[Radiocarbon, Vol 25, No. 2, 1983, P 279-286]

CALIBRATED ¹⁴C DATES IN CENTRAL EUROPE - SAME AS ELSEWHERE?

^JC FREUNDLICH and BURGHART SCHMIDT

 14 C -Laboratorium and Labor fuer Dendrochronologie, Univ Koeln Weyertal 125, D-5000 Koeln 41, Germany (Fed Rep)

ABSTRACT. 14 C dating results derived from an absolutely-dated 471-year tree-ring sequence from central European oak show a trend towards somewhat older dates than those for bristlecone-
pine tree rings of the same age, but similar to those for Egyp-
tian historical samples. Differences visible between these
trend lines are not relevant conside

INTRODUCTION

From the beginning, the ¹⁴C dating method has been exten-
sively checked (Arnold and Libby, 1949) by testing samples of
known age. Subsequently, many more known-age samples were
cross-dated by ¹⁴C, (1) mostly tree-rin

CALIBRATION FUNCTIONS

For this "calibration," 16 tables or graphs were prepared
by a variety of interpolation methods: (1) free-hand line draw-
ing, (2) Fourier analysis, (3) polynomial regression, (4) aver-
aging methods, and (5) spline funct

EUROPEAN OAK CHRONOLOGIES

A third path towards known-age material was opened by Huber
(1941) inaugurating dendrochronology of the European oak. Seven
laboratories in Germany reported on progress of dendrochrono-
logy in central Europe (Frenzel, 197

----- = 6th order regression polynomial

covering the last four millennia (Schmidt and Schwabedissen, 1982) and offered promise for a connection with the 4000-yr chronology of the Irish oak (Pearson, Pilcher, and Baillie, 1983; Becker, 1983).

RESULTS

A tree-ring sequence of nearly 500 years close to the oldest part of our chronology was analyzed in our laboratory (table 1). Figure 2A shows the results as well as those of contemporaneous bristlecone-pine tree rings (Suess, 1978). Measurements were made in our CO₂-filled proportional counters containing ca lg of carbon accumulating ca 150,000 to 300,000 counts. Tree-ring samples were pretreated by the acid/alkali/ acid (AAA) method described earlier (Freundlich, 1973); results were measured to a counting statistic precision of 2.4% . (±19 yr) to 3.5% (±28 yr). Estimating a set of additional error sources equivalent to Pearson et al (1977) increases these standard errors by a factor of nearly 1.3.

		14 C Date						
14 _C sample	Tree-ring sample	No. annual rings	BС	Dendro-date* ВP	13 C cor- rected	ВP	1σ error	δ^{13} C ۳.
KN-2800	5/36 Ram	16	1732	3681	1507	3456	21	-25.8
-2799	5/69 Ram	11	1699	3648	1597	3546	19	-25.8
-2798	5/95 Ram	8	1673	3622	1492	3441	22	-24.2
-2797	5/125 Ram		1643	3592	1436	3385	28	-24.3
-2796	5/155 Ram	8 5 7	1613	3562	1394	3343	23	-24.4
-2795	5/185 Ram		1583	3532	1450	3399	25	-24.5
-2429	IpM370/ 18	$\bf{4}$	1559	3508	1403	3352	27	-25.0
-2794	5/215 Ram	8	1553	3502	1293	3242	22	-25.4
-2430	IpM370/ 38	4	1539	3488	1343	3292	28	-24.6
-2793	5/247 Ram	12	1521	3470	1320	3269	26	-24.9
-2431	IpM370/ 58	4	1519	3468	1336	3285	27	-24.8
-2432	IpM370/ 78	4	1499	3448	1384	3333	28	-24.6
-2792	5/275 Ram	8	1493	3442	1334	3283	28	-24.8
-2433	IpM370/ 98	4	1479	3428	1366	3315	27	-24.2
-2791	5/305 Ram	$1\,2$	1463	3412	1288	3237	25	-25.0
-2434	IpM370/118	4	1459	3408	1236	3185	28	-24.5
-2435	IpM370/138	4	1439	3388	1256	3205	27	-25.0
-2790	5/335 Ram	7	1433	3382	1212	3161	26	-24.5
-2436	IpM370/158	$\boldsymbol{4}$	1419	3368	1191	3140	25	-25.1
-2437	IpM370/178	4	1399	3348	1249	3198	27	-25.4
-2438	IpM370/198	4	1379	3328	1231	3180	28	-24.4
-2439	IpM370/218	4	1359	3308	1163	3112	28	-25.1
-2440	IpM370/238	$\boldsymbol{4}$	1339	3288	1158	3107	27	-24.5
-2441	IpM370/258	$\overline{\bf 4}$	1319	3268	1104	3053	28	-24.5
-2442	IpM370/278	4	1299	3248	1134	3083	27	-24.6

TABLE 1. Koeln 14 C measurements on absolutely-dated tree rings from European oak

* From middle tree ring

Statistical approximation by a weighted least squares re gression line yields a slope $(\Delta^{14}C/\Delta d$ endro) = 1.0138 and least squares standard deviation of ± 43.3 years (fig 2B). The calibration curve of Clark (1975) is included for reference (including Clark's standard error of ± 112 years). Figures 2A and 2B show a trend similar to that found by comparing Egyptian historical samples with bristlecone-pine tree rings. Our ^{14}C dates for central European tree rings lie fairly close to bristlecone-pine tree rings of the same dendrochronologic age, almost within the 10 statistical range. (The same is evident by entering our regression line in figure 1 - shaded band).

WIGGLES. Our results show "wiggles" although not very con spicuously. It seems that we are in a relatively quiet period similar to that of Pearson et al (1977). Perhaps the wiggles structure will become more evident upon subsequent reduction of standard errors. The average standard deviation,± 43.3 years as derived from our least squares approximation is com parable to the adjusted average precision figure, \pm 33 years, especially when visualizing the observable wiggles structure.

FHS DATE. Besides the absolute dendrochronologic date of our analyzed tree rings, a "wiggle-matching" date has also been

tentatively determined by a method similar to the one proposed by FHS (Ferguson, Huber, and Suess, 1966) (table 2; fig 3).

TABLE 2. Comparison of dendrochronologic and FHS dates for the first tree ring of our 471 year sequence.

FHS date $(fig 3)$ 1830 \pm 40 BC

Dedrochronologic date 1737 BC

The resulting difference, 63 ± 40 years, closely resembles the "off-set" figures quoted for bristlecone pine by Stuiver (1982, table 2, p 18). Possible reasons for this off-set may be at tributed to 1) in situ 14C production (Suess and Strahm, 1970, p 94,95; Radnell, Aitken, and Otlet, 1979), 2) younger $14C$ transported by mobile organic constituents (Suess, 1978, p 4, legend, App 1; Long et al, 1979).

CONCLUSION

There has been considerable unrest about calibrated 14 C $\,$ dates from the Old World Bronze age, presumably because inherent precision questions had not been adequately assessed. Even McKerrell's (1975) alternate list of "Egyptian historical" calibration figures lying almost halfway between bristleconepine calibration figures and zero calibration, does not lie off further than permissible by statistics (!). Our results fit this quite well (fig 1). They are somewhat different from formerly accepted bristlecone-pine based calibration figures; they do not give completely new figures, but rather form ^anarrower band of somewhat revised calibration figures for the time period mentioned (table 3).

ACKNOWLEDGMENTS

Thanks are due Hermann Schwabedissen for his invaluable assistance, Hajo Hayen, Oldenburg/0, and Friedrich Hohenschwert, Detmold, and many others for cooperation in field work; U_Jux, N Zygojannis, and S Strecker, Geol Inst, Univ Koeln, for 13 C analyses, and Roland Aniol, for computer programming. Our work was partly funded by Deutsche Forschungsgemeinschaft, Bonn, and by Stiftung Volkswagenwerk, Hannover. We were as sisted by H Grützmacher, E Norkus, and P Velicky.

Fig 2B. Trend lines (with band giving average 16 statistical error)

= this paper; least squares regression line

 $\overrightarrow{HH11}$ = bristlecone pine: spline functions (after Clark, 1975)

BRISTLECONE DENDRO (BC)

- Fig 3. Tentative bristlecone-pine calibration with method proposed by Ferguson, Huber, and Suess (1966)
	- $\phi: \phi =$ this paper (only relative year rings used) - ⁼bristlecone-pine date (after Suess, 1910)

Calibration figure (years) as quoted from	Conventional $14c$ date (5568)	1050 3000	1250 3200	1450 3400	1650 BC 3600 BP
Damon, Long, and Wallick (1972)		275 ± 125	325 ± 103	380±103	440 ± 63
Switsur (1973)			280±125 310±103		375 ± 103 445 ± 63
Ralph, Michael, and Han (1973)		250	270/340	270/420	460
Clark (1975		270±112	300 ± 112	320±112	385±112
(1 o standard error) McKerrell (1975) ("Eqyptian historical")			$\frac{80}{170}$ $\frac{90}{180}$		$120/230$ $200/320$
("50-year average")			$210/320$ $270/310$	250/430	430/460
Suess (1979)			$260/340$ $270/330$	290	310/450
Freundlich and Schmidt (1983) (least squares fit)			(184 ± 43) 181 ± 43 179 ± 43 (176 ± 43)		

TABLE 3. Comparison between calibration figures from various sources (calendrical minus 14C dates in years)

REFERENCES

- Arnold JR and Libby, WE, 1949, Age determinations by radiocarbon content: Checks with samples of known age: Science v 110, p 678-680.
- Becker, B, 1983, Long-term radiocarbon trends of the absolute Central-European tree-ring sequence, in Stuiver, M and Kra, RS, eds, Internatl ¹⁴C conf, 11th, Proc: Radiocarbon, v 25.
- Clark, RM, 1975, A calibration curve for radiocarbon dates; Antiquity, v 49, p 251-266.
- Clark, RN and Renfrew, C, 1973, Tree-ring calibration of radiocarbon dates and the chronology of ancient Egypt: Nature, v 243, p 266-270.
- Damon, PE, Long, A, and Wallick, El, 1972, Dendrochronologic calibration of the carbon-14 time scale, in Rafter, TA and Grant-Taylor, T, eds, Internatl conf on 14 C dating, $8\mathrm{th}$, Proc: Wellington, Royal Soc New Zealand, v 1, p A29-A43.
- Ferguson, CW, Huber, B, and Suess, HE, 1966, Determination of the age of Swiss lake dwellings as an example of dendrochronologically-calibrated radiocarbon dating: Zeitschr Naturforsch, ser a, v 21, p 1173-1177.
- Frenzel, B, ed, 1977, Dendrochronologie and postglaziale Klimaschwankungen in Europa: Wiesbaden, F Steiner Verlag.
- Freundlich, JC, 1973, Die Altersbestimmungen nach der Radiokohlenstoffinethode: Archaol Korrespondenzblatt, Mainz, von Zabern Verlag, v 3, p 159-162.
- Huber, B, 1941, Aufbau einer mitteleuropäischen Jahrringchronologie: Mitt Akad Deutsch Forstwiss, v 1, p 110-125 (after Frenzel, ed, 1977, p 8).
- Klein, J, Lerman, JC, Damon, PE, and Ralph, EK, 1982, Calibration of radiocarbon dates: Tables based on the consensus data of the workshop on calibrating the radiocarbon time scale: Radiocarbon, v 24, p 103-150.
- Long, A, Arnold, LD, Damon, PE, Ferguson, CW, Berman, JC, and Wilson, AT, 1979, Radial translocation of carbon in bristlecone pine, in Berger, Rainer and Suess, IIT, eds, Radiocarbon dating, Internatl ¹⁴C conf, 9th, Proc: Berkeley, Univ California Press, p 532-537.
- McKerrell, H, 1975, Correction procedures for C-14 dates, in Watkins, T, ed, Radiocarbon: Calibration and prehistory: Edinburgh, Univ Press, p 47-100.
- Olsson, IU, ed, 1970, Radiocarbon variations and absolute chronology: Stockholm, Almqvist & Wiksell,
- Pearson, GE, Pilcher, JR, Baillie, MGL, and Hillam, J, 1977, Absolute radiocarbon dating using a low altitude European tree-ring calibration: Nature, v 270, p 25-28.
- Pearson, GW, Pilcher, JR, and Baillie, MGL, 1983, High-precision 14_C measurement of Irish Oaks to show the natural 14_C variations from 200BC to 4000BC, in Stuiver, M and Kra, RS, eds, Internatl 14 C conf, 11th, Proc: Radiocarbon, v 25.
- Radnell, CJ, Aitken, MJ, and Otlet, RL, 1979, In-situ production of 14 C in wood, in Berger, Rainer and Suess, HE, eds, Radiocarbon dating, Internatl 14 C conf, 9th, Proc: Berkeley, Univ California Press, p 543-657.
- Ralph, EK, Michael, HN, and Han, MC, 1973, Radiocarbon dates and reality: Masca Newsletter, v 9, p 1-20.
- Schmidt, B and Schwabedissen, H, 1982, Ausbau des mitteleuropaischen Eichenjahrringkalenders bis in neolithische Zeit (2061 v Chr): Archaol Korrespondenzblatt, Mainz, von Zabern Verlag, v 12, p 107-108.
- Stuiver, M, 1982, A high-precision calibration of the AD radiocarbon time scale: Radiocarbon, v 24, p 1-26.
- Suess, HE, 1978, La Jolla measurements of radiocarbon in treering dated wood: Radiocarbon, v 20, p 1-18.
- 1979, A calibration table for conventional radiocarbon dates, in Berger, Rainer and Suess, HE, eds, Radiocarbon
dating, Internatl ¹⁴C conf, 9th, Proc: Berkeley, Univ Calidates, in Berger, Rainer and Suess, HE, eds, Radiocarbon fornia Press, p 777-784.
- Suess, HE and Strahm, C, 1970, The Neolithic of Auvernier, Switzerland: Antiquity, v 44, p 91-99.
- Switsur, VR, 1973, The radiocarbon calendar recalibrated: Antiquity, v 37, p 131-137.