
prophyritic; Mount Seelig Granite. WEB82A

173 MY (120A,120B) RS4I3/0.7148 WR, BT, FD Fine and
coarse-grained phases of granite; the two phases
may correlate with the Linck Nunataks granite and
Mt. Seelig granite. KKV78

176±5 MY (W-65-76) KA13 BT Granite, finely crystalline
equigranular; Linck Nunataks Granite. WEB82A
GEOGRAPHIC AREA 31:

74°28S 64°28W R
N. Latady Mountains
74°28S 64°28W R
N. Latady Mountains
74°23S 65°02W AR
Copper Nunataks
74°23S 64°53W AR
Copper Nunataks
74°23S 64°50W AR
Copper Nunataks
74°22S 64°28W R
N. RARE Range
74°22S 64°28W R
N. RARE Range
74°21S 64°16W R
cen. RARE Range
74°21S 64°16W R
cen. RARE Range
74°19S 62°41W AR
S. Hutton Mountains
73°57S 63°04W AR
Playfair Mountains
73°57S 63°04W AR
Playfair Mountains
73°33S 64°3W R
N. Latady Mountains
73°33S 64°3W R
N. Latady Mountains
73°24S 62°29W AR
Werner Mountains
73°24S 63°19W AR
SW Dana Mountains
73°23S 63°15W AR
SW Dana Mountains
73°23S 63°15W AR
SW Dana Mountains
73°15S 62°10W AR
E. Dana Mountains
73°11S 62°19W AR
E. Dana Mountains
72°50S 63°12W AR
Unknown mountains
71°54S 68°13W G
Two Step Cliffs RM
71°54S 68°13W G
Two Step Cliffs RM
71°54S 68°13W G
Two Step Cliffs RM

PALMER LAND (samples from south to north by coordinates)

108.6±2.3 MY(S10a)KA9 BT Mafic granodiorite;
North Latady pluton. MEH75
117.0±2.4 MY(S10a)KA9 HB Mafic granodiorite;
North Latady pluton. MEH75
95.2±3.0 MY(M430a)KA12 BT Quartz monzonite;
Copper Nunataks pluton. ROW75 FAR82
95.6±3.0 MY(M311a)KA12 BT Granodiorite porphyry dike;
in Copper Nunataks pluton. ROW75 FAR82
104.9±3.2 MY(M308a)KA12 BT Granodiorite;
West RARE batholith. ROW75 FAR82
113.4±2.3 MY(S54a)KA9 BT Mafic granodiorite;
North RARE pluton. MEH75
119.4±2.5 MY(S54a)KA9 HB Mafic granodiorite;
North RARE pluton. MEH75
98.7±2.1 MY(W56)KA9 HB Quartz monzonite;
Crawell pluton. MEH75
100.0±2.1 MY(W56)KA9 BT Quartz monzonite;
Crawell pluton. MEH75
108.6±6.8 MY(Ro160a)KA12 BT Mafic granodiorite;
Crawell pluton. MEH75
98.2±3.0 MY(Ro207a)KA12 BT Quartz monzonite;
southern Werner batholith. FAR82
105.9±2.2 MY(S16x)KA9 BT Granodiorite;
McLaughlin pluton. MEH75
107.1±2.3 MY(S16x)KA9 BT Granodiorite;
McLaughlin pluton. MEH75
107.9±5.1 MY(Ro241a)KA12 BT Diorite, older mafic phase;
near E. intrusive contact, Werner batholith. FAR82
104.9±4.6 MY(K633a)KA12 BT Granodiorite, silicic phase;
near roof of central Werner batholith. FAR82
101.3±3.6 MY(V39f)KA12 BT Diorite, older mafic phase;
near roof of central Werner batholith. FAR82
114.4±6.8 MY(V39f)KA12 HB Diorite, older mafic phase;
near roof of central Werner batholith. FAR82
108.1±2.7 MY(Ro304a)KA12 BT Diorite;
Grimminger pluton. FAR82
100.4±3.8 MY(K661f)KA12 BT Granodiorite;
Galan batholith. FAR82
100.6±4.3 MY(Bo68a)KA12 BT Granodiorite;
northern Werner batholith. FAR82
6930±60 BP(SRR-1500)14C SH Barnacles (outer fraction)
in moraine; oldest of two ice shelf moraines
(Unit 6). CIA82
7200±50 BP(SRR-1500)14C SH Barnacles (inner fraction)
in moraine; oldest of two ice shelf moraines
(Unit 6). CIA82
30,600±600 BP(SRR-1499)14C SH Hiatella solida (inner
fraction) in basal till, 94 to 114 m. alt.;--. CIA82
Compilation of Isotopic Dates from Antarctica

247

71°54S 68°13W G
Two Step Cliffs RM
71°31S 67°15W R
SSW of Mt. Bagshawe
71°31S 67°15W R
SSW of Mt. Bagshawe
71°31S 67°15W R
SSW of Mt. Bagshawe
71°31S 68°14W G
N. end, Waitabit Cliffs RM
71°31S 68°14W G
N. end, Waitabit Cliffs RM
71°24S 63°00W G
nr Davis Ridge RM
71°24S 63°00W G
nr Davis Ridge RM
71°23S 63°22W G
nr Mount Jackson RM
71°23S 63°22W G
nr Mount Jackson RM
71°00S 62°50W G
nr Giannini Peak RM
70°57S 63°30W G
Welch Mountains RM
70°56S 66°48W R
Palmer Land
70°55S 69°20W G
Le May Range
70°55S 69°20W G
Le May Range
70°53S 66°23W R
W of St. Valentines
70°48S 66°13W R
SE of St. Valentines
70°48S 66°13W R
SE of St. Valentines
70°46S 65°55W R
SE of St. Valentines
70°42S 69°49W G
Mt. Corelli Horn
70°42S 69°49W G
Mt. Corelli Horn
70°35S 69°35W G
N.E. Colbert Mountains
70°35S 70°35W G
Colbert Mtns.

32,160±360 BP(SRR-1499)14CHiatella solida (outer fraction) in basal till, 94 to 114m. alt.; ---, CLA82
124±7 MY(KG.200A)RS24/0.7037 BT Tonalite; ---, REX76
(appears to be Andean Intrusive Suite)
131±5 MY(KG.200A;IDB1160)KA9 BT Tonalite; ---, REX76
(appears to be Andean Intrusive Suite)
134±5 MY(KG.200A;IDB1174)KA9 BT Tonalite; ---, REX76
(appears to be Andean Intrusive Suite)
15±1 MY(KG.103.22;AR17)KA9 WR Olivine-camptonite dike; intrudes Aptian sediments. HOR67 REX70 REX76

15±1 MY(KG.103.22;AR30)KA9 WR Olivine-camptonite dike; intrudes Aptian sediments. HOR67 REX70 REX76

115±4 MY(E.4178.1)KA9 BT Foliated granodiorite; main granodiorite unit. SIN80
118±5 MY(E.4178.1)KA9 HB Foliated granodiorite; main granodiorite unit. SIN80
108±4 MY(E.4193.1)KA9 BT Foliated granodiorite; main granodiorite unit. SIN80
113±4 MY(E.4193.1)KA9 HB Foliated granodiorite; main granodiorite unit. SIN80
104±4 MY(E.4065.1)KA9 BT Underformed granodiorite; main granodiorite unit. SIN80
121±4 MY(E.4012.1)KA9 BT Underformed granodiorite; main granodiorite unit. SIN80
119±4 MY(E.4021.1)KA9 BT Underformed granodiorite; main granodiorite unit. SIN80
123±4 MY(E.4021.1)KA9 HB Underformed granodiorite; main granodiorite unit. SIN80
124±4 MY(E.4012.1)KA9 HB Underformed granodiorite; main granodiorite unit. SIN80
152±7 MY(KG.509.2;AR173)KA9 WR Basic dike; ---, REX72 REX76

15±1 MY(E.4178.1)KA9 BT Foliated granodiorite; main granodiorite unit. SIN80
115±4 MY(E.4178.1)KA9 HB Foliated granodiorite; main granodiorite unit. SIN80
118±5 MY(E.4178.1)KA9 HB Foliated granodiorite; main granodiorite unit. SIN80
108±4 MY(E.4193.1)KA9 BT Foliated granodiorite; main granodiorite unit. SIN80
113±4 MY(E.4193.1)KA9 HB Foliated granodiorite; main granodiorite unit. SIN80
104±4 MY(E.4065.1)KA9 BT Underformed granodiorite; main granodiorite unit. SIN80
121±4 MY(E.4012.1)KA9 BT Underformed granodiorite; main granodiorite unit. SIN80
119±4 MY(E.4021.1)KA9 BT Underformed granodiorite; main granodiorite unit. SIN80
123±4 MY(E.4021.1)KA9 HB Underformed granodiorite; main granodiorite unit. SIN80
124±4 MY(E.4012.1)KA9 HB Underformed granodiorite; main granodiorite unit. SIN80
152±7 MY(KG.509.2;AR173)KA9 WR Basic dike; ---, REX72 REX76

165 MY(18)KA6 WR Arkosic sandstone; upper horizon of the Trinity series. GRI67
165 MY(19)KA6 WR Arkosic sandstone; upper horizon of the Trinity series. GRI67
88±3 MY(KG.211)RS24/0.740 MC,KF Granite; ---, REX76

112±5 MY(KG.226.1;IDB1166)KA9 BT,WR Granite; ---, REX76
(appears to be Andean Intrusive Suite)
119±33 MY(KG.226.1)RS24/0.7096 BT;KF Granite; ---, REX76
(appears to be Andean Intrusive Suite)

86±4 MY(KG.214;IDB1028)KA9 WR Andesite; ---, REX72 REX76
105 MY(16)KA6 WR Polymict sandstone; lower horizon of the Trinity series. GRI67
110 MY(17)KA6 WR Polymict sandstone; lower horizon of the Trinity series. GRI67
69 MY(15)KA17 BT Lithocrystalloclastic tuff; Vivaldi Formation. GRI67 HUR81
(earlier reported as 70 MY, KA6, GRI67)
62±1 MY RS611/0.7057±0.0001 WR Rhyolite tuffs and sills; Antarctic Pen. Volc. Gp. THO83
Palmer Land
70°28S 66°33W R

Palmer Land
70°28S 66°33W R

N. Alexander Island
70°3S 65°W M

N. Palmer Land
69°39S 63°49W G

W end, Mt. Sullivan
69°13S 70°50W G

NW Rouen Mountains FM

91±4 MY (KG.554.3; AR201) KA9 WR Basic dike;

92±4 MY (KG.554.3; AR175) KA9 WR Basic dike;

40-60 MY(?; KA17 WR Two lavas from Colbert Fm.

and 4 lavas from Elgar Fm. BJR81

175 MY RSR1/0.706 WR Altered volcanic and

metavolcanics; --. THO83

177±2 MY RSI3/0.7075±0.0003 WR Augen-gneisses

and acid gneisses; crystalline basement. PAN83

46.3±2.8 MY RS6I3/0.7030±0.0016 WR Adamellite;

Rouen Mountains batholith. BJR81 PAN82
GEOGRAPHIC AREA 32: GRAHAM LAND, EXCLUDING TRINITY PENINSULA
(samples from south to north by coordinates)

68°30S 68°30W G
Marguerite Bay area
87±3 MY(E2725.2)KA9 BT --;
---, GLE82

68°23S 67°00W G
Tiber Rocks Island RM
100 MY(21)KA6 WR Porphyroblastic granite from
massif of coarse-grained granites; --. GRI66

68°21S 67°04W G
Garnet Rocks Mtn. RM
110 MY(18)KA6 WR Mesocratic gneissoid granodiorite;
metamorphic complex in crystalline basement. GRI66

68°20S 66°57W G
Safety Col RM
90 MY(24)KA6 WR Biotite granite;
Andean intrusive complex. GRI66

68°20S 66°57W G
Safety Col RM
85 MY(25)KA6 WR Granite porphyry from dike;
in Andean intrusive complex. GRI66

68°20S 66°57W G
Safety Col RM
100 MY(20)KA6 WR Porphyroblastic granite from
massif of coarse-grained granites; --. GRI66

68°20S 66°57W G
Safety Col RM
100 MY(22)KA6 WR Potassic keratophyre;
Andean intrusive complex. CR166

68°20S 66°57W G
Safety Col RM
100 MY(20)KA6 WR Biotite granite;
Andean intrusive complex. CR166

68°18S 67°00W
Red Rock Ridge
92±2 MY RS7I3/0.7050±0.0001 WR Pink granite;
---, PAN82

68°16S 66°50W
Neny Fjord area*
190 MY RS7I3/0.7050 WR Granite-gneisses to diorite-
gneisses; "Marguerite Bay Gneisses." PN83
(*locs. - Roman Four Promontory, Neny Island, and
Randall Rocks; IR is calc., not assumed)

68°13S 66°56W G
Roman Four Promontory
92±2 MY RS101/0.7063±0.0001 WR Adamellite/plitte;
---, PAN82

68°13S 66°56W G
Roman Four Promontory
117±10 MY(76b)RSM4/0.7060 WR Adamellite dike;
post-'basement'. HAL72

68°13S 66°56W G
Roman Four Promontory
95 MY(17)KA6 WR Gneissoid granite;
intersects metamorphic complex. GRI66

68°13S 66°56W G
Roman Four Promontory
110 MY(16)KA6 AM Amphibolite;
intersects metamorphic complex. GRI66

68°13S 66°56W G
Roman Four Promontory
120 MY(15)KA6 WR Biotitic amphibolite;
metamorphic complex in crystalline basement. GRI66

68°12S 66°56W G
Roman Four Promontory
115 MY(14)KA6 BT Biotitic amphibolite;
metamorphic complex in crystalline basement. GRI66

68°12S 66°54W G
Roman Four Promontory
140 MY(13)KA6 AM Biotitic amphibolite;
metamorphic complex in crystalline basement. GRI66

68°12S 66°54W G
Roman Four Promontory
95 MY(12)KA6 WR Gneissoid cataclastic granite;
intersects metamorphic complex. GRI66

68°12S 66°54W G
Roman Four Promontory
86±3 MY(*)102.2;IDB650)KA9 BT Granite; ---, REX76
(appears to be Andean Intrusive Suite)

68°12S 66°41W R
Pyrox Island
119±1 MY RS5I2/0.7063 WR Gray granitic dike;
---, GLE82

68°11S 66°57W G
Anemometer Hill
111±4 MY(7S101.19)KA9 BT Leucocratic gneiss;
---, GLE82

68°11S 66°57W G
Anemometer Hill
110 MY(7)KA6 WR Melanocratic gneissoid diorite;
---, GLE82

68°11S 66°57W G
Stonington I. sta. RM
115 MY(8)KA6 BT Xenoliths of quartz-plagioclase-
biotitic rock in granite veins; metamorphic complex
in crystalline basement GRI66

68°11S 66°57W G
Stonington I. sta. RM
95 MY(9)KA6 WR Granite vein in gneissoid diorites;
intersects metamorphic complex. GRI66
68°11S 67°00W G
Stonington I. sta. RM
68°11S 67°00W G
Stonington Island
68°11S 67°07W R
S of Daspit Glacier
68°11S 65°28W R
N side of Joerg Pen
68°10S 65°00W G
Bowman Coast
68°09S 67°13W G
Millerand Island RM
68°08S 67°05W G
Barbara Island
68°08S 67°05W G
Barbara Island
68°08S 67°06W G
Barbara Island
68°08S 67°06W G
Barbara Island
68°08S 67°07W G
Barry Island
68°08S 66°50W G
Mt. Phamnus RM
68°08S 67°07W G
Debenham Island RM
67°51S 67°12W R
Horseshoe Island
67°51S 67°12W G
Horseshoe Island RM
67°49S 67°11W G
Beacon Head RM
67°49S 67°11W G
NW of Gaul Cove,
Horseshoe Island RM
67°36S 68°13W G
Anchorage Island RM
67°30S 68°10W RM
Square Peninsula
67°27S 67°56W G
Webb Island

115 MY(10)K6 BT Biotite-amphibolic gneissoid rocks
of diorite composition; metamorphic complex in
crystalline basement. GRI66

125 MY(11)K6 BT Amphibole-biotitic gneissoid rocks
of diorite composition; metamorphic complex in
crystalline basement. GRI66

115±10 MY(69-37)RSM4/0.706 WR Granodiorite dike;
post-"basement". HAL72

108±5 MY(69-33)RSM4/0.705 BT Diorite-gneiss;
"Basement Complex" orthogneiss. HAL72

105±15 MY(CT-Iv-5)RSM4/0.706 WR Quartz-diorite dike;
post-"basement". HAL72

181±7 MY(TL.103.1;IDQ1038)K9 BT Gneiss;---. REX76
(appears to be Andean Intrusive Suite)

171±7 MY(TL.1161.1;DBH173)K9 MC Potash-granite-
gneiss contact;---. REX76
(appears to be Andean Intrusive Suite)

600 MY(R.1206.2)RSM4 -- Migmatitic gneiss;
Antarctic Peninsula Volcanic Group.* HAM82
(Re.J. Pankhurst, pers. comm.; *widely referred to as
Upper Jurassic Volcanic Group)

82±8 MY BS613/0.7045±0.0003 WR Pink granite;
---. PAN82

109±1 MY RS512/0.7060 WR Granite (3) and aplite (2);
pluton of coarse pink granite suite. GLE82

120±25 MY RS312/0.7054 WR Granite;
pluton of coarse pink granite suite. GLE82
(same granite samples as 109±1 MY sample of GLE82)

115±10 MY(69-35)RSM4/0.706 WR Coarse pink granite;
post-"basement." HAL72

98±15 MY(54a,55a)RS214/0.706 WR Coarse pink granite;
post-"basement." HAL72

175±7 MY RS612/0.7076 WR Pink granitic gneiss;
gneissic metamorphic complex. GLE82

100 MY(23)K6 WR Biotite granite;
Andean intrusive complex. GRI66

85 MY(19)K6 WR Granite prophyr from
massif of coarse-grained granites;---. GRI66

72±3 MY(*,93.8;IDB582,IB8596)K9 HB, FY Gabbro;
---. REX76
(appears to be Andean Intrusive Suite)

90 MY(26)K6 WR Quartz albitophyre from dike;
in Andean intrusive complex. GRI66

67±8 MY RS813/0.7050±0.0001 WR Pale feldspatic
granite;---. PAN82

102±1 MY RS513/0.7055±0.0007 WR Pink granite/diorite;
---. PAN82
(four granites alone gave an age of 101±6 MY)

62±2 MY RS1013/0.7039±0.0001 WR Granodiorite/granite;
---. PAN82

60±3 MY RS1113/0.7038±0.0001 WR Intrusion of
leuco-gnorodiorite-adamellite;---. PAN82

67±24 MY RS313/0.7038±0.0002 WR Dacite;
66°52S 63°43W G
Cape Robinson PM
66°50S 64°00W G
Cape Robinson PM
66°42S 64°10W R
N. end, Mt. Hayes
66°30S 62°45W G
Churchill Peninsula PM
66°25S 62°20W G
Adie Inlet area
66°23S 63°47W R
W of Cape Casey
66°14S 62°53W G
W of Gulliver Nunatak
66°13S 62°48W R
W of Gulliver Nunatak
66°12S 62°40W G
Gulliver Nunatak
66°08S 62°56W G
W of Gemini Nunatak
66°05S 61°21W R
Jason Peninsula
66°05S 62°11W G
McCaroll Peak RM
66°02S 63°13W R
Leppard Glacier
66°02S 62°42W G
Mt. Fritsche RM

209±3 MY RS813/0.7065±0.0001 WR 'Older' granite;
---. PAN82

174±5 MY RS513/0.7063±0.0001 WR Porphyritic dikes;
---. PAN82

178±2 MY RS613/0.7068±0.0002 WR 'Younger' granite;
---. PAN82

176±7 MY(TL.228;IDB998,IDB1002)KA9 BT Tonalite;
---. REX76

82±1 MY RS1213/0.7042±0.0001 MR Pink granite/diorite;
Andean Intrusive Suite. PAN82

99±8 MY RS313/0.7083±0.0010 WR Rhyolite inclusions in
pink granite; Andean Intrusive Suite. PAN82

203±24 MY RS1313/0.7164±0.0003 Amphibolite and quartzo-
feldspathic bands from banded gneiss;.--. PAN82

246±4 MY RS313/0.7065±0.0001 BT, HB, PL Amphibolitic
inclusion in the gneisses;.--. PAN82

174±7 MY(TL.517.3;IDB1019)KA9 BT Granite;
---. REX76

176±7 MY(TL.517.3)RS813/0.7090 BT Granite;
---. REX76

83±4 MY(TL.872.1;IDB1158)KA9 BI Diorite;
(appears to be Andean Intrusive Suite)

243±10 MY(TL.866.3;IDB1067)KA9 HB Gneiss;
basement complex. REX76

174±2 MY RS513/0.7075±0.0001 WR Rhyolite/dacite;
---. PAN82

240±4 MY(TL.866.3;IDB1066)KA9 HB Gneiss;
inclusion of 2 data points for granodioritic gneiss
yields age of 174±30 MY, IR=0.7080±0.0003)

182±7 MY(TL.846.1;IDB1159)KA9 HB Gneiss;
(appears to be Andean Intrusive Suite)

179±7 MY(TL.846.1;IDB1440)KA9 HB Granite;
(appears to be Andean Intrusive Suite)

186±8 MY(D.2133.1;IDC293)KA9 HB Granodiorite;
basement complex. REX76

156±6 MY(D.2136.1;IDC301)KA9 HB Basalt;
---. REX72 REX76

170±2 MY RS613/0.7063±0.0001 WR Granite/granodiorite;
---. PAN82

164±6 MY(TL.778.1;IDB1046,IDC45)KA9 BT Granite
gneiss; basement complex. REX76

237±9 MY(TL.778.1;IDB1066)KA9 HB Granite gneiss;
basement complex. REX76

164±2 MY RS513/0.7070±0.0001 WM Diorite;
---. PAN82
(6 WR samples give date of 141±49 MY)

336±34 MY RSII/3/0.7054±0.0005 WR Granitic sheets; in banded migmatite. PAN83

173±6 MY RSII/3/0.7065±0.0001 WR Granodiorite; ---. PAN82

169±3 MY RSIII/3/0.7067±0.0002 WR Granite boss; intruded into granodiorite. PAN82

159 MY RSM/3/0.7065 WR Cross-cutting pink quartz feldspar porphyry dike; ---. PAN82

55±3 MY RSIII/3/0.7038±0.0001 WR Diorite/granodiorite/aplite; ---. PAN82

(appears to be Andean Intrusive Suite)

167±2 MY RSII/3/0.7062±0.0001 WR Tonalite and overlying granodiorite; ---. PAN82

163±2 MY RSIII/3/0.7066±0.0001 WR Adamellite intruding tonalite and granodiorite; ---. PAN82

163±6 MY (TL.659.1; IDB1167) KA9 BT Quartz diorite; ---. REX76

(appears to be Andean Intrusive Suite)

158±16 MY (TL.659.1) RSII/4/0.7075 BT, KF Quartz diorite; ---. REX76

(appears to be Andean Intrusive Suite)

73±6 MY (**) 49.2; IDB597) KA9 PY Diorite; ---. REX76

(appears to be Andean Intrusive Suite)

128±3 MY RSIII/3/0.7041±0.0002 WR Pink granite; ---. PAN82

(appears to be Andean Intrusive Suite)

721±105 BP (#?) 14C PE Near the base of a small deep (max. 170 cm) moss (Chorisodontium) bank. SMT82

54±2 MY (IDB801, IDB807) KA9 HB Hornblendeite; ---. REX76

(appears to be Andean Intrusive Suite)

56±2 MY (**) 40.3; IDB574) KA9 BT Quartz-diorite; ---. REX76

(appears to be Andean Intrusive Suite)

56±2 MY (**) 41.1; IDB701) KA9 BT Quartz-diorite; ---. REX76

(appears to be Andean Intrusive Suite)

57±2 MY (**) 41.3; IDB583) KA9 BT Quartz-diorite; ---. REX76

(appears to be Andean Intrusive Suite)

57±2 MY (BS103.11) KA9 BT Perthite dike in contact with granodiorite pluton; cuts Antarct. Pen. Volc. Group. GLE82

(appears to be Andean Intrusive Suite)

72±1 MY RSII/2/0.7036 WR Perthite dike and normal facies of granodiorite pluton; cuts Antarct. Pen. Volc. Group. GLE82

93±8 MY RSIII/3/0.7045±0.0001 WR Late granite-diorite intrusion; ---. PAN82

(appears to be Andean Intrusive Suite)
Oceana Volcano 65°08S 59°50W R
Seal Nunataks Volc. Gp. G0N83
(De Valle and Fourcade, pers. comm.)

nr Punchbowl Glacier 65°07S 61°59W R
98±4 MY (TL.10.1; IDB1159) KA9 BT Granite dike;
Andean Intrusive Suite. FLE68 REX76

nr Punchbowl Glacier 65°07S 61°59W R
99±4 MY (TL.10.2; IDB1121) KA9 BT Granite;
Andean Intrusive Suite. FLE68 REX76

nr Punchbowl Glacier 65°07S 61°59W R
94±5 MY (TL.10.2; IDB1130) KA9 HB Granite;
Andean Intrusive Suite. FLE68 REX76

nr Punchbowl Glacier 65°06'30"S 60°05W R
102±8 MY (TL.10.1) RS2140.7044 BT, KF Granite dike;
Andean Intrusive Suite. FLE68 REX76

nr Punchbowl Glacier 65°06'30"S 60°05W R
1.4±0.3 MY (#?) KA9 WR Volcanic deposits;
Seal Nunataks Volc. Gp. G0N83
(Del Valle and Fourcade, pers. comm.)

nr Punchbowl Glacier 65°06'30"S 60°05W R
1.5±0.3 MY (#?) KA9 WR Volcanic deposits;
Seal Nunataks Volc. Gp. G0N83
(Del Valle and Fourcade, pers. comm.)
94±7 MY(?) KA11 BT Diorite; --. REX76

64°54S 63°40W G
"Canelo Point"
(=Duthiers Point)
64°54S 64°05W G
Bonaparte Point

50±4 BP(?) 14C PE On terrace 10-12 m from glacier
snout, thought to represent base of former moss bank
(Polytrichum-Chorisodontium). SM182

49±2 MY(?) 14C PE On terrace 5-6 m from glacier
snout, thought to represent base of former moss bank
(Polytrichum-Chorisodontium). SM182

425±40 BP(?) 14C PE On terrace 5-6 m from glacier
snout, thought to represent base of former moss bank
(Polytrichum-Chorisodontium). SM182

630±50 BP(?) 14C PE On terrace 0.25 m from glacier
snout, thought to represent base of former moss bank
(Polytrichum-Chorisodontium). SM182
64°47S 64°05W G
NE of Bonaparte Point nr Palmer station
64°47S 64°05W G
NE of Bonaparte Point nr Palmer station
64°47S 64°05W G
NE of Bonaparte Point nr Palmer station
64°47S 64°05W G
NE of Bonaparte Point nr Palmer station
64°47S 64°05W G
NE of Bonaparte Point nr Palmer station
64°47S 64°05W G
NE of Bonaparte Point nr Palmer station
64°44S 61°21W R
SW of Drygalski G1.
64°44S 61°21W R
SW of Drygalski G1.
64°40S 60°56W R
Bekker Nunataks
64°27S 59°11W G
Porphyry Bluff RM
64°25S 59°18W G
Hampton Bluffs RM
64°18S 61°03W G
(Spring Point)
64°18S 61°03W G
(NE of Spring Point)
64°10S 60°58W R
"Tisné Point"
64°08S 61°04W R
Two Hummock Island

19.8±0.8 MY (BS104.2) KA9 BT Hybrid pluton;
(assoc. with gabbro and tonalite plutons)
20.1±0.8 MY (BS104.3A) KA9 HB Hybrid pluton;
(assoc. with gabbro and tonalite plutons)
20.8±1.0 MY (BS104.3B) KA9 HB Hybrid pluton;
(assoc. with gabbro and tonalite plutons)
35±6 MY ("BS104.1") RS812/0.7037 WR Hybrid pluton;
(assoc. with gabbro and tonalite plutons)
21 MY (BS104.1) RS62/0.7037 BT Hybrid pluton;
(assoc. with gabbro and tonalite plutons)
495±85 BP (#?) 14C PE Base (47.5 cm deep) of extensive moss (Polytrichum) bank. SM182
73±4 MY (D.4822.2; IDB933) KA9 HB Hornblende-gabbro;
---. REX76
(appears to be Andean Intrusive Suite)
75±3 MY (D.4822.1; IDB937, IDB961) KA9 HB Diorite;
---. REX76
(appears to be Andean Intrusive Suite)
117±5 MY (D.4844.3; IDB865) KA9 BT Granodiorite;
---. REX76
(appears to be Andean Intrusive Suite)
117±4 MY RS613/0.7153±0.0003 WR Rhyolite;
---. PAN82
(may be the youngest member of the volcanic succession on Trinity Peninsula)
130±7 MY RS513/0.7091±0.0006 WR Rhyodacite;
---. PAN82
196±6 MY (#?) K/A WR Rhyodacites from lava flow;
Andean igneous complex. VAL79
(loc. given as "Cerro Escombrera" in "Cape Spring")
102±5 MY (#?) K/A WR Rhyodacites from dike;
cut Andean Intrusives. VAL79
(loc. given as NE of "Cape Spring")
96±2 MY (B-2) RS212/0.705 WM Granodiorite;
---. HAL67
37±2 MY (BS.1.2; AR187) KA9 WR Basalt;
---. REX72 REX76
GEOGRAPHIC AREA 33: TRINITY PENINSULA (samples from west to east by coordinates)

63°32S 59°50W R
Tower Island
63°32S 59°50W R
Tower Island
63°32S 59°50W R
Tower Island
64°14S 59°15W R
Sjogren Glacier
NE of Mount Hornsby
63°33S 58°56W G
Cape Roquemaurel RM
63°33S 58°56W G
Cape Roquemaurel RM
63°33S 58°56W G
Cape Roquemaurel RM
63°45S 58°52W R
E of Aureole Hills

63°37S 58°49W R
Wimple Dome
nr Wimple Dome
63°27S 58°47W R
NE of Aitkenhead Gl.
63°27S 58°47W R
NE of Aitkenhead Gl.
63°52S 58°36W R
W of Mount Bradley
63°52S 58°36W R
W of Mount Bradley
63°48S 58°35W R
Victory Glacier
63°48S 58°35W R
Victory Glacier
64°10S 58°30W R
James Ross Island
64°04S 58°15W R
SW Palisade Nun. RM
64°04S 58°15W R
SW Palisade Nun. RM

58±2 MY (BS.52.3; AR189) KA9 WR Basalt;
---. REX72 REX76
63±2 MY (BS.52.11; AR188) KA9 WR Basalt;
---. REX72 REX76
54±2 MY (BS.53.2; AR272) KA9 WR Basalt;
---. REX76
113±4 MY (D.3961.1; IDB902) KA9 BT Diorite; ---. REX76
(appears to be Andean Intrusive Suite)
111±4 MY (D.3961.1; IDB909) KA9 HB Diorite; ---. REX76
(appears to be Andean Intrusive Suite)
92±5 MY (D.3966.1; IDB951) KA9 BT Amphibolite; ---. REX76
(appears to be Andean Intrusive Suite)
103±4 MY (D.3966.1; IDB913, IDB962) KA9 HB Amphibolite;
---. REX76
(appears to be Andean Intrusive Suite)
110 MY (1b) KA9 WR Metagranodiorite;
Cretaceous intrusive complex. GRI70
100 MY (1g) KA9 WR Coarse-grained leucocratic granite;
Cretaceous intrusive complex. GRI70
100 MY (1l) KA9 WR Cataclasized leucocratic biotite
granite; Cretaceous intrusive complex. GRI70
137±6 MY (D.4463.2; IDB903) KA9 BT Hornfels;
---. REX76
(appears to be Andean Intrusive Suite)
139±6 MY (D.3550.1; IDB678) KA9 BT Granite; ---. REX76
(appears to be Andean Intrusive Suite)
143±6 MY (D.3550.2; IDB790) KA9 BT Granite; ---. REX76
(appears to be Andean Intrusive Suite)
139±6 MY (D.3850.1; IDB621) KA9 BT Granodiorite; ---. REX76
(appears to be Andean Intrusive Suite)
131±6 MY (D.3852.1; IDB660) KA9 BT Granite; ---. REX76
(appears to be Andean Intrusive Suite)
170±7 MY (D.4257.1; IDB925) KA9 BT Granodiorite; ---. REX76
(appears to be Andean Intrusive Suite)
169±7 MY (D.4258.2; IDB916) KA9 BT Granodiorite; ---. REX76
(appears to be Andean Intrusive Suite)
156±6 MY (D.3662.4; IDB825) KA9 BT Granite; ---. REX76
(appears to be Andean Intrusive Suite)
155±6 MY (D.3663.1; IDB832) KA9 BT Tonalite; ---. REX76
(appears to be Andean Intrusive Suite)
165±7 MY (D.3524.1; IDB768) KA9 BT Granite; ---. REX76
(appears to be Andean Intrusive Suite)
136±6 MY (D.3667.2; IDB874) KA9 BT Metamorphosed
laminated siltstone; ---. REX76

3.0±0.5 MY (D.2144.1; IDC206) KA9 WR Basalt;
James Ross Island Group. REX72 REX76
6.5±0.3 MY (D.4086.1; AR689) KA9 WR Olivine-dolerite;
James Ross I, Volc. Gp. NEL66 REX76
5.4±0.3 MY (D.4086.1; AR693) KA9 WR Olivine-dolerite;
James Ross I, Volc. Gp. NEL66 REX76
<table>
<thead>
<tr>
<th>Location</th>
<th>Date Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlson Island</td>
<td>2.0±0.5 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>63°56S 58°15W R</td>
<td>1.4±0.3 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°55S 58°15W R</td>
<td>1.4±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>64°00S 58°13W R</td>
<td>3.5±0.5 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>James Ross Island RM</td>
<td>4.6±0.4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°56S 58°13W R</td>
<td>2.1±1.0 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°55S 58°13W R</td>
<td>1.4±0.3 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>S of Lagrelius Pt., Carlson Island</td>
<td>75±8 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°25S 58°03W R</td>
<td>100±10 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>SE end, Cape Ducorps</td>
<td>74.7±2.8 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°17S 57°58W</td>
<td>116±4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Bulnes Island area</td>
<td>167±7 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°19S 57°54W RM*</td>
<td>116±4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>"Base O'Higgins" area</td>
<td>116±4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°19S 57°54W RM*</td>
<td>116±4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>"Base O'Higgins" area</td>
<td>116±4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°04S 57°32W G</td>
<td>1.6±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Red Island RM</td>
<td>4.6±0.4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°05S 57°52W R</td>
<td>86±7 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>James Ross Island RM</td>
<td>1.6±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°40S 57°37W R</td>
<td>2.7±0.5 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>S side, South Tail I RM</td>
<td>2.7±0.5 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°16S 57°36W R</td>
<td>90±4 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Couvent Point</td>
<td>89±5 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°38S 57°25W R</td>
<td>2.0±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Eagle Island</td>
<td>2.0±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°38S 57°25W R</td>
<td>1.7±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Eagle Island</td>
<td>1.7±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°33S 57°22W G</td>
<td>386±40 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>View Point</td>
<td>386±40 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°36S 57°22W R</td>
<td>1.7±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Beak Island</td>
<td>1.7±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>63°36S 57°22W R</td>
<td>2.0±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
<tr>
<td>Beak Island</td>
<td>2.0±0.2 MY</td>
<td>James Ross Island Group. REX72 REX76</td>
</tr>
</tbody>
</table>
64°16'S 57°21'W
nr Gourdon Glacier,
James Ross Island
64°16'S 57°21'W
nr Gourdon Gl. RM

63°14'S 57°08'W
NW of Mt. Bransfield

63°17'S 57°06'W
Mount Bransfield

63°17'S 57°06'W
Mount Bransfield

63°31'S 57°01'W
Lizard Hill RM
63°31'S 57°01'W
Lizard Hill
63°31'S 57°01'W
Lizard Hill
63°31'S 57°01'W
Lizard Hill
63°25'S 57°01'W
G
Scar Hills

3.3±0.8 MY (D.4053.6; AR606) KA9 WR Basalt;
---. NEL66 REX76
(may be extrusive phase III, James Ross I Volc. Gp.)

2.2±0.5 MY (D.4053.11; AR180) KA9 WR Olivine-basalt;
NEL66 REX72 REX76

101±5 MY (D.3504.4; IDB780) KA9 HB Quartz-diorite;
---. REX76
(appears to be Andean Intrusive Suite)

93±4 MY (D.3504.1; IDB706) KA9 BT Hypersthene-quartz-
diorite;---. REX76
(appears to be Andean Intrusive Suite)

97±5 MY (D.3504.1; IDB731) KA9 HB Hypersthene-quartz-
diorite;---. REX76
(appears to be Andean Intrusive Suite)

92±2 MY RS813/0.7040±0.0001 WM Granodiorite;
---. PAN82

384±15 MY (D.17; IDB696) KA9 BT Granite;
Paleozoic Intrusive Suite. REX76

351±14 MY (D.19; IDB714) KA9 BT Granite;
Paleozoic Intrusive Suite. REX76

374±15 MY (D.19; IDB724) KA9 MC Granite;
Paleozoic Intrusive Suite. REX76

281±16 MY ("BR.072.1") RS713/0.7069±0.0001 WR Red arkosic
grit(1), grey-green grit(1), banded mud/siltstone(5); Hope Bay Fm., Trinity Pen. Gp. PAN83
("errorchron" date; isochron of 5 samples=296±4 MY
with IR=0.7063±0.0001)

0.9±0.2 MY (27831) KA9 WR Alkali basalt (hawaiite);
James Ross I. Volc. Gp. BAK77

242±50 MY RS21 WR Shale;
Trinity Pen. Fm. DAL72A DAL82

1.1±0.1 MY (D.3787.1; AR600) KA9 WR Basalt;
---. REX76

1.1±0.1 MY (D.3783.1; AR701) KA9 WR Basalt;
---. REX76

6.8 MY (#?) K/A WR Dike;---. ZIN82
(quoted from RIN78)

72±3 MY (27809) KA9 WR Basaltic andesite;
---. BAK77

0.3±0.1 MY (27788) KA9 WR Alkali basalt;
James Ross I. Volc. Gp. BAK77
GEOGRAPHIC AREA 34: SOUTH SHETLAND ISLANDS AND SOUTH ORKNEY ISLANDS
(samples from west to east by coordinates)

63°00'S 62°30'W G
Smith Island
63°00'S 62°30'W G
Smith Island
63°00'S 62°30'W G
Smith Island
63°13'S 62°15'W G
Cape Wallace, Low I.
63°13'S 62°15'W G
Cape Wallace, Low I.
63°18'S 61°59'W

VNitor

63°18'S 61°59'W
nr Cape Hooker, Low I.
63°35'S 61°35'W G
Start Point Pen. RM
63°35'S 61°35'W G
Start Point Pen. RM
63°35'S 61°35'W G
Start Point Pen. RM
63°41'S 61°12'W G
President Head,
Snow Island
63°41'S 61°06'W G
V nitork area RM

58 MY(?)K/A GU Metamorphic rocks;
likely pre-middle Jurassic basement complex. DAL82
5.70 MY RS713/0.704* WR Schist (Terrane A);
Scotia Metamorphic Complex. TAN92
(*date based on broad concordance of these 7
samples with isochron listed for 2/46, Elephant I.)
58 MY(4.831.3)RSM3/0.703 WR Schist (Terrane A);
Scotia Metamorphic Complex. TAN82

121±3 MY(P.407.4)KA17 WR Granodiorite pluton;
cuts later Jurassic marine beds. PAN83B
127 MY(347.1)A/A WR Dacitic intrusin;
---. PAN83B

120±5 MY(P.215.1)KA17 WR Micro-ademellite pluton;
cuts later Jurassic marine beds. PAN83B
129±4 MY(P.862.3)KA17 WR Andesite dike (coarse mesh);
cuts "younger" agglomeratic unit. PAN80
127±4 MY(P.862.3)KA17 WR Andesite dike (coarse mesh);
cuts "younger" agglomeratic unit. PAN80
127±7 MY(P.862.4)KA17 WR Basalt sill (coarse mesh);
nr. base of "younger" agglomeratic unit. PAN80
119±4 MY(P.862.4)KA17 WR Basalt sill (coarse mesh);
nr. base of "younger" agglomeratic unit. PAN80
46±4 MY(P.417.2)KA17 WR Dacite intrusive;
---. PAN83B
108±4 MY(P.845.1b)KA17 WR Basalt lava (fine mesh);
youngest of three lava flows with tuffs. PAN80
103±4 MY(P.845.1b)KA17 WR Basalt lava (coarse mesh);
youngest of three lava flows with tuffs. PAN80
107±4 MY(P.845.2c)KA17 WR Basaltic andesite
(fine mesh); from sequence of three lava flows with tuffs. PAN80
109±4 MY(P.845.2c)KA17 WR Lava (coarse mesh);
from sequence of three lava flows with tuffs. PAN80
86±3 MY(P.845.3a)KA17 WR Basaltic andesite (fine mesh);
oldest of three lava flows with tuffs. PAN80
91±4 MY(P.845.3a)KA17 WR Lava (fine mesh);
oldest of three lava flows with tuffs. PAN80
82±3 MY(P.845.3a)KA17 WR Lava (coarse mesh);
oldest of three lava flows with tuffs. PAN80
74±3 MY(P.845.3b)KA17 WR Basaltic andesite (fine mesh);
oldest of three lava flows with tuffs. PAN80
73±3 MY(P.845.3b)KA17 WR Lava (coarse mesh);
oldest of three lava flows with tuffs. PAN80
108±4 MY(P.845.8)KA17 WR Dolerite plug (coarse mesh);
cuts tuffaceous sediments underlying lava. PAN80
109±4 MY(P.845.9)KA17 WR Dolerite plug (coarse mesh);
cuts tuffaceous sediments underlying lava. PAN80
111±4 MY RS1013/0.7054±0.0002 WR Rhyolite;
---. PAN82
74±3 MY(P.850.5)KA17 WR Basalt sill (fine mesh);
from sequence of lavas. PAN80
77±4 MY(P.850.5)KA17 WR Basalt sill (fine mesh);
from sequence of lavas. PAN80
<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>62°38S 61°06W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>Chester Cone area</td>
<td>AM Megacrysts from andesite; Chester Cone andesite intrusions. PAN80</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>Chester Cone area</td>
<td>AM Megacrysts from andesite; Chester Cone andesite intrusions. PAN80</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>Chester Cone area</td>
<td>AM Megacrysts from andesite; Chester Cone andesite intrusions. PAN80</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>Chester Cone area</td>
<td>AM Megacrysts from andesite; Chester Cone andesite intrusions. PAN80</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>South Beaches RM</td>
<td>1025±80 BP(115732;I-7869)14C2 CO Whalebone vertebrae, foreslope of 3.5-5 m raised beach, alt. 4.5 m. CUR80 (age corrected for 14C deficiency is 85±80 BP)</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>South Beaches RM</td>
<td>2530±85 BP(15731;I-7870)14C2 CO Whalebone vertebrae, rear of 6m raised beach, alt. 7.6 m. CUR80 (age corrected for 14C deficiency is 1590±85 BP)</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>South Beaches RM</td>
<td>4905±100 BP(13731;I-7872)14C2 CO Whalebone vertebrae, preserved on rear of storm beach, alt. 1.8 m. CUR80 (age corrected for 14C deficiency is 3965±100 BP)</td>
</tr>
<tr>
<td>62°38S 61°05W G</td>
<td>E Byers Pen. RM</td>
</tr>
<tr>
<td>Chester Cone</td>
<td>2820±40 BP(SRR-1086)14C2 CO Whalebone vertebrae, embedded in shingle ridge crest of "10 m" raised beach. HAR81 (age corrected for 14C deficiency is 2100 BP)</td>
</tr>
</tbody>
</table>
Compilation of Isotopic Dates from Antarctica

62°38S 61°00W R
Byers Peninsula
62°42S 60°56W R
E South Beaches PM
62°41S 60°23W G
Hurd Peninsula
62°40S 60°22W G
nr Johnson's Dock
Livingston Island PM
62°38S 60°22W G
R
Byers Peninsula
62°042S 60°16W R
E side, False Bay
62°042S 60°16W R
E side, False Bay
62°035S 60°15W G
Gleaner Heights
62°28S 60°08W*
Sayer Nunatak
62°28S 60°08W*
Sayer Nunatak
62°28S 60°08W*
Sayer Nunatak
62°33S 60°01W G
Edinburgh Hill
62°27S 59°59W*
Express Island
62°36S 59°55W G
Half Moon Island FM
62°28S 59°49W G
Mt. Plymouth
62°31S 59°47W G
Greenwich Island
62°22S 59°43W G
Coppermine Pen.

3130±40 BP (SRR-1087) 14C.2) Whalebone, 200 m from
SRR-1086. HAR81

105±130 BP (Birm-50) 14C.2) Whalebone, c.
3 m a.s.l., embedded in emerged beach; --- SH071 SUO73
197 MY R/S WR Five samples from mudstone layer w/ crude
slaty cleavage; Miers Bluff Fm. DAL72A
(recalc. as 204±10 MY, RS513/0.7091+0.0011 in PAN83)

55 MY (101/1) KA6 WR Altered basalt porphyry from
dike; --- GRI70

38 MY (#?) A/A Pluton; --- ELL83
(cooling date)
40±1 MY (P.1259.2) KA17 BT Tonalite pluton;
---, PAN83B
46±2 MY (P.1259.2) KA17 HB Tonalite pluton;
---, PAN83B
39±4 MY (LI110) RS*/0.706 BT Tonalite;
"Andean" intrusives. DAL73
(*mineral data set the age; WR and BT analyses
determined the IR; avg of three LI110 samples =
40±10 MY)

38±8 MY (LI110) RS*/0.712 BT Tonalite;
"Andean" intrusives. DAL73
(*mineral data set the age; WR and BT analyses
determined the IR; avg of three LI110 samples =
40±10 MY)

42±5 MY (LI110) RS*/0.707 BT Tonalite;
"Andean" intrusives. DAL73
(*mineral data set the age; WR and BT analyses
determined the IR; avg of three LI110 samples =
40±10 MY)

0.1±0.4 MY (P.51.1) KA17 WR Basalt extrusive;
---, PAN83B
74±2 MY (P.225.1a) KA17 WR Basalt sill; --- PAN83B
79±2 MY (P.225.1b) KA17 WR Basalt sill; ---, PAN83B
81±2 MY (P.428.3) KA17 WR Clast in vent; ---, PAN83B
c.1 MY (#?) A/A WR Plug;
---, ELL83
84±2 MY (P.926.1) KA17 WR Microgabbro extrusive;
---, PAN83B
105 MY (4a) KA6 WR Quartz-bearing diorite;
outcrop amongst effusive strata. GRI70
0.2±0.3 MY (P.54.1) KA17 WR Basalt extrusive;
---, PAN83B
0.2±0.4 MY (P.55.1) KA17 WR Basalt extrusive;
---, PAN83B
80±2 MY (P.485.1) KA17 WR Basalt sill;
---, PAN83B
82±2 MY (P.840.4) KA17 WR Basalt extrusive;
---, PAN83B
62°22S 59°43W G
Coppermine Pen.
62°22S 59°43W G
"Kitchen Point,"
Robert Island
62°13S 59°02W G
(Flat Top Pen.)
62°13S 59°02W G
(Flat Top Pen.)
62°13S 59°01W G
Horatio Stump RM
62°13S 59°01W G
Horatio Stump
62°14S 59°00W G
Fildes Strait
62°15S 58°59W G
S of Rip Point RM
62°12S 58°56W G
S end, Fildes Pen. RM
62°12S 58°56W G
S end, Fildes Pen. RM
62°12S 58°56W G
S end, Fildes Pen. RM
62°12S 58°56W G
Fildes Peninsula
62°12S 58°58W G
Fildes Peninsula
62°12S 58°58W G
S. Fildes Pen.
62°12S 58°58W G
N. Fildes Pen.
62°12S 58°58W G
N. Fildes Pen.
83±3 MY (P.840.5) KA17 WR Basaltic extrusive;
--- PAN83B
80±2 MY (P.840.6) KA17 WR Basaltic extrusive;
--- PAN83B
84±2 MY (P.842.6) KA17 WR Basaltic extrusive;
--- PAN83B
82±3 MY (P.842.9) KA17 WR Basaltic extrusive;
--- PAN83B
60±1 MY (P.1613.1) KA17 WR Basaltic extrusive;
--- PAN83B
53±1 MY (P.477.1) KA17 WR Andesite extrusive;
--- PAN83B
61±3 MY (A24K) KA17 WR Andesite lava flow;
may be Andean igneous complex. VAL79
(loc. given as "E. Flat Top Point")
88±5 MY (A11) KA17 WR Andesite lava flow;
may be Andean igneous complex. VAL79
(loc. given as "E. Flat Top Point")
54.3±0.6 MY (A24K) KA17 WR Basaltic plug;
Fildes Peninsula Group. WAT82
51±1 MY (P.619.1) KA17 WR Cross-cutting andesite plug;
--- PAN83B
110±10 MY (A23) KA17 WR Andesite lava flow;
may be Andean igneous complex. VAL79
802±43 BP (Birm-14) 14C2 WR Austrocedrus chilensis
(Chilean Pine), in raised beach gravel, c. 6.5 m
a.s.l.; --- SH068 SUG73
79.2±2.6 MY (A32) KA17 WR Basaltic dike;
Upper Jurassic Volcanic Group. WAT82
64.4±0.8 MY (A13) KA17 WR Basaltic lava;
Upper Jurassic Volcanic Group. WAT82
106.0±1.2 MY (A22) KA17 WR Basaltic lava;
Upper Jurassic Volcanic Group. WAT82
85 MY (A20) KA17 WR Manto facies of olivine-pyroxene
basalt; "Andean intrusive complex." GRI70
45 MY (A24K) KA17 WR Vent facies of andesite-basalt;
"Andean intrusive complex." GRI70
51±1 MY (P.615.1) KA17 WR Andesite extrusive;
--- PAN83B
59±2 MY (P.604.1) KA17 WR Andesite extrusive;
--- PAN83B
58±1 MY (P.608.5a) KA17 WR Andesite extrusive;
--- PAN83B
58±2 MY (P.609.3) KA17 WR Andesite extrusive;
--- PAN83B
58±1 MY (P.627.1) KA17 WR Altered lava;
--- PAN83B
31±3 MY (P.629.1) KA17 WR Altered lava;
--- PAN83B
58±4 MY (P.1149.1) KA17 WR Andesite extrusive;
--- PAN83B
52±1 MY (P.1166.7) KA17 WR Andesite extrusive;
--- PAN83B
<table>
<thead>
<tr>
<th>Location</th>
<th>Age and Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>62°12S 58°58W G</td>
<td>48±1 MY (P.1147.3) KA17 WR Basalt extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>N. Fildes Pen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°12S 58°58W G</td>
<td>48±1 MY (P.1147.4) KA17 WR Basalt extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>N. Fildes Pen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°12S 58°58W G</td>
<td>57±3 MY (P.1162.5) KA17 WR Basalt extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>N. Fildes Pen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°12S 58°58W G</td>
<td>43±1 MY (P.1125.1) KA17 WR Basalt andesite extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>N. Fildes Pen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°12S 58°58W G</td>
<td>42±1 MY (P.1182.1/2) KA17 WR Dacite extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>N. Fildes Pen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°12S 58°58W G</td>
<td>46±1 MY (P.1183.2/7) KA17 WR Dacite extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>N. Fildes Pen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°13S 58°56W G</td>
<td>27±2 MY (A6) KA WR Andesite lava flow;</td>
<td>may be Andean igneous complex. VAL79</td>
</tr>
<tr>
<td>Ardley Island</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°12S 58°55W G</td>
<td>44±1 MY (P.611.1) KA17 WR Cross-cutting andesite plug;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>Suffield Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°13S 58°48W G (N of Marian Cove)</td>
<td>47.8±1.8 MY (?!) KA WR Type 1 dolerite;</td>
<td>Andean Intrusive Suite. DAV82 (loc.="Weaver Pen."; R.J. Fankhurst, pers. comm.)</td>
</tr>
<tr>
<td>Marian Cove RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°13S 58°48W G E of South Spit, Marian Cove RM</td>
<td>1420±470 BP (Birm-17) 14C2 SW Inclined sheets of gravel beneath truncation layer, c. 3 m a.s.l.;</td>
<td>-SHO70 SUG73</td>
</tr>
<tr>
<td>62°13S 58°45W G Marian Cove RM</td>
<td>55 MY (27b) KA6 WR Granodiorite from small intrusive stock of gabbroids;</td>
<td>--. GRI70</td>
</tr>
<tr>
<td>62°13S 58°48W R E of South Spit, Marian Cove RM</td>
<td>1223±81 BP (Birm-16) 14C2 SW Truncation layer above inclined sheets of beach gravel, c. 5m a.s.l.</td>
<td>--. SHO68 SUG73</td>
</tr>
<tr>
<td>(apparently younger than modern seaweed Birm-15)</td>
<td>56±1 MY (P.1473.5) KA17 WR Basaltic andesite extrusive;</td>
<td>--. PAN83B</td>
</tr>
<tr>
<td>Marian Cove RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62°14S 58°47W R E of penguin rookery, S Barton Pen. RM</td>
<td>1380±470 BP (Birm-224) 14C2 CO Whalebone rib, from face of raised beach gravel, c. 6-7 m a.s.l.</td>
<td>--. SHO71 SUG73</td>
</tr>
<tr>
<td>62°14S 58°46W G Barton Peninsula RM</td>
<td>1440±55 BP (MB-2; DIC-373) 14C3 CO Whale vertebrae, foreslope below 6 m raised beach, alt. 5.2 m CUR80</td>
<td>(age corrected for 14C deficiency is 500±55 BP)</td>
</tr>
<tr>
<td>62°14S 58°46W G Barton Peninsula RM</td>
<td>1210±55 BP (MB-4; DIC-369) 14C1 CO Whale ear bone, foreslope of 2.5-3 m raised beach, alt. 2 m CUR80</td>
<td>(age corrected for 14C deficiency is 270±55 BP)</td>
</tr>
<tr>
<td>62°14S 58°46W G Noel Hill RM</td>
<td>46±0.7 MY (1) KA3 WR Granodiorite;</td>
<td>Andean Intrusive Suite. WAT82</td>
</tr>
<tr>
<td>62°14S 58°46W G Noel Hill RM</td>
<td>50±2±0.6 MY (2) KA3 WR Granodiorite;</td>
<td>Andean Intrusive Suite. WAT82</td>
</tr>
<tr>
<td>62°14S 58°46W G Noel Hill RM</td>
<td>48±1 MY (P.533.1) KA17 WR Cross-cutting granodiorite plug; --. PAN83B</td>
<td></td>
</tr>
<tr>
<td>62°14S 58°46W G Noel Hill RM</td>
<td>46±1 MY (P.533.2/3) KA17 WR Cross-cutting granodiorite plug; --. PAN83B</td>
<td></td>
</tr>
<tr>
<td>62°14S 58°42W G Potter Cove RM</td>
<td>49.1±0.9 MY (1) KA3 WR Upper andesite lava;</td>
<td>Ezcurra Inlet Group. WAT82</td>
</tr>
<tr>
<td>62°14S 58°42W G Potter Cove RM</td>
<td>57.9±0.8 MY (2) KA3 WR Middle andesite lava;</td>
<td>Ezcurra Inlet Group. WAT82</td>
</tr>
<tr>
<td>62°14S 58°42W G Potter Cove RM</td>
<td>49.7±1.7 MY (3) KA3 WR Lower andesite lava;</td>
<td>Ezcurra Inlet Group. WAT82</td>
</tr>
<tr>
<td>62°14S 58°41W G Three Brothers Hill RM</td>
<td>50.6±0.7 MY (4) KA3 WR Basaltic plug;</td>
<td>Ezcurra Inlet Group. WAT82</td>
</tr>
</tbody>
</table>
Three Brothers Hill
PM 62°15S 58°41W G
nr Three Brothers Hill
PM 62°15S 58°41W G
nr Three Brothers Hill
PM 62°14S 58°41W G
S shore, Potter Cove
PM 62°14S 58°41W G
S shore, Potter Cove
PM 62°15S 58°41W G
Three Brothers Hill
PM 62°15S 58°40W*
Potter Peninsula
PM 62°05S 58°26W G
Keller Peninsula
PM 62°05S 58°26W G
Keller Peninsula
PM 62°05S 58°26W G
Keller Peninsula
PM 62°10S 58°25W G
SW of Admiralty Bay
PM 62°08S 58°24W G
Point Hennequin
PM 62°08S 58°20W G
Lion's Rump
61°57S 57°30W G
Esther Nunatak

1360±65 BP(MB-3;DIC-371)14C3 CO Whale vertebrae, top of 6 m raised beach, alt. 6 m. CUR80
(age corrected for 14C deficiency is 240+65 BP)
1200±110 BP(SP-1;DIC-368)14C3 CO Whale vertebrae, in foreslope of 2.5-3 m raised beach, alt. 2.1 m. CUR80
(age corrected for 14C deficiency is 260±110 BP)
7683±860 BP(Birm-23)14C3 SW Iron-stained sand layer "C", c. 4 m a.s.l., beneath till. SH068 SUG73

9670±230 BP(Birm-48a)14C3 SH Inner fraction, Laternula sp., junction of dark silt horizon (A) and sandy horizon (B) beneath till. SH069 SUG73
8790±260 BP(Birm-48b)14C3 SH Middle fraction, Laternula sp., junction of dark silt horizon (A) and sandy horizon (B) beneath till. SH069 SUG73
47±1 MY(P.685.4)KA17 WR Cross-cutting andesite plug; --. PAN83B
44±1 MY(P.232.1)KA17 WR Basaltic extrusive; Fildes Fm. PAN83B
45±1 MY(P.696.1)KA17 WR Basaltic andesite extrusive; Fildes Fm. PAN83B
42±1 MY(P.750.1)KA17 WR Basaltic andesite extrusive; Fildes Fm. PAN83B
47±1 MY(P.758.1)KA17 WR Basaltic andesite extrusive; Fildes Fm. PAN83B
48±1 MY(P.757.2)KA17 WR Andesite extrusive; Fildes Fm. PAN83B
45±1 MY(P.760.1)KA17 WR Unaltered andesite dike cross-cutting altered lavas; --. PAN83B
44±1 MY(P.1452.2)KA17 WR Unaltered andesite dike cross-cutting altered lavas; --. PAN83B
42±1 MY(P.1454.1)KA17 WR Unaltered andesite dike cross-cutting altered lavas; --. PAN83B

67-77 MY(#?)K/A -- Lowest exposed part of volcanic succession. PAN83B
(K. Birkenmajer and W. Narebski, pers. comm.)
45±1 MY(P.831.2)KA17 WR Andesite lava; Hennequin Fm. PAN83B
27±1 MY(P.831.3)KA17 WR Andesite lava; Hennequin Fm. PAN83B
32±1 MY(P.831.4)KA17 WR Andesite lava; Hennequin Fm. PAN83B
46±1 MY(P.831.5)KA17 WR Andesite lava; Hennequin Fm. PAN83B
47±1 MY(P.831.6)KA17 WR Andesite lava; Hennequin Fm. PAN83B
42±1 MY(P.438.1)KA17 WR Andesite lava; beneath Plio-Pleistocene silt. PAN83B
32±1 MY(G.28.1)KA17 WR Andesite plug; --. PAN83B
<table>
<thead>
<tr>
<th>Location</th>
<th>Age</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61°03S 55°58W G</td>
<td>28.6 MY(OBS)KA17</td>
<td>HB Schist; Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>O'Brien Island RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°03S 55°58W G</td>
<td>29.4 MY(OBS)KA17</td>
<td>HB Schist; Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>O'Brien Island RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°15S 55°20W RM</td>
<td>100±4 MY(JSE2/36/7)KA9</td>
<td>MI Quartz-albite-muscovite-schist; REX73</td>
</tr>
<tr>
<td>SW coast, Elephant I.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°10S 55°14W G</td>
<td>105 MY(2/44/2)KA17</td>
<td>AM Schist; Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>N Elephant I. RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°10S 55°14W G</td>
<td>118 MY(3/38/2)KA17</td>
<td>HB Albite-hornblende-epidote-schist; TAN82</td>
</tr>
<tr>
<td>S Elephant I. RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°10S 55°14W G</td>
<td>75±16 MY(2/46*)RS613/0.7044</td>
<td>WR Phyllite; Terrane A, Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>N Elephant I. RM</td>
<td></td>
<td>(*locality number; max age=250 MY for IR=0.703)</td>
</tr>
<tr>
<td>61°10S 55°14W G</td>
<td>270 MY(2/36*)RS613/0.704 WR</td>
<td>Schist (Terrane B); Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>N Elephant I. RM</td>
<td></td>
<td>(*=locality number; isochron drawn through 4 close data points)</td>
</tr>
<tr>
<td>61°10S 55°14W G</td>
<td>96±3 MY(2/36*)RS513 MC, WR</td>
<td>Schist (Terrane B); Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>S Elephant I. RM</td>
<td></td>
<td>(*=locality number)</td>
</tr>
<tr>
<td>61°10S 55°14W G</td>
<td>102±2 MY(2/36*)RS513 MC, WR</td>
<td>Schist (Terrane B); Scotia metamorphic complex. TAN82</td>
</tr>
<tr>
<td>S Elephant I. RM</td>
<td></td>
<td>(*=locality number)</td>
</tr>
<tr>
<td>61°10S 55°14W R</td>
<td>82.7±3.5 MY(E62-1)KA12</td>
<td>WR Quartz-calcite-amphibole schist; Elephant Island subgroup. DAL72</td>
</tr>
<tr>
<td>nr "Wreck Cove"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Elephant I. RM</td>
<td>77.6±1.6 MY(E62-4)KA12</td>
<td>WR Quartz-calcite-amphibole schist; Elephant Island subgroup. DAL72</td>
</tr>
<tr>
<td>61°10S 55°14W R</td>
<td>88.3±1.6 MY(E62-5)KA12</td>
<td>WR Quartz-calcite-amphibole schist; Elephant Island subgroup. DAL72</td>
</tr>
<tr>
<td>nr "Wreck Cove"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Elephant I. RM</td>
<td>81.4±1.6 MY(E62-8)KA12</td>
<td>WR Quartz-calcite-amphibole schist; Elephant Island subgroup. DAL72</td>
</tr>
<tr>
<td>61°10S 55°14W R</td>
<td>151±36 BP(SRR-27)</td>
<td>MO Bank, c. 240 cm depth. COL76 (may be same sample as SRR-27 of HAR79 dated as 1520±40 BP)</td>
</tr>
<tr>
<td>nr "Wreck Cove"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Elephant I. RM</td>
<td>104-105 MY(?)K/A MC</td>
<td>Glauconphane schist; suggested correlation with Paleozoic-lower Mesozoic complex of South Orkneys. DAL82</td>
</tr>
<tr>
<td>Clarence and/or N. Elephant Islands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°08S 54°24W G</td>
<td>152±40 BP(SRR-28)</td>
<td>14C MO Peat from eroded bank. HAR79 (loc. described as SE slope; may be same sample dated as 1515±36 BP in COL76)</td>
</tr>
<tr>
<td>N of Walker Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°04S 54°28W G</td>
<td>9.5±0.4 MY(JSE2/106/6)KA9</td>
<td>BT Granodiorite; Andean Intrusive Suite. REX73</td>
</tr>
<tr>
<td>S Cornwallis I. RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°19S 54°05W R</td>
<td>71±40 MY RS713/0.7094+0.005</td>
<td>WR Phyllites and/or schists; blueschist-greenschist facies, Scotia Metamorphic Complex. HER84</td>
</tr>
<tr>
<td>Cape Bowles,</td>
<td></td>
<td>('Errorchron'; model ages=300-800 MY if IR=0.704)</td>
</tr>
<tr>
<td>Clarence Island</td>
<td>30 MY(3la)KA6 WR</td>
<td>Sericite-Chlorite-quartz schist; contains Upper Precambrian microfossils. GRI70</td>
</tr>
<tr>
<td>61°12S 54°05W G</td>
<td>WR Chlorite-epidote schist;</td>
<td>contains Upper Precambrian microfossils. GRI70</td>
</tr>
<tr>
<td>E Clarence Island RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°12S 54°05W G</td>
<td>55 MY(3lb)KA6 WR</td>
<td>Chlorite-epidote schist; contains Upper Precambrian microfossils. GRI70</td>
</tr>
<tr>
<td>E Clarence Island RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°44S 45°41W R</td>
<td>186±7 MY(H.135B.1; IDC74)KA9</td>
<td>MC Schist; Basement complex. REX76</td>
</tr>
</tbody>
</table>
60°45'S 45°41'W
N of Snipe Pk., Moe I.
60°40'S 45°40'W
E of Rusty Bluff

178±7 MY (H.135.B1; IDC63) KA9 BT Schist; Basement complex. REX76

14C = -13.9+8.5°/oo = Modern (SRR-515) 14C MO Peat (Chorisodontium aciphyllum, w/ Polytrichum alpestre), bank between ice and rock outcrop. HAR79

(infer = "1770-1910 or 1850-1920 AD" sample in FEN82A with site shown on RM)

60°40'S 45°40'W
E of Rusty Bluff

14C = -6.0±8.3°/oo = Modern (SRR-514) 14C MO Peat (Chorisodontium aciphyllum, w/ Polytrichum alpestre), base of deposit, under 65 cm of ice. HAR79

(may not be in situ; infer = "1814-1944 or 1850-1910 AD" sample in FEN82A w/site shown on RM)

60°40'S 45°40'W
Signy Island

14C = -20.5±4.6°/oo = Modern (SRR-897) 14C MO Shallow bank of Chorisodontium aciphyllum, c. 10 cm deep. HAR81

(infer = "1731-1811 or 1900-1930 AD" sample in FEN82A w/site shown on RM)

60°40'S 45°40'W
Signy Island

14C = +24.5±5.5°/oo = Modern (SRR-899) 14C MO Chorisodontium aciphyllum, c. 10-15 cm deep, on level ground. HAR81

(infer = "Post-1950 AD" sample in FEN82A with site shown on RM)

60°40'S 45°40'W
Signy Island

14C = +6.9±4.3°/oo = Modern (SRR-901) 14C MO Peat (Chorisodontium aciphyllum) bank overlying bedrock, sample from base of front face, c. 1.6 m depth. HAR81

(infer = "Post-1950 AD" sample in FEN82A with site shown on RM)

60°42'S 45°40'W
NW coast above Spindrift Rocks

14C = -184±96 BP (Q-801) 14C MO Polytrichum-Dicranum, from base (150-170 cm from surface) of large frozen moss bank, 150-200 ft. a.s.l. GD66

3380±100 BP (SRR-1088;13) 14C MO Peat (Chorisodontium aciphyllum) bank overlying bedrock, sample from base of bank, c. 2 m depth. HAR81

4800±300 BP (SRR-1089;14) 14C MO Peat (Chorisodontium aciphyllum) bank overlying bedrock, sample from base of front face, c. 1.25 m depth. HAR81

(reported as 4801±300 BP in FEN82B)

1210±40 BP (SRR-1090;14) 14C MO Peat (Chorisodontium aciphyllum) bank overlying bedrock, sample from base of front face, c. 2 m depth. HAR81

1150±40 BP (SRR-1091;16) 14C MO Peat (Chorisodontium aciphyllum) bank overlying bedrock, sample from front face, c. 1.95 m depth. HAR81

1050±40 BP (SRR-1092;17) 14C MO Peat (Chorisodontium aciphyllum) bank overlying bedrock, sample from front face, c. 1.6 m depth. HAR81
60°41S 45°38W R
Spindrift, Signy I.

Spindrift, Signy I.

60°43S 45°38W G
Signy Island RM

Moe I.

193 My(H.1,369.1) KA14 BT Quartz-mica-schist; basement schist. MIL60
(composite sample)

60°43S 45°38W G
Signy Island

30±6 yr. RS812/0.7122±0.002 WR Schist; Basement complex. REX76
(date=271±54 My using RS814; coords. of each sample are listed in REX76)

60°43S 45°38W G
Signy Island

176 My(H.60.3) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

199 My(H.86.1) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

183 My(H.154.8) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

184 My(H.164.2) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

195 My(H.205.2) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

195 My(H.507.3) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

176 My(H.507.3) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°43S 45°38W G
Signy Island

198 My(H.1,369.1) KA14 BT Quartz-mica-schist;
basement schists. MIL60

60°41S 45°38W R
Spindrift, Signy I.

480±40 BP (SRR-1093; 18) 14C1 MO Peat (Chorisodontium
aciphyllum) bank overlying bedrock, sample from
front face, c. 1.3 m depth. HAR81

430±40 BP (SRR-1094; 19) 14C1 MO Peat (Chorisodontium
aciphyllum) bank overlying bedrock, sample from
celling of overhang, c. 1 m deep in base of bank.
HAR81
60°41S 45°38W R
Signy I.
60°43S 45°38W G
Signy I.
60°43S 45°38W R
below Jane Peak RM
60°44S 45°38W G
below Jane Peak,
Signy I.
60°44S 45°38W G
in McLeod Glacier
60°44S 45°38W G
in McLeod Glacier
60°44S 45°38W G
E of Rusty Bluff
60°41S 45°37W G
below Spindrift Col
60°40S 45°35W G
nr Cape Hansen
60°38S 45°35W G
W of Shingle Cove,
Coronation I.
60°38S 45°35W R
Coronation I.
60°38S 45°35W R
Coronation I.
60°39S 45°32W R
Cape Hansen,
Coronation I.
60°45S 45°09W G
Matthews I. RM

235 MY(11) KA6 WR Plagioclase-actinolite schist;
---. GRI67
225 MY(12) KA6 WR Garnet-quartz-mica schist;
---. GRI67
205 MY(13) KA6 MC Garnet-quartz-mica schist;
---. GRI67
254±35 BP(11) 14C MO Base of re-exposed 30 cm thick
Chorosondium aciphyllum peat bank. COL76
(*site number; appears to be same sample as SRR-27
of HAR79 listed from below Jane Peak)
8140=26.3±3.8°/oo=Modern (SRR-27) 14C MO Exposed peat
from base of bank, c. 30 cm deep. HAR79
(infer="1661-1731 or 1935-1950 AD" sample in
FEN82A with site shown on RM)
d14C=+4.9°/oo=Modern (SRR-895;5) 14C MO Carpet
of Drepanocladus uncinatus on rk. outcrop. HAR81
(infer="Post-1950 AD" sample in FEN82A with site
shown on RM)
d14C=−13.4±6.5°/oo=Modern (SRR-900;10) 14C LI Usnea
antarctica on same rock outcrop as SRR-895. HAR81
(infer="1799-1909 or 1850-1910 AD" sample in
FEN82A with site shown on RM)
d14C=+1.9±6.5°/oo=Modern (SRR-896;6) 14C MO
Polytrichum juniperinum cushion on rk. outcrop.
HAR81
(infer="Post-1950 AD" sample in FEN82A with site
shown on RM)
d14C=−1.8±7.5°/oo=Modern (SRR-512) 14C MO Peat
(Chorosondium aciphyllum w/ Polytrichum
alpestre), upper layer of deposit, under 65 cm of
ice. HAR79
(infer="1733-1843 or 1900-1935 AD" sample in
FEN82A with site shown on RM)
d14C=−18.2±7.5°/oo=Modern (SRR-902) 14C MO
Polytrichum alpestre and Chorosondium aciphyllum
re-exposed turf bank, c. 20 cm deep. HAR81
(infer="1738-1818 or 1910-1940 AD" sample of FEN82A)
189±7 MY(H.1374.1;IDC48) KA9 MC Schist;
Basement complex. REX76
187±7 MY(H.246.1;IDC35) KA9 MC Schist;
Basement complex. REX76
8140=−17.0±7.5°/oo=Modern (SRR-512) 14C MO Basal
3.5 cm of re-exposed 10 cm-thick peat bank
(Chorosondium aciphyllum). HAR79
(infer="1722-1842 or 1890-1945 AD" sample of FEN82A)
c.90 MY(#?) KA WR Basic doleritic dike;
cuts Spence Harbour Conglomerate. TH081
(based on 3 samples analyzed by R.J. Pankhurst)
<table>
<thead>
<tr>
<th>GEOGRAPHIC AREA 35:</th>
<th>OCEAN SITES WITHIN C. 250 KM OF THE WEST ANTARCTIC COAST, EXCLUDING WEDDELL SEA (samples from west to east by coordinates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64°05'30"S 75°19'42"W R SE Pacific Basin</td>
<td>18,240±1050 BP(FSU-46)14C2 FO Globigerina parhyderma; Core No. 10-15, 0-10 cm from top. STI66</td>
</tr>
<tr>
<td>64°05'30"S 75°19'42"W R SE Pacific Basin</td>
<td>23,940±925 BP(FSU-48)14C2 FO Globigerina parhyderma; Core No. 10-15, 20-30 cm from top. STI66</td>
</tr>
<tr>
<td>64°10'30"S 75°18'00"W R SE Pacific Rise</td>
<td>22,460±925 BP(FSU-47)14C2 FO Globigerina parhyderma; Core No. 10-14, 5-15 cm from top. STI66</td>
</tr>
<tr>
<td>64°54'00"W R mid. Drake Passage</td>
<td>GT 23,600 BP(FSU-49)14C2 FO Globigerina parhyderma; Core No. 4-14, 85-95 cm from top. STI66</td>
</tr>
</tbody>
</table>
GEOGRAPHIC AREA 36: FILchner Ice Shelf, Ronne Ice Shelf, Weddell Sea, and Associated Islands (samples from south to north by coordinates)

74°22.57S 37°45.50W R
SE Weddell Sea
31,290+4330-2800 BP (212/15; T-3,625) 14C SH Fragments
1-10 mm in size, from overconsolidated till from shelf edge at water depth 512 m. EIV81

74°16.15S 39°26.44W R
SE Weddell Sea
GT 35,100 BP (214/175; T-3,835) 14C SH Bivalves in situ
in glaciomarine deposits from upper continental slope at water depth 730 m. EIV81

72°10S 16°35W R
SE Weddell Sea
21,240+760 BP (234/35; T-3,617) 14C Bryozoan debris, in glaciomarine deposits from upper continental slope at water depth 650 m. EIV81

72°10S 16°35W R
SE Weddell Sea
28,130+1410 BP (234/85; T-3,618) 14C Bryozoan debris, in glaciomarine deposits from upper continental slope at water depth 650 m. EIV81

72°10S 16°35W R
SE Weddell Sea
37,830+3110 BP (234/105; T-3,332) 14C Bryozoan debris, in glaciomarine deposits from upper continental slope at water depth 650 m. EIV81

70°00S 2°00W R
nr Sanae, E edge, Weddell Sea
3950+160 BP (206/16; T-3836) 14C Coral, in glaciomarine sediments from outer continental shelf at water depth 420 m. EIV83
(date=4700 BP minus 750 yr correction factor)

GEOGRAPHIC AREA 37: Central East Antarctica (samples from south to north by coordinates)

No listings
LIST 2

RADIOCARBON DATES ON MARINE AND LACUSTRIAN MATERIAL, INDEPENDENTLY ESTABLISHED OR INFERRED TO BE RECENT (SAMPLES ARRANGED BY COORDINATES IN THE SAME FASHION AS LIST 1)

GEOGRAPHIC AREA 3

74°54S 163°39E G 1390±40 BP(QL-171) 14C1 SE Weddell seal killed in 1912 by Scott’s Northern Party. STU81
Inexpressible I. RM 1770±50 BP(QL-172) 14C1 PQ Remains of Adelie penguin in rookery on emerged beaches. STU81
74°54S 163°39E G 1300±50 BP(QL-173) 14C1 PQ Emperor penguin killed in 1912 by Scott’s Northern Party. STU81
Inexpressible I. RM 1540±50 BP(QL-175) 14C1 SH From surface of floating ice tongue. STU81
75°02S 162°36E G
Backstairs Passage (Glacier) RM

GEOGRAPHIC AREA 6

77°43S 162°25E G 615±100 BP(#?) 14C1 SE Dead no more than a few weeks. DOR71
ice of L. Bonney (may refer to M-1920)
77°40-43S 162°30-45E R 615±100 BP(M-1920) 14C2 SK Crabeater seal, side away from ground; dead no longer than 1 yr. CRA72
Suess Gl., L. Bonney, Nussbaum Riegel
77°43S 163°35E G 850±50 BP(QL-98) 14C1 SH Adamussium colbecki, with soft parts attached, surface of sea ice. STU81
Explorers Cove
77°43S 163°35E G 990±50 BP(QL-996) 14C1 SH Adamussium colbecki, alive, from Cove floor at 25 m depth. STU81
Explorers Cove

GEOGRAPHIC AREA 19

69°10S 37°30E G 1190±90 BP(GaK-6789a) 14C FL Living Neoliucinum eatoni, c. -17 to -35 m. YOS79
Lützow-Holm Bay 1300±90 BP(GaK-6789b) 14C SH Living Neoliucinum eatoni, c. -17 to -35 m. YOS79
69°10S 37°30E G Lützow-Holm Bay 1070±90 BP(GaK-6790a) 14C FL Living Ophionotus victoriae, -92 m. YOS79
69°10S 37°30E G Lützow-Holm Bay 1210±100 BP(GaK-6790b) 14C SH Living Ophionotus victoriae, -92 m. YOS79
69°10S 37°30E G Lützow-Holm Bay 1160±110 BP(GaK-6791a) 14C FL Living Sterechinus neumayeri, -17 m. YOS79
Lützow-Holm Bay 860±110 BP(GaK-6791b) 14C SH Living Sterechinus neumayeri, -17 m. YOS79
Lützow-Holm Bay 1160±110 BP(GaK-6792) 14C Living Trematomus bernacchii, -15 m. YOS79
Lützow-Holm Bay
(LIST 2 CONTINUED)

69°10S 37°30E G Lutzow-Holm Bay
69°10S 37°30E G Lutzow-Holm Bay
68°44.5S 38°42.0E R Lutzow-Holm Bay
69°40.0S 39°23.5E R lake nr Syowa Sta.
69°40.0S 39°23.5E R lake nr Syowa Sta.
68°16.2S 39°29.5E R S of Ungane Islands
69°01.0S 39°36.5E R Lutzow-Holm Bay

GEOGRAPHIC AREA 22

68°34S 77°55E RM anchorage off Davis
68°35S 77°59E RM seashore nr Davis
68°33.5S 78°00E RM "Airport beach," near Davis

GEOGRAPHIC AREA 26

64°11S 83°59E R S. Indian Ocean

Δ14C=-66.9°/oo(286;ML2375)14C Seawater, 9 m. depth, coll. on 2/13/78. STU83A
Δ14C=-67.9°/oo(287;ML2374)14C Seawater, 29 m. depth, coll. on 2/13/78. STU83A
Δ14C=-92.9°/oo(288;ML2373)14C Seawater, 46 m. depth, coll. on 2/13/78. STU83A
Δ14C=-147.8°/oo(290;ML2372)14C Seawater, 210 m. depth, coll. on 2/13/78. STU83A
Δ14C=-155.1°/oo(292;ML2370)14C Seawater, 674 m. depth, coll. on 2/13/78. STU83A
Δ14C=-159.1°/oo(293;ML2369)14C Seawater, 905 m. depth, coll. on 2/13/78. STU83A
Δ14C=-164.0°/oo(294;ML2368)14C Seawater, 1119 m. depth, coll. on 2/13/78. STU83A
Δ14C=-159.5°/oo(295;ML2367)14C Seawater, 1392 m. depth, coll. on 2/13/78. STU83A
Δ14C=-161.4°/oo(395;ML2366)14C Seawater, 1665 m. depth, coll. on 2/13/78. STU83A
Δ14C=-161.2°/oo(394;ML2365)14C Seawater, 1939 m. depth, coll. on 2/13/78. STU83A
(LIST 2 CONTINUED)

64°11S 83°59E R S. Indian Ocean
62°-70°S, 160°-170°E R "South Polar Seas"
66°14S 166°14E R South Pacific
70°00S 168°34E R "South Polar Seas"

\[\Delta^{14}C = -161.6^{\circ}/oo(393; ML2364) \] Seawater, 2214 m. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -163.1^{\circ}/oo(392; ML2363) \] Seawater, 2490 in. depth, coll. on 2/13/78. STU83A

"South Polar Seas"
82°22.5S 168°37.5E R J-9, Ross Ice Shelf
78°01S 163°54E R at Heald Island
78°01S 167°21E R at White Island
77°57S 164°38E R at Cape Chocolate
77°51S 166°20E R nr McMurdo Sound
77°51S 166°37E R nr NAF, McMurdo Sound
77°05S 166°30E AR McMurdo Sound
77°03S 165°00E G McMurdo Sound
77°03S 165°00E G McMurdo Sound
77°03S 165°00E G McMurdo Sound
77°01S 172°06E R Ross Sea

\[\Delta^{14}C = -155.5^{\circ}/oo(391; ML2362) \] Seawater, 2763 in. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -148.8^{\circ}/oo(387; ML2356) \] Seawater, 3186 m. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -151.4^{\circ}/oo(386; ML2358) \] Seawater, 3580 m. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -161.9^{\circ}/oo(398; ML2361) \] Seawater, 2975 in. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -151.9^{\circ}/oo(390; ML2360) \] Seawater, 3186 in. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -148.8^{\circ}/oo(387; ML2359) \] Seawater, 3186 in. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -151.4^{\circ}/oo(386; ML2358) \] Seawater, 3580 m. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -155.5^{\circ}/oo(391; ML2362) \] Seawater, 2763 in. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -148.8^{\circ}/oo(387; ML2356) \] Seawater, 3186 m. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -151.4^{\circ}/oo(386; ML2358) \] Seawater, 3580 m. depth, coll. on 2/13/78. STU83A

\[\Delta^{14}C = -155.5^{\circ}/oo(391; ML2362) \] Seawater, 2763 in. depth, coll. on 2/13/78. STU83A

"South Polar Seas"
82°22.5S 168°37.5E R J-9, Ross Ice Shelf
78°01S 163°54E R at Heald Island
78°01S 167°21E R at White Island
77°57S 164°38E R at Cape Chocolate
77°51S 166°20E R nr McMurdo Sound
77°51S 166°37E R nr NAF, McMurdo Sound
77°05S 166°30E AR McMurdo Sound
77°03S 165°00E G McMurdo Sound
77°03S 165°00E G McMurdo Sound
77°03S 165°00E G McMurdo Sound
77°01S 172°06E R Ross Sea

\[\Delta^{14}C = -73^{\circ}/oo(IJ-4256) \] IC Seawater from 20 m below bottom of ice at hole J-9. LIN80

\[\Delta^{14}C = -111^{\circ}/oo(IJ-3955; PP4) \] IC Seawater from below ice head, -10 m. (ice thickness c. 10 m). LIN79

\[\Delta^{14}C = -108^{\circ}/oo(IJ-3957; PP6) \] IC Seawater from below ice, -3 m. LIN79

\[\Delta^{14}C = -116^{\circ}/oo(IJ-3956; PP5) \] IC Seawater from below ice, -9 m. LIN79

\[\Delta^{14}C = -70^{\circ}/oo(IJ-3952; PP1) \] IC Seawater from below ice, -5 m. LIN79

\[\Delta^{14}C = -12^{\circ}/oo(AR) \] IC IC Seawater from ice hole, -5 in. LIN79

\[c.1200 BP (#?) \] 14C Modern penguin and fish. BAR67

\[(d^{14}C = -140^{\circ}/oo; T.A. Rafter, pers. comm.; infer=1200 BP fish sample mentioned in CIA65 and DOR81) \] d^{14}C = -140^{\circ}/oo (R.536/1) 14C Surface sea water. BAR67

\[1610+90 BP (LJ-3074) 14C IC Living fishes caught at a fish-hole near McMurdo Station. YAM67 DOR81 \] 920±40 BP (LJ-3073) 14C WB Fish (Pleuragrammus antarcticum), 0 to -200 m., 2/24/72. WIL75 LIN77
(LIST 2 CONTINUED)

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>77°05S 172°44E R</td>
<td>Ross Sea</td>
<td>18.14C=-107°20′/oo(W-2836)14C Krill (Euphausia crystallorophias) 0 to -200 m., 2/24/72. WIL75</td>
</tr>
<tr>
<td>77°S 165°E AR</td>
<td>McMurdo Sound</td>
<td>1300 BP(L-570)14C FL Right rear flipper of freshly killed seal. BRO61 (infer= unspecified sample in DOR71)</td>
</tr>
</tbody>
</table>

GEOGRAPHIC AREA 34

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62°03S 61°00W R</td>
<td>Livingston Island</td>
<td>840±75 BP(13732;DIC-372)14C3 BN Whale, dead 2–10 years, on storm beach. CUR80</td>
</tr>
<tr>
<td>62°03S 60°53W G</td>
<td>(by Rotch Ice Dome)</td>
<td>420±100 BP(#?14C FL "Modern" baby elephant seal. SCH72A SUG73</td>
</tr>
<tr>
<td>62°03S 60°53W G</td>
<td>(by Rotch Ice Dome)</td>
<td>LT 250 BP(#?)14C3 BN "Modern" baby elephant seal. SCH72A</td>
</tr>
<tr>
<td>62°02S 60°24W R</td>
<td>Livingston Island</td>
<td>970±50 BP(1373FB;DIC-370)14C3 SE Elephant seal skull intact with flesh on modern storm beach. CUR80</td>
</tr>
<tr>
<td>62°03S 58°48W R</td>
<td>nr South Spit, Marion Cove</td>
<td>251±20 BP(Birm-15)14C2 Supposed modern seaweed from high water mark. SH708 SUG73</td>
</tr>
<tr>
<td>62°01S 58°41W R</td>
<td>S shore, Potter Cove</td>
<td>850±145 BP(Birm-47a)14C2 Inner fraction, supposed modern bivalve shells (mostly Laternula sp.), just above high water mark. SH708 SUG73</td>
</tr>
<tr>
<td>62°01S 58°41W R</td>
<td>S shore, Potter Cove</td>
<td>586±113 BP(Birm-47b)14C2 Outer fraction, modern bivalve shells (mostly Mya) just above high water mark. SH708</td>
</tr>
<tr>
<td>62°01S 58°41W R</td>
<td>Three Brothers Hill Peninsula</td>
<td>674±66 BP(Birm-49b)14C2 CO fraction of vertebrae of decomposing whale on beach just above high water mark. SH709 SUG73</td>
</tr>
<tr>
<td>62°01S 58°41W R</td>
<td>Three Brothers Hill Peninsula</td>
<td>2810±50 BP(Birm-49a)14C2 Mineral fraction of vertebrae of decomposing whale on beach just above high water mark. SH709</td>
</tr>
<tr>
<td>62°00S 58°23W R</td>
<td>Admiralty Bay</td>
<td>1000±45 BP(AB-1;DIC-367)14C3 Whale ear bones from slaughtered whale on modern storm beach. CUR80 (time of death estimated to be 70 BP)</td>
</tr>
</tbody>
</table>

GEOGRAPHIC AREA 35

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61°00S 62°08W R</td>
<td>Drake Passage</td>
<td>Δ14C=-18.6°/oo(892;QL-477)14C Seawater, 95 m. depth, coll. on 1/3/73. STU80A</td>
</tr>
<tr>
<td>61°00S 62°08W R</td>
<td>Drake Passage</td>
<td>Δ14C=-62.1°/oo(893;QL-478)14C Seawater, 142 m. depth, coll. on 1/3/73. STU80A</td>
</tr>
<tr>
<td>61°00S 62°08W R</td>
<td>Drake Passage</td>
<td>Δ14C=-97.0°/oo(894;QL-479)14C Seawater, 189 m. depth, coll. on 1/3/73. STU80A</td>
</tr>
<tr>
<td>61°00S 62°08W R</td>
<td>Drake Passage</td>
<td>Δ14C=-125.3°/oo(689;ML 937)14C Seawater, 246 m. depth, coll. on 1/3/73. STU80A</td>
</tr>
<tr>
<td>61°00S 62°08W R</td>
<td>Drake Passage</td>
<td>Δ14C=-132.2°/oo(690;ML 937)14C Seawater, 345 m. depth, coll. on 1/3/73. STU80A</td>
</tr>
<tr>
<td>61°00S 62°08W R</td>
<td>Drake Passage</td>
<td>Δ14C=-142.4°/oo(691;QL-481)14C Seawater, 445 m. depth, coll. on 1/3/73. STU80A</td>
</tr>
</tbody>
</table>

Seawater, 95 m. depth, coll., on 1/3/73. STU80A

Seawater, 142 m. depth, coll., on 1/3/73. STU80A

Seawater, 189 m. depth, coll., on 1/3/73. STU80A

Seawater, 246 m. depth, coll., on 1/3/73. STU80A

Seawater, 345 m. depth, coll., on 1/3/73. STU80A

Seawater, 445 m. depth, coll., on 1/3/73. STU80A
(LIST 2 CONTINUED)

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Δ14C (‰)</th>
<th>Depth (m)</th>
<th>Station (Station number)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>61°03'S 62°58'W</td>
<td>Drake Passage</td>
<td>-145.8</td>
<td>545</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
<tr>
<td>61°03'S 62°58'W</td>
<td>Drake Passage</td>
<td>-147.0</td>
<td>671</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
<tr>
<td>61°03'S 62°58'W</td>
<td>Drake Passage</td>
<td>-155.4</td>
<td>889</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
<tr>
<td>61°03'S 62°58'W</td>
<td>Drake Passage</td>
<td>-161.9</td>
<td>1192</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
<tr>
<td>59°25.6'S 47°57.8'W</td>
<td>Scotia Sea</td>
<td>-140</td>
<td>545</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
<tr>
<td>74°21.4'S 31°17.3'W</td>
<td>Weddell Sea</td>
<td>-96±13</td>
<td>3478</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
</tbody>
</table>

GEOGRAPHIC AREA 36

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
<th>Δ14C (‰)</th>
<th>Depth (m)</th>
<th>Station (Station number)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>72°00'S 45°00'W</td>
<td>Weddell Sea</td>
<td>-90</td>
<td>3478</td>
<td>STU80A</td>
<td>1/3/73.</td>
</tr>
</tbody>
</table>

(mean value)
BIBLIOGRAPHY

ATR67 Atrashonok, L.Ya.; Avdzeiko, G.V.; Klimov, A.Ya.; and Silin, Yu.I., 1967. Sravnitel'nye dannye po absolutnomu vozraste porod Antarktidy (svin'zovy i argonovyi metody) [Comparative data on the absolute age of the rocks of Antarctica (by lead and argon methods)]. In Voprosy datirovki drevnieishikh geologicheiskikh obrazovaniy i osnovnykh porod [Questions of the dating of the oldest geological formations and fundamental rocks], p. 227-229. Moskva, Izdatel'stvo Nauka. (Reference not obtained; KAM72 and GRE78 used for all data)

Brodie, J.W.; and Burling, R.W., 1958. Age determinations of southern ocean waters. Nature 181:107-108. (Radiocarbon sites outside the date list area)

CRA72 Craddock, C., 1972. Geological map of Antarctica. (1:5,000,000). N.Y., American Geographical Society. (CRA70 used for some data)

FED77 Fedorov, L.V.; and Tarutin, O.A., 1977. Geologicheskoye stroyeniye gory Ruker (yuzhna chast gor Prinz-Chariz, Vostochnaya Antarktida) [Geological structure of Mount Ruker (southern part of the Prince Charles Mountains, East Antarctica)]. Antarktika Doklady Komissii 16:93-99. (Reference not obtained; GRE82B used for some data)

FEN82 Fenton, J.H.C., 1982. The formation of vertical edges on Antarctic moss peat banks. Arctic and Alpine Resch. 14:21-26. (HAR81 used for all data)

GON72A Gonzalez-Ferrán, O.; and Halpern, M., 1972-1973. Edad del volcán Andrus y relación inicial Sr87/Sr86 de rocas volcanicas de Tierra Marie Byrd e islas Shetland del Sur, Antártica [Age of Mount Andrus and Sr87/Sr86 ratio of volcanic rocks in Marie Byrd Land and the South Shetlands]. Revista geografica de Chile 23/24:192-199. (HAL73A used for all data)

GRE76A Grew, E.S., 1976. History of metamorphism and deformation of Pre-Cambrian rocks of Enderby Land and the Prince Charles Mountains-East Antarctica. 25th Int. Geol. Congr.—Abstracts 1:122. Canberra, Union Offset Co. Pvt. Limited. (ARR75, GRE76, GRE78, GRE82, and HAL75 used for some data)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM72</td>
<td>Hamilton, W., 1972.</td>
<td>The Hallet Volcanic Province, Antarctica. U.S.G.S. Prof. Paper 456-C:62 pp. (ARM78 used for all data)</td>
</tr>
</tbody>
</table>

JAM83 James, P.R.; and Tingeey, R.J., 1983. The Precambrian geological evolution of the East Antarctic metamorphic shield -- a review. In Antarctic Earth Science, eds. R.L. Oliver, P. R. James, and J.B. Jago, p. 5-10. Cambridge University Press.

KEL79 Kellogg, T.B.; and Truesdale, R.S., 1979. Late Quaternary paleoecology and paleoclimatoggy of the Ross Sea: The diatom record. Marine Micropaleo. 4:137-158.

2)2

LOP74 Lopatin, B.G.; Krylov, A.Ia.; and Aliapyshev, O.A., 1974. Osnovnye tectonomagmaticeskie etapy v nazvii zemli Meri Berd i berega Eitsa (Zapadnaia Antarktida) po radiogennym dannym [Major tectonomagmatic stages in the development of Marie Byrd Land and Eights Coast (West Antarctica) determined radiometrically]. Antarktika: Doklady Komissii 13:52-60. (Reference not obtained; LOP76 used for some data)

LOP77 Lopatin, B.G.; Fedorov, L.V.; and Polyakov, M.M., 1977. Geologiya i metamorfizm proterozoiskikh otlozeniy gor Mak-Koli i Sherger (gory Prins-Charlz, Vostochnaya Antarktida) [Geology and metamorphism of Proterozoic deposits of Mounts McCauley and Scherger (Prince Charles Mountains, East Antarctica)]. Antarktika: Doklady Komissii 16:76-92. (Reference not obtained; GRE82B used for some data)

214

MOR74 Moriwaki, K., 1974. Radiocarbon dating of fossil shells on raised beaches on the east coast of Lutzow-Holm Bay, east Antarctica. Antarct. Rec. 48:82-90. (In Japanese; English description found in ISH76)

OLI82 Oliver, R.L.; James, P.R.; Collerson, K.D.; and Ryan, A.B., 1982. Precambrian geologic relationships in the Vestfold Hills, Antarctica. In Antarctic Geoscience, ed. C. Craddock, p. 435-444. Madison, University of Wisconsin Press. (ARR75 used for all data)

STU69 Stuiver, M., 1969. Yale natural radiocarbon measurements IX. Radiocarbon 11:545-658. (Data from ocean sites outside the compilation area)

STU75 Stuckless, J.S., 1975. Geochronology of core samples recovered from DVDP 6, Lake Vida, Antarctica. Dry Valley Drilling Project (DVDP) Bull. 6:27. (STU75A and V0C78 used for all data)

Tessensohn, F., 1982. Significance of late Precambrian turbidite sequences bordering the East Antarctic Shield. Geologische Rundschau 71(1):361-369. (ADA82 used for some unreferenced dates)

TUG59 Tugarinov, A.I.; Zykov, S.I.; Zhirova, V.V.; and Knorre, K.G., 1959. The age of the oldest rocks in Antarctica. Geochemistry, 1959(6):676-678. (KRY61 used for all data)

UNI75 University of Waikato, 1975. Antarctic Research Unit Report 4. (HEN79 used for some data)

UNI78 University of Waikato, 1978. Antarctic Research Unit Report 7. (HEN79 used for some data)

Compilation of Isotopic Dates from Antarctica

WAD65 Wade, F.Y.; Yeats, V.L.; Everett, J.R.; Greenlee, D.W.; La Prade, K.E.; and Shenk, J.C., 1965. The geology of the central Queen Maud Range, Transantarctic Mountains, Antarctica. Texas Tech. College, Rsch. Rept. Ser., Antarctic Ser. 65-1:54 pp. (This reference was not obtained; MC669 used for some data)

YAN74 Yanai, K.; and Ueda, Y., 1974. Absolute ages and geological investigations on the rocks in the area of around Syowa Station, East Antarctica. Antarct. Rec. 48:70-81. (In Japanese)

YOS70 Yoshida, Y., 1970. Higashi nankyoku Prince olav Kaigan no ryuki teisen to enko [Raised beaches and saline lakes along the Prince Olav Coast, Antarctica]. In Gendai no Chirigaku [Geography Nowadays], p. 93-118. Tokyo, Asakura-shoten.

