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ABSTRACT. Palaeomagnetic field strength measurements for the last 50,000 years are 
summarized. The period before 12,000 yr by** is characterized by low dipole moments, 
but high values are associated with the Lake Mungo polarity excursion between ^32,000 
and 28,000 yr bp. The variation since 12,000 yr bp, based on new results from Australia 
and published data from the Northern Hemisphere has a quasi-cyclic appearance with 
maxima at ^10,000 and ^3500 yr bp. The geomagnetic record is used to predict varia- 
tions in atmospheric 14C concentration, and the results are compared with independent 
comparisons between 14C and other dating methods. Long-term variations in the 14C 

time-scale are readily explained by known geomagnetic changes. 

INTRODUCTION 

It has long been recognized that variations in geomagnetic strength 
affect the cosmic ray flux reaching the earth and, hence, the production 
rate of all cosmogenic isotopes (eg, Elsasser, Ney, and Winkler, 1956; 

Wada and Inoue, 1966; Lingenfelter and Ramaty, 1970). Many authors 
have performed model calculations for variations of 14C, using either 
summaries of contemporary palaeomagnetic data or sinusoidal approxi- 
mations to it (see Olsson, 1970; Rafter and Grant-Taylor, 1972; Berger 
and Suess, 1979). In this paper, a considerable amount of new palaeo- 
magnetic field strength data is summarized. Some broad trends in 14C 

concentration are predicted. Independent comparisons between 14C and 
other dating methods are also summarized. 

Palaeomagnetic data 
Estimates of dipole moment for the late Pleistocene (50,000-10,000 

yr bp) were reviewed recently by Barbetti and Flude (1979), and their 
conclusion that the geomagnetic field was weaker than it is today for 
much of that period is supported by further data from Japan (Tanaka, 
1978). The late Pleistocene data do not exhibit the quasi-sinusoidal 
variation observed in Holocene times. 

Holocene data from the Northern Hemisphere have also been re- 
viewed recently (Barton, Merill, and Barbetti, 1979) and, as has been 
found previously from reviews of smaller but similar data sets (Cox, 
1969), the variation appears roughly periodic with a minimum at 5500 yr 
by and maxima at 8500 and 1500 yr bp. However, new data from Greece 
(Walton,1979), Peru (Gunn and Murray, in press) and Australia (Barbetti 
and others, ms in preparation) indicate a broad maximum beginning at 
N3500 yr bp, together with clear evidence for shorter-period fluctuations 
between then and the present day. 

A summary of the probable values of geomagnetic dipole moment 
and 95 percent confidence limits is given in table 1. Only long-term 

* Current address: Radiocarbon Laboratory, Department of Physical Chemistry, 
University of Sydney, Sydney NSW 2006 Australia 

** Note that by denotes conventional 14C ages, and BP, absolute ages, in this paper 
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changes are expressed in curve A, but the wide confidence limits allow 
for the possibility of shorter-period or smaller amplitude fluctuations. 

Predicted atmospheric 14C concentrations 
The probable effects of geomagnetic variation on 14C concentration 

have been calculated in an approximate manner, using the Lingenfelter 
and Ramaty (1970) relationship between dipole moment and 14C pro- 
duction (with no long-term changes in solar activity). It has been as- 
sumed that the concentration at 32,000 yr by was between the limits 
1.75 and 0.9 times standard with a probable value of 1.25; these values 
correspond to exponentially-averaged dipole moments of 2, 10 and 5 X 
1022 Amt, respectively, for times before 32,000 yr bp, as suggested by 
Barbetti and Flude (1979). Changes since then were derived using curves 
A, B and C in table 1, and assuming that changes in the 14C production 
rate are attenuated with coefficient 0.33 and a lag of '-..'l000 years because 
of reservoir storage (Houtermans, Suess, and Oeschger, 1973). The meth- 
od, even though fairly crude, produced curves that agreed very well with 
the long-term trends in tree-ring data. Results are illustrated in figure 1. 
No allowance was made for the possible effects of climatic changes or 
variations in the cosmic ray flux due to other causes. 

14C concentrations from other dating methods 
Comparisons between 14C and absolute dates provide estimates of 

atmospheric 14C concentrations quite independently of predictions based 
on geomagnetic variation. A summary of all results known to me is given 

TABLE 1 

Geomagnetic strength over the last 40,000 years 

Time Dipole Moment 

(yr bp) (1022 Amt) 

Palaeomagnetic 
limits Curve A B C 

0 8 8 8 8 
1500 6-13 81 
3500 7-14 11 
6000 4-7 6 7 4 

10,000 5-12 10 8 
14,000 4-9 7 7 9 
17,000 4-8 6 5 8 
21,000 4-7 51/9 4 7 
25,000 21/2-61/2 4 
28,000 3-8 6 3 8 
29,500 10-50 30 
32,000 2-10 5 2 

Estimates are based on data from Europe, Australia and Hawaii (reviewed by Barbetti 
and Flude, 1979), preliminary data from Japan (Tanaka, 1978), averages of published 
data from the Northern Hemisphere (Barton, Merrill, and Barbetti, 1979) and new 
data from Australia (Barbetti and others, ms in preparation). Palaeomagnetic limits 
enclose 95 percent confidence intervals for most of the data, and curve A gives prob- 
able values of dipole moment. Curves B and C are hypothetical extremes used to pre- 
dict limits for atmospheric 14C concentration over the last 40,000 years. The present 
day dipole moment is 8 X 1022 Amt. 



TABLE 2 

Summary of 14G and comparative thermoluminescent 

Abaolute age 
Ref Lab no. 

Conventional 14C age Age difference Atmospheric Symbol 

Lab Nc (yr B.P.) 

Thermoluminescent: 

(yr B P ) Ref (yr) concentration 

BOR-6 11,290+1470 1 2 

OxTL 133a1 13,970+1850 3 a 

2 

1 Mean: 

OxTL 174F51 16,900+5000 4 5 

6 A 

OxTL 7 

OxTL 174117 35,300+5600 6 5 

" 29,500+4100 " " " 

" 
31,300+5600 ' " " 

" 174F8 37,900+6400 " 

174F9 32,000+5700 " 

32,300+5800 " N " 

" 174F12 38,600±7700 " N 

Mean: 33,500+4300 q A 

2 30T5,-'0 U: 

13,860+220 8 

13,600+220 ' 

17,000+800 9 W Mean: 

L-773Q 13,100 10 10 

L-772GA 16,200 N N 

L-774B 16,700 N N 

L-772I 15,400 N q 

L-775J 18,000 N 

L-774I 17,300 N N 

L-774R 17,000 N q 

1-7730 12,800 N N 

L-364CQ8. 19,900 N 

L-772K 16,100 17,900 M 

L-772HB 24,400 18,400 N 

L-364CQB 20,000 N M 

L-722A 21,600 N N 

L-672B 21,400 N N 

Mean: 17,850±880 Mean: 0 

GrN-4837 15,150+110 11 

GrN-4838 16,100}150 " 

350 20,000+2000 12 

References and Notes 
1. Schvoerer, Lamarque, and Rouanet (1974); uncertainty assumed to be 13% of age. 
2. Evin, Marien, and Pachiaudi (1976). 
3. Fleming and Stoneham (1973). 
4. Huxtable, J and Aitken, M, pers commun (see also Barbetti and Flude, 1979). 
5. Barbetti and Polach (1973). 
6. Huxtable and Aitken (1977). 
7. Zimmerman and Huxtable (1971). 



or uranium series ages for the late Pleistocene 

Abeolute age Conventional 14C age Age difference 
Lab Nc (yr B.P.) Ref Lab no. B P ) 

Thermoluminescent: 

21C 24,000+3000 12 21C-C 

23,800 13 

24,800 

24,800 

S7 Mean: 24,500±1400 22,900+300 13 Q 

24,200 13 

27,000 

23,700 , 

25,300 

S6 Mean: 25,100+1400 24,700+300 13 Q 

25,800 13 

23,000 

S5 Mean: 24,400±1400 27,400+300 13 Q 

26,200 13 

26,200 

S4 hear: 26,200±1400 27,900+400 

S3 29,300+1500 13 Q 

GrN-4841 29,000+380 11 

GrN-4842 29,900+530 " 

35B 30,500+2500 12 W Mean: 

9 2500 

31,800 13 

30,200 " 

S2 Mean: 31,000±1500 29,400+400 13 

33,000 13 

33,000 

30,100 

Si Mean: 32,000+1500 31,800+300 13 Q 

TF-907 34,000+2000 14 27,800+1500 

TF-1063 33,100±1000 35,100+5600 " 

W Mean: 33,300+1000 W Mean: 28,300+1500 Q 

40,000+3000 9 35,600+1500 9 

8. Veeh and Veevers (1970). 
9. Chappell and Veeh (1978). 

10. Kaufman and Broecker (1965); results from table 5, excluding ostracods and samples 
showing distinctly abnormal Ra°2e and U234 concentrations. 

11. Vogel and Waterbolk (1972). See note 12. 
12. Kaufman (1971). Note that sample 36 was contaminated; dates for this sample are 

therefore omitted from table. 
13. Peng, Goddard, and Broecker (1978); 14C ages interpolated from results of Stuiver 

(1964), Stuiver and Smith (1979). 
14. Gupta (1973); results cited by Peng, Goddard, and Broecker (1978). 
Ages are those given in the references indicated, and all 14C ages are based on a 5568 
yr half-life. Errors are standard errors. Mean ages (simple or weighted inversely by 
variance, as indicated) are given for appropriate groups of results. Age differences (ab- 
solute-14C) and corresponding atmospheric 14C concentrations (calculated using a 5730 
yr half-life) are also listed. Symbols are those used in figure 1. 
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Fig 1. Atmospheric 14C concentration over the last 40,000 Years. The dashed horizontal line marks the 
standard concentration 0.95 times that of NBS oxalic acid used for calculating radiocarbon ages, and the thin 
exponential line beneath it the hypothetical concentration variation which would make conventional 14C ages 
identical to absolute ages. Points with large standard errors are derived from comparisons between 14C and ther- 
moluminescent or uranium series ages; values and symbols are given in table 2. Other points are derived from 
comparisons between 14C and varve ages in Scandinavia (X, Tauber, 1970) and the USA (+, Stuiver, 1971); 
standard errors are about the size of the points. The curve for the last 7400 Yr is obtained from comparisons be- 
tween tree-ring and 14C ages, using the compilation of Clark 1975. Curve A is the probable variation, pre- 
dicted using known variations in geomagnetic strength (curve A, table 1). Curves B and C are limits obtained 
using extreme values for geomagnetic strength before 20,000 Yr bP and values after that which make the limits 
converge on the tree-ring curve at 6000 Yr BP. 
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in table 2. Appropriate mean values, age differences and concentrations 
(CA) are also given; the latter were obtained using the expression 

CA = exp Ta - n 2 [573o 5568 

where Ta is the absolute age and T the conventional 14C age. Atmo- 
spheric concentrations estimated in this manner have very large uncer- 
tainties, because the precision of the other dating methods is generally 
much less than that of radiocarbon. Nevertheless, they do suggest a de- 
crease between '35,000 and 25,000 yr BP and subsequent increase, 
which accords well with the trend predicted on geomagnetic evidence 
(and the suggestion by Ottaway and Ottaway, 1974 from frequency anal- 
yses of 14C dates). 

CONCLUSION 

Atmospheric concentrations above unity are indicated for most of 
the late Pleistocene, with a large fluctuation at around -30,000 yr BP. 

The prediction from geomagnetic data (curve A, figure 1) matches the 
varve data of Stuiver (1971) fairly well. The varve data of Tauber (1970), 
however, are near the lower limit permitted by known geomagnetic 
variations. There is considerable scope for future refinement of the 
curves presented here, using new palaeomagnetic data as they become 
available, and improved methods of calculation. 
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DISCUSSION 

Damon: Dr Barbetti's analysis places the geomagnetic dipole field in- 
tensity maximum prior to the beginning of the Christian era. This agreed 
with our modeling of the geomagnetic forcing function on 14C production 
(Damon, 1970; Sternberg and Damon, 1979). 
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Barbetti: The Barton, Merrill, and Barbetti (1979) re-analysis of north- 
ern hemisphere geomagnetic strength data gives results fairly similar to 
those of Cox (1969), and the most recent peak still appears at 1500 yr bp. 
The Australian data are important for reconstructing global variations 
because the southern hemisphere is hardly represented in existing analyses. 
The field in Australia reached a high value at 3500 yr bp. New evidence 
from Peru (Gunn and Murray, in press) and Greece (Walton, 1979) also 
suggest a high field somewhat earlier than the currently-accepted time of 
1500 yr bp. 
Tauber: The Swedish varve chronologists are increasingly uncertain 
about the absolute scale precision of the Late Glacial Swedish varve 
chronology. The varve dates quoted in my paper (1970) therefore, are 
considerably more uncertain than believed in 1970. 
L al: The large dipole moment excursion around 30,000 yr by is very 
interesting. A factor of 5 higher dipole moment corresponds to a vertical 
cut-off rigidity of about 50-60 GeV at the equator-the global production 
rate will be depressed quite a bit and it should be possible to check on 
this by studying calcareous oozes. 
Barbetti: 14C data for that period would be very interesting. However, 
there are also uncertainties in the effective dipole moment around 29,500 
yr bp. The geomagnetic field was probably not Bipolar during the Lake 
Mungo excursion; possible source configurations are discussed by Coe 
(1977). Most likely the geomagnetic shielding against cosmic rays would 
be equivalent to a dipole with strength higher than the present-day. The 
limits given here (1 - 5 X 1023 Amt) cover the most plausible interpreta- 
tions. 
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