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ABSTRACT. If radiocarbon measurements are to be used at all for chronological purposes, we have to use statistical meth-
ods for calibration. The most widely used method of calibration can be seen as a simple application of Bayesian statistics,
which uses both the information from the new measurement and information from the 14C calibration curve. In most dating
applications, however, we have larger numbers of 14C measurements and we wish to relate those to events in the past. Baye-
sian statistics provides a coherent framework in which such analysis can be performed and is becoming a core element in
many 14C dating projects. This article gives an overview of the main model components used in chronological analysis, their
mathematical formulation, and examples of how such analyses can be performed using the latest version of the OxCal soft-
ware (v4). Many such models can be put together, in a modular fashion, from simple elements, with defined constraints and
groupings. In other cases, the commonly used “uniform phase” models might not be appropriate, and ramped, exponential, or
normal distributions of events might be more useful. When considering analyses of these kinds, it is useful to be able run sim-
ulations on synthetic data. Methods for performing such tests are discussed here along with other methods of diagnosing pos-
sible problems with statistical models of this kind.

INTRODUCTION

Much that will be said here would be equally applicable to any dating technique. However, 3 aspects
of radiocarbon dating have led to the extensive development of statistical analysis methods and
tools. The first is the very wide availability of 14C dates, which means that, in many applications,
large number of measurements have to be considered together. Another, more fundamental reason is
that 14C dates are not dates at all but measurements of an isotope ratio. To interpret them as dates at
all requires some form of statistical analysis using a calibration curve. Furthermore, once calibrated,
14C dates have probability density functions that are not normally distributed and, therefore, many
of the standard methods of classical statistics cannot be applied.

The earliest consequence of this was the development of probabilistic methods for calibration in
various calibration programs (Stuiver and Reimer 1993; van der Plicht 1993; Bronk Ramsey 1994)
and the very important early development of a new statistical framework for dealing with multiple
14C dates undertaken by the Nottingham University statistics group quickly followed (Buck et al.
1991, 1992, 1994, 1996; Christen 1994; Christen and Litton 1995; Christen et al. 1995). At that
time, the underlying statistics for the most commonly used models were developed. Indeed, there
has been a general consensus over the most appropriate mathematical models to be applied to single
and multiple phases. Other statisticians (Nicholls and Jones 2001) have suggested refinements, but
on the whole the general approach has remained the same.

When these methods were first developed, the analysis of even quite small models took considerable
computing power. However, with the development of computer hardware over the last decade and a
half, most desktop and laptop computers can now handle large and sophisticated models. Although
the mathematical equations underlying the models in common use are relatively simple, few have
the desire to implement them by hand. For this reason, the development of widely available soft-
ware, such as OxCal (Bronk Ramsey 1995), BCal (Buck et al. 1999), and DateLab (Jones and
Nicholls 2002), to perform such analyses has been important in promoting their adoption.

The purpose of this paper is to provide an overview of the methods underlying much of the Bayesian
analysis undertaken today. The underlying themes are relevant to analyses performed using any soft-
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ware. However, for simplicity the illustrations of the models will be taken from the latest version of
OxCal, partly because of the familiarity of the author with the package and partly because the code
for the models can be succinctly expressed.

BAYES’ THEOREM: THE UNDERLYING METHODOLOGY

We need to start with the mathematical basis for all of the analyses discussed here. Bayes’ theorem
tells us that:

(1)

where t is the set of parameters and y the observations or measurements made. p(t) is the prior or
the information about the parameters (mostly events) we have apart from the measurements. p(y | t)
is the likelihood for the measurements given a set of parameters. p(t |y) is the posterior probability,
or the probability of a particular parameter set given the measurements and the prior. In a Bayesian
analysis, we have to express the information we have about the chronology in these terms.

For any statistical analysis, we need to formulate a mathematical model for the underlying chronol-
ogy. This immediately forces us to make certain assumptions that need to be borne in mind when
considering the results. The first assumption made is that the chronology can be broken down into
events—that is, single points on a continuous timescale. This does not mean that more continuous
processes cannot be modeled, but it does mean that those processes need to be described in terms of
events. For example, a phase of activity in an archaeological site, or a period of deposition in a sed-
imentary sequence, is bounded by a start event and an end event. In other cases, the events might be
more randomly sampled from a more continuous process like deposition in a sedimentary sequence.
We will look later at how this works in practice and how some of the apparent limitations of this
approach can be overcome.

Events occur on a well-defined timeline. In our analysis, we wish to find the date of the events of
interest, and the intervals between them. In some periods, the precision we need is subannual (in the
post-bomb era of 14C dating), but for most periods we are dealing in years, decades, or centuries. So,
although it is usually sufficient to work in integer years, it makes sense for any analysis to be on a
floating point timescale, which can give any required precision. CaliBomb (Reimer et al. 2004) and
OxCal both use a fractional year timescale where, for example, 2000.1 is early in AD 2000 and
2000.9 is late in the same year. OxCal uses the same floating point timescale internally for all peri-
ods (see Figure 1).

There are two main types of date information available to us in the study of chronology: calendar and
relative. Calendar date information, which essentially puts events on an “absolute” timescale, can
come from historical records or from scientific dating methods. Relative date information usually
comes in the form of stratigraphy or from a broader study of the context. Ultimately, both types of
information come from observations made on the material studied and there is no intrinsic reason to
trust one type of information more than the other. The main functional difference between these two
types of information is that the calendar date information usually relates to the age of single samples,
whereas the relative date information provides a much more complex relationship between the tim-
ing of events. For this reason, Bayes’ theorem is normally applied in chronological analysis so that
the calendar date information is expressed as the likelihood and the relative date information as the
prior. This usually makes conceptual sense given that the relative date information is normally avail-
able before any direct dating takes place. However, ultimately the distinction is somewhat arbitrary
and one can simply see the statistical methods as a way of combining all of this information together.

p t y( ) p y t( )p t( )∝
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The main question to be addressed in most analyses is what the most appropriate priors are. There
is no easy answer to this. Some might argue that we should not include anything but the dating infor-
mation and so the prior becomes a constant, independent of the dates of any of the events. However,
as we shall see (“Groupings” section below) this null prior:

(2)

is really quite inappropriate in most cases where we have many dates. This is essentially why most
attempts to analyze 14C dates without a proper formal model give misleading results and is perhaps
why, when asked to look at a series of calibrated 14C dates from a single phase, almost everyone will
instinctively overestimate their spread.

Age models can be expressed in purely mathematical terms. However, when defining and using age
models it is useful to have a convenient way of summarizing them that can be easily read, published,
and shared between collaborators. For this reason, the OxCal program uses a higher-level notation
(or Chronological Query Language, CQL: Bronk Ramsey 1998) to encapsulate the models. This
notation has been further developed for OxCal v4 (CQL2, hereafter just referred to as CQL) and
now uses a C or ECMAScript format:

command (parameters) {further information};

CALENDAR DATE INFORMATION

Ideally, we have direct evidence for the date of an event. This is either as an actual historical date or,
more often, in terms of scientific measurements, a date with some associated uncertainty.

Some other methods provide ages in a more convenient form than 14C dating. This is because 14C is
really not an calendar dating technique at all. We make measurements and have to make use of the
the data in the calibration data sets in order to interpret them in calendar form. Many other dating
techniques give either age ranges (e.g. from historical records) or means with standard uncertainties.
In some cases (notably older samples in uranium-series dating), the errors are not normally distrib-
uted. In any case, we introduce such information as a probability density function, which is treated
in the Bayesian analysis as a likelihood. Before we look at these likelihood functions, we first of all
need to define the timescale over which they operate.

Timescale

Central to any specification of calendar age information is an agreed timescale, and this is an area of
some confusion. In 14C, cal BP is used to mean before AD 1950, but in other dating methods BP is
also sometimes used to simply mean before the measurement was made. Where the uncertainties are
large, this usually does not matter, but it is unfortunate that such confusion continues. The reason is
that people prefer to think in terms of ages rather than absolute points on a calendar timescale, but
unfortunately “age” is a continually shifting scale. Those who need higher precision such as histori-
ans and archaeologists working in the historical period use the calendar BC/AD or BCE/CE scale,
which has no year zero and is well defined. For dates within a year, the calendar becomes very com-
plicated before the modern era due to different local practices. Astronomers and other scientists who
require very good precision over long timescales use Julian years, though confusingly not from the
same starting point as the original Julian calendar with a year length of 365.25 days; for convenience
they also define fraction years of the form 2000.5 to mean half-way through the year 2000. There is
also a well-defined calendar, ISO-8601, which can be extended to cover all times and based on the
Gregorian calendar; this is now the underlying standard for most computer applications. As with

p0 t( ) cons ttan∝
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astronomical year numbering, this does include the year zero. In ISO-8601 or the Gregorian calen-
dar, the average year length is 365.2425 days. Where high precision is needed, such as with post-
bomb 14C dating, this seems the best basis for a calendrical timescale (see Figure 1).

Probability Density Functions

As soon as we make measurements, or other observations, that tell us about the timing of an event,
this makes some dates much more likely than others. This is usually expressed in terms of a proba-
bility density function (see Figure 2). To take a simple example, if we make an observation yi that
implies that an event ti took place in England within the reign of William the Conqueror, we know
that it must take place at sometime between 25 December 1066 and 9 September 1087. We would
give such an event a uniform probability density function:

p(yi | ti) ~ U(1066.995,1087.703) (3)

Figure 1 Floating point timescale and date expressions used in OxCal: Any analysis needs to be
performed on a well-defined scale. OxCal uses a floating point timescale based on the ISO-8601
calendar. 1.0 is defined as 00:00:00 UT on Monday 0001-01-01 and the year length is 365.2425
days. This timescale is very close to the constantly changing Besselian fractional year scale
(denoted by a prefix B) and is close to the Julian fractional year system (denoted by a prefix J)
in current use by astronomers. As it is based on the Gregorian year length, which is very close
to the variously defined astronomical years, it keeps phase with the seasons for the last
100,000 yr (by which point it is about a month out). Essentially, the same timescale is used in
CaliBomb for the post-bomb calibration data sets. The cal BP timescale, which is really only
defined in terms of integer years, is taken to be the number of Gregorian years prior to the middle
of AD 1950. A prefix of G is used to distinguish it from fractional Besselian or Julian timescales.
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In many scientific dating techniques, the results are given as ages (before 1950, or sometimes before
measurement, expressed as BP) with normally distributed errors. For example, the Ar-Ar date for
the eruption of the Laacher See Tephra 29,500 ± 560 (van den Bogaard 1995) can be represented by
a normal distribution:

p(yi | ti) ~ N(1995 – 29500, 560) (4)

When we come to 14C, the measurement is made on the isotopic composition of the sample, not on
the age of the sample. To convert this to an age, we need to go through the process of calibration.
The most basic form of calibration is the intercept method, which just gives a range, or set of ranges.
The probability method in use in most calibration programs has some advantages (Bowman and
Leese 1995) and is essentially Bayesian in nature. We define the actual 14C ratio of the sample for
an event ti to be ρi. We also have information yi from the measurement, which is usually expressed
as a mean and standard uncertainty ri ± si. This gives:

(5)

Note that we can express the 14C measurement here either in terms of a 14C age (BP, Stuiver and
Polach 1977) or a ratio (F14C, Reimer et al. 2004). For measurements close to background, however,
the errors are approximately normal for the ratio, but are far from normal for the 14C age. For this
reason, calibration of older dates should always be made in reference to the ratio. In addition to the
measurement, we have other (prior) information about ρi, which comes from the calibration curve,
defined in its functional form as r(t) ± s(t). The prior is normally taken to be:

(6)

This is a suitable prior because if we integrate over ρi we then get a constant value, independent of
ti, so it is neutral with respect to date. This prior reflects that fact that some 14C measurements (nota-
bly those on the plateaus) are more likely than others. Given this, we can now integrate out the
parameter ρi, which we do not need:

(7)

(8)

(9)

This is the standard calibration equation and is usually treated as the likelihood for the event associ-
ation with the 14C measurement, although it already includes the prior information about the calibra-
tion curve. This complication needs to be addressed in some cases, most particularly where several
14C dates are all made on the same sample, in which case the measurements must be combined
before calibration so that the same prior calibration curve information is not included more than
once in the analysis (see Bronk Ramsey 2009 for further discussion of the combination of 14C dates).

p yi ρi( ) 1
si 2π
-------------- ri ρi–( )2 2si

2( )⁄–( )exp=
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------------ ρi r ti( )–( )2 2s2 ti( )( )⁄–( )exp∝

p yi ρi ti,( ) 1
sis ti( )
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2( )⁄–( ) ρi r ti( )–( )2 2s2 ti( )( )⁄–( )expexp∝

p yi ti( ) p yi ρi ti,( ) ρid
ρi ∞–=

∞
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ri r ti( )–( )2

2 si
2 s2 ti( )+( )

--------------------------------–
⎝ ⎠
⎜ ⎟
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si
2 s2 ti( )+

--------------------------------------------------∝
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As far as single events go, this is all that we need. The likelihood defines the probability of obtaining
a measurement given a particular date for an event. If we only have a single event, we normally take
the prior for the date of the event to be uniform (but unnormalized):

p(ti) ~ U(– ) ~ constant (10)

and so, from Bayes’ theorem, the posterior probability density is the same as that for the likelihood.
So for a single 14C measurement, we can say that:

(11)

See Figure 2 for an explanation of how likelihoods are defined in OxCal.

RELATIVE CONSTRAINTS

One thing that we will need to consider in most models is constraints on the order of events. We fre-
quently have information about the ordering of events either from stratigraphy or more generally
from our understanding of the chronology. To introduce a single constraint ta < tb between 2 event
parameters, we introduce an element in the prior:

(12)

This function is labeled pH because it is the same as the Heaviside function H(tb – ta) except in the
case where ta = tb. For multiple constraints in a sequence, we define a prior along the same lines:

(13)

Any constraints that we wish to include in a prior model are simply further factors of this form.

Rather than dealing with constraints between individual events, groups of events are often consid-
ered together in terms of sequences and phases (see Figure 3), but such constraints can all be broken
down and expressed mathematically in the same way.

GROUPINGS

Although a suitable prior for a single 14C date is fairly easy to find, it is much less obvious what a
suitable prior is for a larger number of events. If we have 2 events tb and tb, and we use a simple con-
stant prior over all time, then it is interesting to look at the implications for the interval s = |tb – ta|.
The effective prior for our parameter s is also uniform from 0 to , which seems fairly satisfactory.
However, if we have more events t1 . . . tn, the span of these events has an effective prior, which is

, which is very highly weighted to higher values when n is large. This is clearly very unsuit-
able in most cases as demonstrated by Steier and Rom (2000) and discussed in Bronk Ramsey
(2000). This means that for any more than 2 events we need to find a more appropriate prior.

∞ ∞,

p ti yi( ) p yi ti( )p ti( )∝

ri r ti( )–( )2

2 si
2 s2 ti( )+( )

--------------------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

si
2 s2 ti( )+

--------------------------------------------------∝
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⎨ ⎬
⎧ ⎫

=
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Uniform Phase Model

The usual way to deal with this problem is to introduce the notion of the uniform phase, which has
proved to be a very useful conceptual framework for this kind of analysis. There are different ways
of going about deriving essentially the same equations (see Buck et al. 1991, 1992; Zeidler et al.
1998 for the original work on this). Perhaps the easiest starting point is to return to the 2-event situ-
ation, which is easy to deal with. We define 2 events that delineate the phase: a start event ta and a
finish event tb. From now on, these will be referred to as boundary events. In this case, we have an

Figure 2 Probability density functions in OxCal: OxCal models are all expressed in terms of a Chronological Query
Language (CQL), which is a development of a system proposed in Bronk Ramsey (1998). Probability density func-
tions are usually used as likelihoods for model parameters. OxCal will normally create a new parameter for each prob-
ability distribution defined unless the parameter is specifically cross-referenced.
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additional constraint (see next section) that ta < tb, but we define a uniform prior for each of these
otherwise:

(14)

If we then look at the effective prior for a parameter s = tb – ta, this is still uniform over the range 0
to , which is suitably vague. Now let us look at a suitable prior for all of the other events ti in the
model. These must lie somewhere between the 2 outer boundary events and so:

(15)

Figure 3 Constraints in OxCal are usually expressed in terms of the commands Sequence,
Phase, Before, and After; the examples shown above (without any likelihood information,
for clarity) show how the CQL syntax is used to introduce constraint elements into the prior.
They can also be added explicitly using the < and > operators. It should be stressed that such
constraints should only ever be used in conjunction with some kind of a grouping model (see
Groupings section). The individual fragments above do not form plausible models on their own.

p ta tb,( ) pH ta tb,( )∝

∞

p ti ta tb,( )
pH ta ti tb, ,( )

tb ta–( )
----------------------------=
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The overall prior for the model then becomes:

(16)

where there are n events within the phase. This is the prior usually used for a single-phase model in
any of the Bayesian analysis software packages, OxCal (Bronk Ramsey 1995), BCal (Buck et al.
1999), or DateLab (Jones and Nicholls 2002). It is sometimes referred to as a “uniform phase”
model because of the uniformity of the prior in Equation 15. In most cases, the 2 outer boundary
events are not directly dated, but this need not be the case. The important thing about it is that the
effective prior for the span of all of the events within the model is constant—that is, the model does
not favor short or long phases. However, it does make some assumptions, most notably that all of the
events within the group are equally likely to occur anywhere between the start and the end.

Other Distributions

There will be circumstances where the uniform phase model is not appropriate. It is very easy to
extend the same formalism to other distributions. If the distribution can be defined in terms of 2
boundary events in the same way as the uniform phase, then we only need to alter the form of Equa-
tion 15. As a first example, suppose we know that the events within the phase are likely to grow in
number throughout the phase; instead of a uniform prior within the phase we can use a ramped one:

p(ti | ta, tb) = 2 pH (ti, tb) (ti – ta)/(tb – ta)2 (17)

and the overall prior for the model becomes:

(18)

In this model, all of the dates within the phase are still constrained to lie within the outer boundaries
and again the prior for this model is independent of the span of all of the events.

So far, we have considered single-phase models where the underlying processes are defined by 2
events. However, consider now a phase where there is a definite end point tb, but the events preced-
ing it are distributed exponentially with an unknown time constant. Such might be the case with
residual material in a destruction layer, though this is yet to be tested archaeologically. In such a
case, we can still define 2 controlling boundary events but use the earlier one to define the time con-
stant τ = tb – ta rather than to limit the distribution. We now replace Equation 15 with:

(19)

and the overall prior for the model becomes:

(20)

As a final example, we will consider the case where events are normally distributed, with a gradual
onset and tailing off. Again, we can use the same overall formulation, but we will define the 2 char-

p t( )
pH ta ti tb, ,( )

tb ta–( )
----------------------------

i
∏∝ i pH ta ti tb, ,( )∏

tb ta–( )n-------------------------------------=

p t( ) pH ta tb,( ) 2pH ti tb,( ) ti ta–( ) tb ta–( )2⁄
i

∏∝

p ti ta tb,( ) pH ti tb,( )
tb ti–( ) tb ta–( )⁄–( )exp

tb ta–( )
----------------------------------------------------------=

p t( ) pH ta tb,( ) pH ti tb,( )
tb ti–( ) tb ta–( )⁄–( )exp

tb ta–( )
----------------------------------------------------------

i
∏∝
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acteristic boundaries ta and tb to provide the 1σ limits of the distribution. We now replace Equation
15 with:

(21)

and the overall prior for the model becomes:

(22)

To some extent, these models with different functional forms can be used to deal with underlying
processes that do not have definite start and end events. Figure 4 shows the different ways in which
such single-phase models can be specified in OxCal and Figure 5 shows an example application.

The grouping distributions described here are all expressed in terms of 2 parameters. In principle,
more complicated distributions can also be defined, which require more parameters for their speci-
fication. The most significant of these is perhaps the trapezium model (Karlsberg 2006), which
requires 4 parameters and might be appropriate in a number of archaeological situations where you
have a slow start and end to a phase. These more complicated models are not yet implemented in
OxCal.

Any coherent group of dates can be treated as a single phase if no more information is available. Such
a treatment is much more realistic, in almost all cases, than the constant prior p0(t), which assumes
that all of the events are independent. This is because under any of these models, the effective prior
for the span of the events is neutral (that is, there is no bias to a longer or shorter span). The constant
prior, on the other hand, is very strongly biased to longer spans. In cases where otherwise modeling
might not have been considered, the main modeling decision to make is what the most realistic dis-
tribution of events is. In many cases, uniform between some start and end event might be most appro-
priate. In other cases, we might expect our group of events to be clustered but to have a slow onset

Figure 4 Range of grouping distributions supported in OxCal v4.0. Groupings are defined
by using Boundary commands within a Sequence. All events sandwiched between 2
boundaries (including those in nested phases) are treated as a single group. The type of
group is defined by the type of boundary used. A simple Boundary at the start and end
of a group defines a uniform phase. A Zero_Boundary is used to define the start or end
of a group where the event rate has a ramped distribution. A Tau_Boundary can be used
to define an exponentially distributed group and a pair of Sigma_Boundary statements,
a normal distribution. The latter two types of group allow the events to spill beyond the
dates of the boundaries themselves and allow the creation of models of processes that do
not have definite start and end events.
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and tail, in which case a normal distribution would be a better approximation. In cases where there
is ambiguity, it is useful to look at the sensitivity of the model outputs to these different priors.

These single-phase models are also important because they form the basis for most of the more com-
plex models.

Figure 5 Example of the application of a non-uniform phase model in OxCal. The dates are for antlers used to dig the
main enclosure ditch at Stonehenge (Cleal et al. 1995). The assumption here is that the construction is dated by E and
the antlers are most likely to just predate this event, some possibly being somewhat older. An exponential distribution
has been assumed with an unknown time constant τ, which is estimated in the analysis. This also illustrates the main
aspects of the modeling process: a) shows the model input as shown on the screen; b) the CQL code for the model; c)
the schematic for the model (stratigraphic order); d) the age output plots from the model (stratigraphic order); and e)
the estimate for the timescale τ for the acquisition of the antlers. This model is shown for illustration purposes only as
it does not include all of the other information from the site.

a)

Plot()
{
Sequence( "Stonehenge")
{
Tau_Boundary("T");
Phase("ditch antlers")
{
R_Date("UB-3788", 4381, 18);
R_Date("UB-3787", 4375, 19);
R_Date("UB-3789", 4330, 18);
R_Date("UB-3790", 4367, 18);
R_Date("UB-3792", 4365, 18);
R_Date("UB-3793", 4393, 18);
R_Date("UB-3794", 4432, 22);
R_Date("BM-1583", 4410, 60);
R_Date("BM-1617", 4390, 60);
};
Boundary("E");
};
Tau=E-T;
};

b)

c)

Sequence Stonehenge

Tau_Boundary T

Phase ditch antlers

R_Date UB-3788

R_Date UB-3787

R_Date UB-3789

R_Date UB-3790
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R_Date UB-3793

R_Date UB-3794

R_Date BM-1583

R_Date BM-1617

Boundary E
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Modelled date (BC)

d)

Tau E-T
95.4% probability
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Multiple Phases

There is very little difficulty in extending the formulation of the single-phase models outlined above
to multiple phases or groups. In the simple case of overlapping phases, the different groups can be
treated entirely independently. There is no additional mathematical formulation needed. If, for
example, we have 2 such phases, the first of which starts at time ta and ends at time tb with internal
events ti, and the second of which starts at tc and ends at td with internal events tj, then the prior is
just:

(23)

More often, however, we have some relationship between the different groups of events. Sometimes
the groups follow one after another with some kind of transition event (contiguous phases). In such
a case, the mathematical formulation is essentially the same for each phase, but the same boundary
parameter is used for the end of one phase and the start of the next. For 2 such phases, the first of
which starts at time ta and ends at time tb with internal events ti, and the second of which starts at tb
and ends at tc with internal events tj, the prior is:

(24)

In other cases, we might expect there to be a hiatus between the phases—that is, they are sequential
but not contiguous. In this case, the prior is similar to that for overlapping phases but with a con-
straint that the start of the second phase should come after the end of the first as in:

(25)

In this way, one can see that, with some additional constraints, any multiphase model can be built up
by simply multiplying the priors for all of the individual groupings within the model (Figure 6).

At this stage, it is worth discussing the types of applications where these models can be used. The
most obvious is single sites where the stratigraphy and taphonomy of the samples is such that well-
defined constraints can be imposed on events known to have taken place at a site. This is probably
the most robust and powerful use of the method and can be seen in examples such as those discussed
in Bayliss and Whittle (2007). In such instances, the prior information is derived from concrete evi-
dence giving information about the chronology. The technique can also be applied in other cases
where the chronological framework is much more general. In such cases, the overall framework of
the chronology is derived from a much wider range of evidence. This is the case, for example, in the
material for the Iron Age of Israel (Boaretto et al. 2005; Mazar and Bronk Ramsey 2008), the chro-
nology of the Aegean Late Bronze Age (Manning et al. 2006), or that of the British Bronze Age
(Needham et al. 1998). In such cases, the overall chronological framework is used as a working
hypothesis on which the analysis is based. To some extent, the analysis can be used to test whether
such a hypothesis is tenable, but more often the results must be seen as depending on the assump-
tions built into the chronological framework. Often we need to return to the very nature of the mod-
els, event-based as they are, and ask whether they really reflect the underlying reality. For example,
we might ask, is the transition from Iron I to Iron II in Israel really a synchronous event? On one
level, it clearly is not, but since the resolution of our chronologies are typically only decadal at best,
if it is a process complete within a few years it might be a reasonable working model to adopt.
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Refinements to Multiphase Models

There are a couple of refinements to the prior that should be considered, especially if there are a
large numbers of phases. It should be stressed that these refinements will only make very slight dif-
ferences in practice to most models. They are included for completeness to maintain the original
intention that the prior should be independent of the overall span of the dated events in the model.
Our starting point above (“Uniform Phase Model” section) was that the boundaries events them-

Figure 6 The main types of uniform multiphase model that can be defined in OxCal. The top of this figure shows how the
models are usually specified in the program. Below this are the main SQL codes associated with such models (the actual
dates within the phases have been left out here for clarity). At the bottom, the schematics for the models are shown. In each
schematic, the left-hand side shows the parameters of the model. The lines in the center show the constraints imposed on
the parameters and on the right is shown the phasing and the associated distributions. In addition to the 3 phases in the con-
tiguous and sequential examples, one can see how the inner boundaries are treated as a uniform phase within the 2 outer
boundaries. These schematic diagrams provide a quick check of whether the model is arranged as intended.
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selves was taken to be uniform apart from an ordering constraint. The rationale behind this was that
there were only 2 of them. If we now have more than 2 boundary events, the prior for the overall
span of our modeled events is no longer uniform. We can deal with this issue by treating all of the
inner boundaries in a model as part of a single uniform phase for the chronology as a whole, starting
with the first boundary ta and ending with the last one tm. Each of these inner boundary events tk has
a normalized prior of:

(26)

Thus, in the simple 2-phase example above with contiguous phases, the prior becomes:

(27)

And the 2-phase example with hiatuses becomes:

(28)

This refinement of the multiphase model was first suggested by Nicholls and Jones (2001) and
implemented in DateLab (Jones and Nicholls 2002) and OxCal (Bronk Ramsey 2001).

The other factor in the prior of single- or multiphase model is only relevant if there are chronological
constraints on the upper and lower phase boundary events (something we assumed was not the case
in the “Uniform Phase Model” section). If there are upper and lower limits ulima, llima for ta and an
upper and lower limits ulimm, llimm for tm the effective prior becomes proportional to:

(29)

and so by adding a factor of the reciprocal of this quantity: 

(30)

to the prior we maintain a uniform effective prior for the span of all the events (tm – ta). A simplified
form of this factor was first suggested by Nicholls and Jones (2001), then generalized by Bronk
Ramsey (2008) for other types of constraint. A simplified form of this factor is included in models
calculated in DateLab and OxCal v3, and the full function used in OxCal v4. In OxCal v4, setting
the UniformSpanPrior option off (the default is on) will remove these refining elements to the
prior.

The latter 2 refinements aside, most of the Bayesian analysis computer programs implement the
same models for single or multiple uniform phases and, with or without these, can be expected to
give very similar results.
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Beyond Simple Phases Sequences

In many cases, a multiphase model can be used to describe the activity on a site, the deposition of
samples, or more generally the chronology of a region. However, reality is often more complicated
than this, and it is useful to be able to construct models that better reflect the underlying processes.
The modularity of the formulation of the phase prior helps with this, and in practice most situations
can be reasonably well described by linking variables and cross-referencing events between differ-
ent elements in a model. As an example of this, we will consider the case where we have 2 phases
that end at the same point but are different lengths. A schematic for the model is shown in Figure 7
and is taken from Figure 2 of Mazar and Bronk Ramsey (2008). It is useful in this context to con-
sider the mathematical formulation of the prior for the boundaries in such a model. We define the
start of the main sequence as ta, the transition from Iron Age I/II as tb, and the end of the main
sequence as tc. The other independent boundary is the start of the Late Iron Age I material, which we
will call td. The main Iron I material has multiple events ti, and likewise multiple events tj within Iron
II. The late Iron I events are designated as tk. The basic main model is a 2-phase model as in Equa-
tion 27 and we add to that a single-phase model from td to tb and so the overall prior is:

(31)

The right-hand side of Figure 7 shows how such a model could be specified in OxCal.

Cross-referencing between otherwise independent models is a powerful tool as it allows synchro-
nous events across sites or cultures to be modeled using chronological information from a range of
sources. As with multiphase models more generally, however, it is important to consider exactly
what is meant by synchronous: this is fine for well-characterized tephra horizons, for example, but
probably not for vegetation changes related to climate or cultural changes that may spread more
gradually. Caution is also needed from a mathematical point of view since it is important that the
same elements of the prior are not duplicated by defining an event to be in what are essentially 2 ver-

Figure 7 The model described in Figure 2 of Mazar and Bronk Ramsey (2008) for Iron Age material is shown on the left,
and on the right how such a model can be expressed in OxCal’s CQL notation. The model is essentially a main 2-phase model
and a second 1-phase model. The two are tied together by the cross-referenced boundary for the Transition I/II. This ensures
that only 1 independent parameter is used for this event.
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Plot()
{
Sequence("Main")
{
Boundary("Start");
Phase("I"){...};
Boundary("Transition I/II");
Phase("II"){...};
Boundary("End");
};
Sequence("Late I")
{
Boundary("Start Late I");
Phase("Late I"){...};
Boundary("=Transition I/II");
};
};
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sions of the same phase. Also, extensive use of cross-referencing can make the MCMC analysis
slower. For these reasons, the numbers of cross-references should be kept to the minimum necessary
to formulate a suitable model.

SPECIFIC MODELS

So far we have looked at generic, general-purpose models that are applicable to a wide variety of
sites and environmental deposits. The Bayesian formalism also allows much more specific models
to be generated, which can be used in particular situations such as models that allow for spacial
modeling (such as Blackwell and Buck 2003). This is likely to be an area of active development for
some time to come and really goes beyond the scope of this paper (a useful general reference is Buck
and Millard 2004). However, in the context of general-purpose models it is worth mentioning the
case of deposition sequence models, which are already in widespread use.

Defined Deposition Rate

The first really widely used deposition model is the one where the rate of deposition is well known.
This is especially useful in the case of wood with well-defined tree rings (see Christen and Litton
1995) and the D_Sequence command in OxCal (Bronk Ramsey et al. 2001; Galimberti et al.
2004), and is regularly used to fit elements of floating tree-ring calibration data. The mathematics
associated with the various approaches to this, including classical least-squares fits, are discussed in
detail in Bronk Ramsey et al. (2001). For the Bayesian approach, the prior is essentially very simple.
If we have a series of dated events ti, the earliest of which is ta and the latest of which is tb, then we
have a known gap between them such that:

ti+1 = ti + gi for all i such that a ≤ i < b (32)

There is therefore only 1 independent variable in the model (which is typically taken to be tb the fell-
ing date for the tree). Because there is effectively only 1 variable, this is one of the few Bayesian
models where the posterior probability densities can be directly calculated without having to use
Monte Carlo methods.

Other Deposition Models

There is also increasing use of other kinds of Bayesian deposition models. These models vary in
type. It is possible to simply use the order of deposition on its own using the models discussed above
(the OxCal Sequence command, Bronk Ramsey 1995). This is surprisingly effective in some
cases but makes no use of depth information at all. A much more prescriptive assumption of con-
stant deposition rate is also sometimes made (Christen et al. 1995; Kilian et al. 1995; or the
U_Sequence command of OxCal, Bronk Ramsey 2008).

Real sedimentary deposition is not completely uniform, and there have been a number of methods
developed for dealing with this situation. One approach is to assume that the deposition is constant
for short periods with periodic changes in deposition rate (Aguilar et al. 2002; Blaauw et al. 2003;
Blaauw and Christen 2005). Other methods (sometimes not Bayesian) allow for non-linear deposi-
tion rates (Christen et al. 1995; Walker et al. 2003; Telford et al. 2004; Heegaard et al. 2005). In
OxCal, a randomly variable deposition model has been developed (the P_Sequence command,
Bronk Ramsey 2008).

The priors for most of these deposition models are mathematically more complicated than the gen-
eralized constraint and group models described above. Ideally, they should incorporate prior infor-
mation about the deposition process itself.
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ANALYSIS METHODS

In theory, once the model has been defined (the prior) and the measurements made (the likelihood),
the posterior probabilities can be directly calculated using Bayes’ theorem. So it is very easy to cal-
culate the relative probability of each specific outcome. However, in practice most chronological
models have sufficient numbers of independent parameters that the number of possible outcomes to
consider at a reasonable resolution is very high. For example, a model with 20 events with a possible
span of 500 yr or so that we wish to explore at 5-yr resolution has (500/5)20 = 1040 possible out-
comes. For this reason, Markov Chain Monte Carlo (MCMC) methods are usually used. Each iter-
ation of the MCMC analysis provides a possible solution set of all of the parameters of the model.
The probability of a particular solution appearing in the MCMC analysis should be directly propor-
tional to its probability as defined by the posterior probability density, and in most cases after about
105 to 106 iterations a reasonably representative solution can be generated.

Assuming the MCMC algorithm is correctly implemented, it should eventually give representative
distributions. If there are too few iterations in the analysis, the resulting probability distributions will
usually be noisy and will vary from run to run. The degree to which a truly representative solution
set has been generated is called “convergence” (see section “Problems with the MCMC Algorithm”
below). One form of MCMC analysis is particularly useful and that is the Metropolis-Hastings algo-
rithm (see e.g. Gilks et al. 1996), since it only requires relative probability information and in many
cases full normalization of the posterior probability is difficult. This is the algorithm used exclu-
sively in OxCal v4. Some other methods such as Gibbs sampling (Gelfand and Smith 1990) can give
more rapid convergence but can only efficiently be applied in specific types of model and are no
longer used in OxCal.

MODEL OUTPUTS

Of course in order to be useful, any analysis has to have outputs that can be easily interpreted. The
most commonly used type of output from Bayesian analyses is the marginal posterior probability
distribution function, which essentially pulls out the probability distribution for a single parameter,
based on the entire model. Based on this, ranges of likely values can also be derived. However, there
are other possible outputs from any analysis that can be useful in some circumstances.

Probability Distribution Functions

Mathematically, the marginal probability distribution function can be considered as the integral over
all other parameters in the posterior probability density. However, since in practice we are usually
finding the posterior distribution using MCMC analysis, all that we have to do is to build up a dis-
tribution of sample values for the parameter as the analysis proceeds. These distributions are what
are usually plotted as the output of the model (as in Figure 5d,e). It is often convenient to see how
the marginal posterior distributions relate to the original likelihood, so these are often plotted
together. For example in OxCal, the likelihood is shown in outline, or light grey with the posterior
marginal distribution overlain. This allows the effect of the modeling to be visually assessed.

Ranges

It is also frequently useful, both for likelihoods and marginal posterior distributions, to calculate
ranges of probable values. These are usually quoted at 68% and 95% for comparability with 1 and 2
standard deviations in normal distributions. It should be noted though that the probability distribu-
tions are not usually normally distributed and these ranges should not be referred to as 1 σ and 2 σ,
the latter notation being reserved for the intercept method of calibration. The ranges calculated from
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probability distribution functions are calculated on the basis of highest probability density (HPD).
So if we have a 95% range, it is the shortest range that includes 95% of the probability in the prob-
ability density function.

Interrogating the Analysis

In any MCMC analysis, there is much more information that can be extracted than just the marginal
probability distributions. Bayesian analysis programs normally include ways to retrieve such infor-
mation. For example, if we have a series of events we might wish to know the date of the earliest or
latest of them. This can be performed during the MCMC by, at each iteration, taking a sample of
whichever event parameter has the minimum or maximum values (First and Last CQL com-
mands in OxCal). Likewise, it is easy at each stage to sample the span of all of the events in a group
(Span command), or their order (the Order command builds up a matrix of the relative order of
all pairs of events). You can also calculate the time interval between 2 events, which is sometimes
even more interesting than the calendar age (using the Interval or Difference commands or
directly as in the calculation of τ in Figure 5).

The marginal posterior densities sometimes hide useful information. Parameters are often highly
correlated and so, for example, if the start of a phase is late it may be that the end will also be late
within the possible ranges. In such instances, it can be useful to plot the probability density for 2
parameters relative to one another (Correlation function in CQL). As a last resort, the iterations
of the MCMC can be inspected directly (MCMC_Sample command in OxCal v4.1 and later).

It should be stressed, however, that in a sense none of these interrogations, or queries, of the model
actually add anything or change in any way the model itself. They do not affect the prior or the like-
lihoods on which the model is based.

DIAGNOSIS

Problems can arise with any statistical analysis, and the more complicated the analysis is the more
likely there are to be problems. It is worth subdividing this into 3 distinct areas: the model, the mea-
surements, and the MCMC analysis itself.

Testing Models

The prior can be divided into two parts, the informative prior (e.g. the sequence of events) and the
uninformative prior (which is the rest of the mathematical construct required for the model). Ideally,
the uninformative prior used in an analysis of this sort should be what is usually termed “vague.”
That is, the main information on the dating of events and the intervals between them should come
from the data itself and not from the model. Sometimes, especially with a more complex or unusual
model, it would be a good idea to check if the model performs as expected. There are two main
approaches that can be useful for this.

The first is to use simulated 14C dates (R_Simulate) for a scenario that mimics what is believed
to be going on. For example, if we have a single phase that is expected to have a span of 100 yr, we
might choose a start and end date for the phase, simulate 14C dates for that phase, run a Bayesian
analysis, and see if the output matches (within the uncertainty of the analysis) the range originally
defined. This way it is possible to test the precision and accuracy of the analysis. If the precision is
not high enough, then further simulations might indicate how many 14C dates are needed to achieve
the precision required. If the analysis is inaccurate, then there must be something wrong with the
model itself.
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The second approach is to run a model with very little dating information at all (use the Date com-
mand with no likelihood in OxCal). For this, we need some dating information at the start and finish
of the model, to provide some information, but that is all. The analysis will then demonstrate how
“vague” the model is, or if, for some reason, it is strongly biased towards one kind of solution. This
type of analysis is useful in determining the unintended consequences of a particular model.

Figure 8 shows an example of both types of simulation. For a more comprehensive set of examples,
see Bayliss et al. (2007).

Figure 8 This figure shows two kinds of simulation that can be useful. At the top, we have a simulation of a sequence of
10 events assumed to be from the period 1000–1200 CE. In this simulation, we include no dating information but only
the order of the events. On the left is the model definition in OxCal’s CQL and on the right the effect of the model prior
on the dates within the sequence. Even without any dating information, a sequential prior does have a considerable effect
on the intervening dates. Below this, there is a simulation of a series of 10 14C dates, assumed to come from the same
period. The plot on the right shows the kind of resolution one might expect to get from such a model, in this period, with
uncertainty terms on the 14C dates of ±25. Comparison of this plot with the one above shows the degree to which the 14C
dates and the model define the final posterior distributions.

Sequence()
{
Boundary("Start 1",1000);
Sequence("1")
{
Date("A");
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Sequence()
{
Boundary("Start 1");
Sequence("1")
{
R_Simulate("A",1010,25);
R_Simulate("B",1030,25);
R_Simulate("C",1050,25);
R_Simulate("D",1070,25);
R_Simulate("E",1090,25);
R_Simulate("F",1110,25);
R_Simulate("G",1130,25);
R_Simulate("H",1150,25);
R_Simulate("I",1170,25);
R_Simulate("J",1190,25);
};
Boundary("End 1");
};
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Inconsistencies Between Measurements and the Model

Even if we have an accurate model, it may be that the measurement data are incompatible with it.
For individual measurements, this is most easily spotted by seeing where the overlap between the
likelihood distribution and the marginal prior is very small. If it is, then this means that it is very
unlikely that we would have made this observation (e.g. 14C measurement) if the model, and all of
the other data, are correct. This might be because the model is wrong (e.g. a sample may be residual
in a context) or because there is something wrong with the measurement itself: the effect is essen-
tially the same.

There are two different approaches that can be taken to measurement data that do not agree with a
model. One approach is to use formal outlier analysis (Christen 1994, 2003; Bronk Ramsey 2009).
This has the advantage of bringing the treatment of the outliers into the model itself. It has the dis-
advantage that it brings complication to the model and perhaps makes it harder to intuitively under-
stand what the assumptions behind the model are. In formal outlier analysis, each measurement is
given a prior probability of being an outlier (typically a low probability like 0.05) and the sample is
further down-weighted in the model if it is inconsistent with the rest of the available information.
The output from the model is affected by this down-weighting, and in addition to the normal model
outputs, a posterior probability for the sample being an outlier is generated. Further discussion of
this approach and its implementation in OxCal v4.1 is given in Bronk Ramsey (2009). The other
approach is to use the overlap between the likelihood and marginal posterior distributions as an indi-
cator of problems: this is the approach that has been taken with the agreement index in Bronk Ram-
sey (1995). This has the disadvantage that it is not a formal statistical approach with a well-defined
cut-off, but has the advantage that the model itself is unaffected. In practice, extreme outliers will be
identified by either method and even in the formal methods the cut-off is arbitrary.

The rationale of the agreement index, as defined in Bronk Ramsey (1995), is that a comparison can
be made between the marginal posterior distribution under the complete model with that under the
null prior p0(t)  constant. Under this prior, all of the likelihoods and posterior distributions are the
same since:

(33)

Under this model, therefore, any marginal posterior density . This is
not usually true for the full model:

(34)

In this case, we write the marginal posterior density depends on all the measurements and is written
as p1(ti |y). For each likelihood, we can then define a ratio:

(35)

This is the ratio of the mean likelihoods of making the measurement under the two models (the full
model and the null model). The individual agreement index is just taken to be Ai = 100Fi with a rea-
sonable minimum acceptable value being in the region of 60% (Bronk Ramsey 1995). On average,
one might expect about 1 in 20 Ai values to drop below 60%, but if they are substantially lower or a
large proportion fall below this level there may well be something internally inconsistent between
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the model and the data. Note that the ratio Fi can be greater than 1 (and therefore Ai can be greater
than 100%) as this means the measurement is more likely under the full model than under the zero
model.

To get an idea of how all the measurements together agree with the model, we can factor all the
ratios Fi together:

(36)

But this does not take account of the correlation between the parameters, so a better overall measure
is:

(37)

Such factors are not strictly speaking Bayes’ factors, but they can be compared between different
models in a similar way. For a single model, the overall agreement indices are then defined as:

(38)

(39)

These indices have the property that their values are usually of roughly the same magnitude as the
individual agreement indices, and so again if they drop much below 60%, it is worth considering if
there are any problems with the model as a whole, or with some of the individual measurements. For
OxCal v4 and later, Amodel is to be preferred because it accounts for the correlation between param-
eters. In earlier versions of OxCal, only Aoverall was calculated.

In Bayesian analysis more generally, model choice is usually performed using Bayes’ factors. This
approach has been taken in 14C dating too (Nicholls and Jones 2001) though, as yet, it has not been
implemented for a wide range of different models, and this is an area where further work is likely to
be useful. An alternative to such model choice is model-averaging, an example of which is outlier
analysis, where a number of different possible models are analyzed at the same time (Christen 1994,
2003; Bronk Ramsey 2009).

Problems with the MCMC Algorithm

In some cases, models are so inconsistent with their measurement data that there are no possible
solutions. In such cases, the MCMC chain cannot run. In other cases, the solution space may be very
fragmentary. In such situations, the MCMC solutions will be different with each different random
starting position. These cases of poor convergence are not always easy to detect. The algorithms are
usually set up to try various different starting positions and then test if the marginal posterior densi-
ties are the same for each run (see e.g. Bronk Ramsey 1995). However, although multiple runs
always giving the same distribution is a necessary condition for good convergence, it is not, in the-
ory, a sufficient one.

In some instances when the MCMC algorithm fails to start, it may be possible to provide extra infor-
mation that will help to find a first reasonable solution. In particular, it can be difficult to automati-
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cally estimate a reasonable starting point for boundary events that are not in themselves directly
dated. In such instances, it may be useful to define a reasonable range as part of the model definition
(in OxCal v4 this can be done by adding a likelihood distribution to the Boundary definition as in
Boundary("End",U(AD(1000),AD(1400)))).

Where more complex models fail to converge, or indeed to find a suitable starting point, it is often
worth breaking them down into smaller units and testing these separately.

Other Potential Problems

There are other potential problems that cannot be diagnosed so easily. Perhaps the most important
one to bear in mind is that any analysis of this kind is very strongly dependent on the information
that goes into it. In particular, the calibration curve underpins the linkage between the 14C measure-
ments and their place in the timescale. Any correlated or consistent mismatch between the measure-
ment set and the calibration curve is difficult to diagnose and could have a significant effect on the
output of the analysis. There is more discussion of ways to deal with such issues in Bronk Ramsey
(2009).

CONCLUSIONS

Bayesian analysis is now widely used in the interpretation of 14C dates. The models can be very sim-
ple, in many cases involving only a single group of events. Even in these cases, a surprising amount
of information can be extracted from the analysis, and this allows a much better interpretation of the
data than is possible by “eye-balling” a set of calibrated dates.

In other cases, more complex models are needed, but these can usually be built up from simple com-
ponents and the mathematics underlying such models is essentially the same. Most such models are
based around the notion of “uniform” groupings, but other distributions of events can be treated just
as easily and this enables us to use the same approach for chronologies that do not have a definite
start and end.

Bayesian analysis of 14C dates is now a mature methodology with several programs providing
implementation of many of the most widely used models and diagnostic methods for exploring their
implications. That said, there are still issues that we will always need to keep at the forefront of our
minds. In particular, however much statistical analysis we do, 14C dates are still reliant on the under-
lying assumptions of the 14C method—any problems with the samples, their context, their associa-
tion with each other, or with the calibration curve, will have implications for the accuracy of our
chronologies.
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