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ABSTRACT. Bayesian mathematics provides a tool for combining radiocarbon dating results on findings from an archaeo-
logical context with independent archaeological information such as the chronological order, which may be inferred from
stratigraphy. The goal is to arrive at both a more precise and a more accurate date. However, by means of simulated measure-
ments we will show that specific assumptions about prior probabilities—implemented in calibration programs and not evident
to the user—may create artifacts. This may result in dates with higher precision but lower accuracy, and which are no longer
in agreement with the true ages of the findings.

INTRODUCTION

In many cases, the radiocarbon age is not the only information available on archaeological samples.
Additional information may originate from typology, stratigraphy, or dendrochronology. Whereas
14C measurements directly provide probability distributions (due to the inherent Poisson statistics of
the counting process), typology and stratigraphy do not. In a mathematical sense, they give non-
probabilistic logical statements such as “event A is earlier than event B” or “object A typologically
matches object B”. The classical statistical approach tends to reduce the 14C distributions also to log-
ical statements like “the age of the sample lies between 3360 BC and 3100 BC” using 95% confi-
dence intervals. This is then combined with the additional archaeological evidence by means of sci-
entific reasoning (see Reece 1994).

As an alternative, the additional archaeological information may also be transformed into probabil-
ity distributions. All the information may then be integrated by using Bayesian mathematics (for an
overview see Litton and Buck 1995; Buck et al. 1996; for applications see Buck et al. 1991, 1992,
1994; Bayliss et al. 1997). The additional archaeological information investigated in this paper is the
chronological order of the samples. In this case, the intention behind applying the Bayesian method
is to improve the date obtained from the 14C measurement alone. Since the knowledge of the chro-
nological sequence adds independent information, this appears feasible. However, we will show
through computer-simulated measurements that assumptions used to transform the additional
archaeological information into probability distributions may create results with higher precision
(i.e. reduced uncertainties) of dates, but lower accuracy (i.e. reduced agreement with the true ages of
the samples).

THE BAYES ALGORITHM (BAYES’ THEOREM)

In evaluating experimental data the so-called Bayes’ theorem (Bayes 1763) plays a fundamental
role. Bayes’ theorem allows us to combine measured data from a sample with our knowledge on the
corresponding sample before (prior to) the measurement. Both the measured data and the prior
information must be formulated mathematically as probability distributions. After feeding them into
Bayes’ theorem we get the so-called posterior probability distribution which incorporates both mea-
sured and prior information. Since the main features in applying Bayes’ theorem already show up in
the 14C dating of single samples, we will discuss this case first. It will provide useful results needed
for the subsequent investigation of the multiple sample case, and shall also serve as an illustration of
Bayes’ theorem. For readers not familiar with the mathematics involved in 14C calibration, we sug-
gest Buck (1996:203–15).
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Calibration of a Single Sample

The data collected in a 14C measurement are reduced to the 14C age tC14 and its uncertainty s. We
neglect the asymmetry of the uncertainty, which is induced by the exponential shape of the decay
curve, and is only significant for very old samples. From the 14C age we want to derive the true age
of the sample on the calendar age scale. For a single sample the procedure is the usual 14C calibra-
tion process. We try to look up the age tcal, i.e. the calibrated or calendar age, where the 14C age from
the tree-ring calibration curve C(t) matches the 14C age tC14 of the sample

(1)

with C-1 being the mathematical inversion of the calibration curve. Unfortunately, in the general
case the calibration curve is not an invertible mathematical function. Due to its “wiggles” one can
get more than one match, and its uncertainty also complicates the situation. Bayes’ theorem is the
mathematical tool suited to invert the calibration function in a probabilistic sense. We use it to get
the probability that the sample has a certain calendar age t with respect to the measured 14C age tC14.
Let us denote this probability as Pcal (t). Pcal (t) is the posterior probability for the 14C calibration of
a single sample.

A statistical model of the underlying measurement and calibration process allows us to determine
the probability of how likely an (assumed) calendar age t for the sample of interest is going to yield
the data tC14 observed in the actual measurement. Bayesian mathematics calls this probability distri-
bution the likelihood function . The likelihood function for the calibration of a sin-
gle 14C date is

(2)

where with

 . . . . . . . . . . . . uncertainty of the 14C age tC14 from the measurement

. . . . . . . . . . . . . uncertainty of the calibration curve at the assumed true age t.

U  . . . . . . . . . . . . . . . . . . . a normalization constant to achieve .

Since both  and  heavily depend on t, the likelihood function is not Gaussian in shape
unless the assumed calibration curve is strictly linear with constant uncertainty.

The difference between Pcal (t) and  is essential, since one needs Bayes’ theorem to
derive the latter probability from the former. The formulation of Bayes’ theorem to calibrate a single
14C date is

(3)

U´ is a constant needed to normalize to unity.
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The only unknown in formula (3) is Pprior (t), the probability distribution of the true age prior to the
measurement. Bayes’ theorem is (implicitly) used for a variety of problems. In most cases, the prior
probability is not known exactly. This also holds for the tree-ring calibration of a single 14C date.
However, in this case the likelihood function (2) disappears sufficiently fast outside a relatively
small region (we neglect cases where the 14C age is consistent with infinity). The assumption that the
prior probability Pprior (t) is approximately constant and different from zero in this region is suffi-
cient to apply Bayes’ theorem and we obtain

 (4)

Since  is already normalized to unity, the constant U is no longer needed, and the
posterior probability is identical to the likelihood function in this easy case. Pcal (t) is the function
usually plotted on the calendar age scale of the calibration diagrams (see Figure 5). For every “wig-
gle” of the calibration curve that crosses or touches the 14C age tC14 of the sample we get a local max-
imum in Pcal (t).

The posterior probability distribution Pcal (t) is reduced to 95% confidence intervals: after tabulating
calendar years and their corresponding probabilities a set of years is accumulated until a total prob-
ability of 95% is reached. A small degree of freedom remains in terms of which years to collect first
(Buck 1996:152–3), but all resulting intervals share the feature that 95% of the true ages of the sam-
ples (should) lie inside, and 5% (should) lie outside. In this paper we collect the years with the high-
est probabilities first, as usual in archaeological dating. Local maxima in the probability density may
lead to several disjunct intervals.

Multiple Samples

In a more general formulation of Bayes’ theorem, the true values of a set of parameters and the cor-
responding measured values shall be denoted as true values and measured data, respectively. For-
mula (3) then reads as

(5)

If the prior probability Pprior (true values) is sufficiently constant where the likelihood function is not
zero, then the posterior probability distribution Pposterior is identical with Plikelihood.

Compared to the calibration of a single date, the situation is more complicated for the combination
of the 14C dating results of N independently measured samples. Every sample has an (unknown) cal-
endar age and a measured 14C age denoted by tk and , respectively, for the sample with index
k =1, ...,N. The additional information included in the statement “the chronological order of the
samples is 1, 2, 3,...” can be transformed into this common N-dimensional prior probability:

(6)
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The 14C measurement yields N probability distributions for the calibrated 14C ages, , which
are the posterior probabilities of the single-sample calibration. They are now combined to a N-
dimensional likelihood function for a second application of Bayes’ theorem:

(7)

This fulfills the definition of Plikelihood in the general case of Bayes’ theorem in (5) because of (4) and
the independence of the single sample likelihood functions in a probabilistic sense. We neglect the
complex correlations induced by the uncertainty of the calibration curve (see Buck 1996:235–7).

Next, all the information is combined to get the posterior probability distribution

(8)

The so-called marginal posterior probability distribution for the single samples are obtained by inte-
grating over all possible dates tk of the respective other samples. Using the definitions given above
we get

(9)

where the  denote constants needed to normalize  to unity.

In this paper we will call the method of combining sample ordering information and 14C data the
“sequence algorithm”. Our analytical formulation using a multidimensional integration is equivalent
to the Monte Carlo method (“Gibbs sampling”) presented in Buck et al. (1992).

As we will show, problems in the sequence algorithm arise from the assumption that Pprior(t1, t2, ...,
tN) is constant in the “allowed case” (see the common prior [6]). The resulting marginal posterior
probabilities  are highly dependent on this assumption in regions where the 14C likeli-
hood functions  do not disappear (see e.g. Roe 1992; Buck 1996:170–1; Blobel and
Lohrmann 1998). By means of simulated measurements we investigated the consequences of apply-
ing this algorithm.

THE SEQUENCE ALGORITHM APPLIED TO COMPUTER-SIMULATED 14C MEASUREMENTS

The most persuasive test for the sequence algorithm would be a set of real samples with known true
ages from the same archaeological context. The algorithm should then be applied to the 14C data,
and the resulting dates could be compared with the true ages. Although measurements on such data
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sets may have been performed in the past (we know of none), a large number is required for a thor-
ough check of the algorithm. Therefore we used artificial data sets on which we performed com-
puter-simulated measurements.

In the mathematical analysis given above we incorporated the calibration process into the likelihood
function, using calendar ages for the true values but 14C ages as the measured data (see equation [5]).
For our further investigations the details of the single-sample calibration are not essential. Therefore
we consider the resulting probability densities on the calibrated age axis as the measured
data. We apply the sequence algorithm to simplified sets of suitable to study the separate
influence of various parameters on the posterior results. If not otherwise mentioned, we will use
Gaussian-shaped calibrated age distributions since this allows us to solve (9) analytically.
For non-Gaussian distributions we use the computer program OxCal v2.18 (Bronk Ramsey 1995a,
1995b) which implements the “Gibbs sampling” method mentioned above. Due to the different fea-
tures of different parts of the calibration curve there are two extreme cases:

The “linear” case: In some regions the calibration curve can be approximated by a strictly linear
function without any wiggles. Since we assumed the probability distribution for the 14C age to be
Gaussian-shaped, in this case the calibrated probability densities will be roughly Gaussian-
shaped also. In addition we assume that the uncertainty of the calibration curve is negligible com-
pared to the uncertainty of the 14C data. If several samples with the same true age are independently
14C-dated, then the scatter of the centers of the should match their width in this case.

The “flat” case: In other regions the calibration curve is flat and largely dominated by wiggles. The
 are not Gaussian-shaped, and they span from the first to the last crossing (or proximity) of

the calibration curve and the measured 14C age. Since this is due to the features of the calibration
curve and not due to the 14C measurement uncertainty, the 95% confidence intervals are essentially
the same for all samples. Large uncertainties in the calibration curve have a similar effect. The real
14C calibration curve is somewhere in between these two extreme cases.

Modeling without statistical scatter is much easier since for every simulation only one set of input
data exists. If scatter is included the simulation has to be performed with a sufficiently large number
of randomly generated data sets to get a significant result. Therefore, in most simulations the scatter
is ignored. In this case we check for selected points whether the qualitative result is influenced by
scatter. However, the “flat” case shows that simulations without scatter have a value on their own.

Computer Experiment A

In this computer experiment we investigate six 14C samples within a chronological sequence. The
calibrated 14C data were modeled by Gaussian probability distributions with a standard deviation s
of 100 yr. Every data set consisted of six samples with constant time spacing Dt. We used sets with
Dt of 0, 1, 2, 5, 10, 20, 25, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 750, and 1000 yr. We
model the calibrated 14C probability distributions with their centers exactly at the true ages , so
we ignore any statistical scatter (see Figure 1):
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The influence on the data for sets with different Dt is shown in Figure 2, where we focus on the
youngest (latest) sample (#6). We compare the artificial 14C data and the posterior data resulting
from the sequence algorithm.

It turns out that for Dt considerably larger than 1s (100 yr), the data and the corresponding uncer-
tainties are not modified significantly. For short Dt the algorithm shifts apart the probability distri-
butions to cover the whole interval compatible with the 14C measurement uncertainty. In this region
the posterior uncertainty is reduced, i.e. precision increased. This is the case for which the sequence
algorithm was developed in the first place.

From Figure 2 one can see that the algorithm shifts the age of the latest sample (#6) towards the
assumed measurement uncertainty. Near Dt = 0 yr the result is independent of the true ages, but is
determined by the measurement error! The probability distributions are no longer in agreement with
the assumed true ages, so in our opinion the increased precision is an artifact.

We want to complement our investigation and verify that the kind of statistical scatter which shows
up in the previously mentioned “linear” case does not influence the qualitative result. We choose the
case with Dt = 0 yr (all samples exactly from 1000 BC). The calibrated 14C data are modeled as
above, but now we allow random shifts of the centers of the probability distributions:

(12)

Figure 1 Computer experiment A. The Bayesian sequence algorithm is applied to sets of 6 ordered
samples. Each set is constructed symmetrically around 1000 BC with constant time spacing Dt between
the true ages . The individually calibrated probability distributions before applying the sequence
algorithm are assumed to be Gaussian-shaped with their centers exactly at  and with s = 100 yr.
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The random shifts xk are obtained from a Gaussian probability distribution with a standard deviation
equal to the assumed measurement uncertainty s (100 yr). Around the shifted centers Gaussian-
shaped probability distributions with the very same standard deviation of 100 yr were created (see
Figure 3). Twenty such sets were generated and fed into the sequence algorithm. The resulting ages
and uncertainties are shown in Figure 4. The strong shift of the age of the latest sample is further
enlarged by the statistical scatter. This effect only accounts for a small part of the increased span.

To check whether realistic calibrated age distributions , which are not Gaussian-shaped,
influence the main features of the computer experiment we study a set of data typical for the “flat”
case. For the whole Hallstatt period (750–400 BC, i.e. the Early Iron Age in Europe) the 14C calibra-
tion curve is flat. Every sample yields a wide calendar age distribution with some wiggles, but the
95% confidence interval is very likely to span the whole period. We check the computer experiment
for Dt = 5 yr. Figure 5 shows what happens when simulated 14C ages of six Hallstatt samples (with
typical measurement scatter) are used. The result is qualitatively the same as for the analytical inves-
tigation of Gaussian-shaped distributions. The centers of the distributions are shifted apart to cover
the whole period, and the 95% confidence intervals are reduced so that the latest of the six samples
is no longer compatible with the first half of the Hallstatt period.

Figure 2 Computer experiment A. Maxima and 95% confidence intervals for the probability distributions of the latest sam-
ple #6 before (solid and dashed lines) and after the sequence algorithm (points and error bars) are shown. Only if Dt < 2s
(i.e.  older than 750 BC) the data are changed significantly. The maximum of the posterior probability distribution is
shifted away from  towards younger ages and the 95% confidence interval is incompatible with the assumed true age

 = 1000 BC.
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In the Hallstatt period the posterior probability distributions will be essentially the same for any
sequence independent of the (assumed) true ages. If the number of samples is sufficiently large, the
latest sample is always shifted to 420 BC with a pretended small uncertainty.

Computer Experiment B

Next we study a growing number of samples N within a sequence. All samples are assumed to have
the same true age (Dt = 0 yr) without measurement scatter. As can be seen in Figure 6 the sequence
algorithm shifts the distributions more and more apart. The calibrated age range allowed by the 14C
measurement uncertainties is evenly partitioned between the posterior distributions. By increasing
the number of samples the latest sample shifts to values deviating far from the assumed true ages
(Figure 7).

Computer Experiment C

It can be seen from computer experiment B that the influence of the sequence algorithm grows with
an increasing number of samples N in the sequence. For a small number of ordered samples there
exist no obvious artifacts, but even in the case of two samples the uncertainties are significantly
reduced. Is this increased precision accompanied by an increased accuracy?

Figure 3 Computer experiment A. Model-
ing statistical scatter would not change the
qualitative result shown in Figure 2. We
check this for Dt = 0 yr by simulating sets
with a randomly generated Gaussian scatter
of s = 100 yr. The probability distributions
for the calibrated ages before (see upper part
of the Figure) and after applying the
sequence algorithm (see lower part of the
Figure) are plotted.
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To answer this question we focus on ordered pairs of samples. When we repeat computer experiment
A with just two samples in every set the influence is not as strong as the influence on multiple
ordered samples (compare Figure 8 to Figure 2), but the ages are shifted apart also.

In computer experiment C we model statistical scatter. We simulate 1000 ordered pairs of samples
for every assumed true age difference Dt. The true ages of the paired samples are symmetric around
1000 BC (see (10) with N = 2). The  are modeled by using (12) with scatter and measure-
ment uncertainty s of 100 yr (see Figure 9). The artificial calibrated 14C data together with the chro-
nological ordering of the true ages is fed into the sequence algorithm.

If the algorithm really improves the dates, then the assumed true ages should be compatible with the
posterior 95% confidence intervals in about 1900 of the 2000 cases (there are 2 samples for each of
the 1000 pairs). The uncertainties shown in Figure 10 are induced by the binomial statistics of the
experiment

 (13)

where M is the total number of trials (2000) and m is the number of successful trials (number of 95%
confidence intervals compatible with the assumed true age).

Figure 4 Computer experiment A. We compare the posterior centroids and 95% confidence intervals for 20
computer simulations including scatter constructed as in Figure 3 (filled diamonds) to the posterior data
without scatter constructed as in Figure 1 (filled circles). The 95% confidence interval of sample #6 is not
compatible with the assumed true age  in 14 of the 20 cases. By averaging the centroids
and the positive and negative interval widths we see an additional spread induced by the random scatter (hol-
low diamonds).
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The number of simulated samples which miss their true ages before the sequence algorithm is
applied shows no significant deviation from the theoretical 5% line. After applying the sequence
algorithm the situation is changed drastically for true age differences smaller than the assumed mea-
surement uncertainty. The posterior 95% confidence intervals miss the true ages in up to 12% of all
cases, so the increased precision is an artifact. The fraction of incompatible intervals approaches the

Figure 5 For an assumed set of 6 samples #1 to #6 from the Hallstatt period (750–400 BC) with
ages of 750 BC (#1), 745 BC (#2), 740 BC (#3), 735 BC (#4), 730 BC (#5), and 725 BC (#6) indi-
cated by vertical thin lines the corresponding 14C ages were looked up in the calibration curve.
Due to the flatness of the calibration curve we get the same 14C age of 2455 BP for all 6 samples.
After adding a random scatter of ±40 yr we obtain the following 14C ages: 2546 BP, 2490 BP,
2402 BP, 2446 BP, 2386 BP, and 2491 BP. By individual calibration the samples can no more be
assigned to distinct regions. The resulting probability distributions (gray curves) rather cover the
whole Hallstatt period. These probability distributions correspond to our simulated 14C measure-
ment data. After the Bayesian sequence algorithm is applied one can see its tendency to divide the
period into 6 parts of equal size (black curves). Due to the flatness of the calibration curve the gen-
eral shape of the individually calibrated and of the “sequenced” probability distributions is the
same which true ages ever are assumed. In our example the posterior 95% confidence intervals of
samples #4, #5, and #6 are not in agreement with their assumed true ages. All the calculations (sin-
gle calibration and sequencing) were performed with OxCal v2.18 (Ramsey 1995b) using the
INTCAL98 14C calibration curve (Stuiver et al. 1998). The program normalizes the individual and
the “sequenced” probability distributions to the same maximum value.
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Figure 6 Computer experiment B. By increasing the number of samples N in a sequence they are more and more shifted
apart by the Bayesian sequence algorithm. The individually calibrated probability distributions are all constructed Gaus-
sian-shaped with centers at 1000 BC (Dt = 0 yr) and with s = 100 yr. No scatter is modeled. The probability distributions
after applying the sequence algorithm are plotted for N = 1 to N = 6 samples in a sequence.

Figure 7 Computer experiment B. Maxima and 95% confidence intervals after applying the sequence algorithm are
plotted for sets constructed as in Figure 6. The shift of the latest sample #6 grows with the number of samples N in a
sequence (up to Ns too large to be realistic).
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Figure 8 Computer experiment C. Whereas the artifacts in the results of the sequence algorithm are obvious
for N = 6 or larger they are harder to detect for a smaller number of samples N in a sequence. The figure
shows data analogous to Figure 2, but for N = 2.

Figure 9 Computer experiment C. Pairs of samples are constructed symmetrically around 1000 BC with a time dif-
ference Dt between the true ages and . The individually calibrated probability distributions before app-
lying the sequence algorithm are constructed Gaussian-shaped with s = 100 yr. Measurement scatter is modeled by
applying random shifts x1 and x2, which are taken from a Gaussian distribution also with s = 100 yr.
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5% line only if the difference Dt is larger than 1 s (100 yr), but in this case the sequence algorithm
has essentially no influence on the posterior probability distributions.

We want to emphasize that all the results in the computer experiments above scale with Dt/s and in
fact were calculated using only this parameter. For the figures shown they were scaled to values typ-
ical for 14C dating.

‘PRIOR’ CONSIDERATIONS

We think the failure of the sequence algorithm as demonstrated by computer-simulated measure-
ments is due to the prior probability assumed for the age difference of samples with known chrono-
logical order. Unfortunately the results of the sequence algorithm are highly sensitive to the assumed
prior. The strong influence of the prior is demonstrated by choosing the probability as inversely pro-
portional to the age difference (it is plausible that for samples from the same archaeological context
smaller age differences are more probable). For two samples one gets:

(14)

where e < 1 is a small lower limit for the age difference to maintain integrability. This is equivalent
to the assumption that there will be the same number of samples within 1 to 10, 10 to 100, and 100

Figure 10 Computer experiment C. For each assumed true age difference Dt 1000 pairs of samples are con-
structed as in Figure 9, and the Bayesian sequence algorithm is applied. The 95% confidence intervals are
checked for compatibility with the assumed true ages and . Whereas indeed only 5% of the sin-
gle-sample calibration intervals are incompatible, after applying the sequence algorithm for Dt < s up to 12%
of the intervals do not contain the corresponding true age.
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to 1000 years of age difference. This principle of “scale invariance” (May 1996) holds for many pos-
itive numbers in nature. So this prior probability distribution may also be called “natural”, but con-
trary to the constant probability the samples are drawn together instead of being shifted apart. For
lim e ® 0 all 14C data are shifted to the same age.

A constant probability may appear a neutral assumption, but every probability distribution gets con-
stant by a suitable transformation of the variables. For example, (14) is constant if t1 and t2 are
replaced by log t1 and log t2.

The sequence information restricts the age difference of consecutive samples to positive numbers
and as pointed out by other authors, for positive numbers there is no reason to select a constant prior
probability for the number itself and not for the logarithm or the square root of the number (see Blo-
bel and Lohrmann 1998).

In the common prior (6) the ages tk are selected as the “natural” parameters for which a constant
probability is assumed. This is equivalent to the assumption that all dates—despite archaeologically
related—are independent in a statistical sense. Another probably even more “natural” set of param-
eters would be the start time t1 of the sequence and its total “span” Dt1,N = (tN - t1) together with the
age differences Dt1,k = (tk - t1) of sample number k from the first. The common constant prior (6) is
no longer constant for the Dt1,k . By integrating over all combinations of t1 ,..., tk-1, tk+1, ..., tN and sub-
stituting t1 + Dt1,k for tk we obtain:

. (15)

The common prior (6) considered “neutral” has a strong bias towards larger age differences if the
number of samples exceeds 2. This problem strongly influences the calculation of the span Dt1,N , i.e.
the duration of the whole sequence. According to theorem (15) this has a marginal prior of
Pprior(Dt1,N) µ Dt1,N

N-2. The marginal priors of the samples show an analogous bias. This was
already observed in Buck et al. (1991), but without discussing the implications, especially on the
span calculation. Recently, Bronk Ramsey (1999) suggested to overcome this bias by modifying the
common prior (6)
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This can be achieved in the program OxCal by using the “BOUND” condition (C Bronk Ramsey,
personal communication 1999). This condition is usually used to estimate the boundary (i.e. start
and end time) of the sequence. In general, the significant gain in precision obtained with prior (6)
cannot be achieved by using prior (16). A general use of the modified prior (16) may lead to an
appreciable change of any posterior probability distribution calculated with prior (6).

We do not consider the modified prior (16) more generally valid than the common prior (6). More-
over, since for two samples the two priors (6) and (16) are identical, the failure in computer experi-
ment C persists. Summing up we see no convincing way to select a certain prior for general use in
the sequence algorithm.

There exist applications where the prior information is known in full detail, and therefore this infor-
mation can be transformed into a mathematical form without vague assumptions. Here our criti-
cisms concerning the sequence algorithm do not apply. This is the case for 14C “wiggle matching”
(Goslar and  1998; Bronk Ramsey 1999) where the age differences for a set of samples, e.g.
for N different tree rings from the same log, are known exactly. Each piece is 14C-dated indepen-
dently. The additional tree-ring information can be written as a prior probability distribution:

(17)

where time offset Dt1,k can be obtained from the number of tree rings in between. No vague assump-
tions like the constant probability in the common prior (6) have to be made.

CONCLUSION

Bayesian mathematics is a powerful tool for combining probability distributions from different
sources, if these distributions are well defined. In this paper we discussed the combination of a well-
defined distribution derived from 14C measurements of archaeological samples with additional infor-
mation on their chronological order. This information can only be transformed into complete proba-
bility distributions by using “vague” assumptions. The prior commonly used is a constant probability
density for the calendar ages, as long as the given order is respected (otherwise it is zero).

If the samples are already well resolved in time by the 14C measurement alone, the Bayesian
sequence algorithm does not change the data. For samples that cannot be separated by the 14C mea-
surement we demonstrated by means of computer-simulated measurements that the common prior
creates results with spurious high precision. The algorithm spreads the ages of the samples in a
sequence over the whole range allowed by the 14C uncertainty (which may be large for flat regions
of the calibration curve), and small uncertainties are obtained. These results are no longer in agree-
ment with the (assumed) true ages of the samples and therefore the reduced uncertainties are an arti-
fact of the algorithm. Generally speaking, the algorithm improves the precision but reduces the accu-
racy! We demonstrated that these problems show up in any region of the calibration curve. The
artifacts are more obvious for a larger sequence of samples but even persist for only two samples.

We came to the conclusion that the commonly used prior is no “neutral” assumption. The decision
which prior probability distribution is suited for the individual archaeological context should be
made in close cooperation with archaeologists well-experienced in quantitative methods.
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