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DEVELOPMENTS IN RADIOCARBON TECHNOLOGIES: FROM THE LIBBY 
COUNTER TO COMPOUND-SPECIFIC AMS ANALYSES

Pavel P Povinec1 • A E Litherland2 • Karl F von Reden3

ABSTRACT. We review developments in radiocarbon measuring techniques from the Libby counter through proportional
gas counters and liquid scintillation spectrometers to the more recent developments of accelerator mass spectrometry (AMS),
followed by a coupling of gas chromatography with AMS for compound-specific 14C analyses. While during the first 60 yr
of 14C measurements beta counting, specifically gas counting, was the dominant technique, in the future of 14C science AMS
will be the dominant technology.

INTRODUCTION

Analytical technologies have had always important impacts on the development of a new science
and its applications. This has been especially true for radiocarbon science, which thanks to the great
inventions of Willard Libby, both in formulating its principles and in developing necessary analyti-
cal techniques (Libby 1955), has become after 60 yr of studies a well-organized and rapidly devel-
oping field. This has also been partly thanks to the Radiocarbon journal, which during its 50 yr has
developed from originally a data-reporting journal to its present form as a comprehensive informa-
tion medium for cosmogenic research.

The isotope 14C of carbon was discovered by beta-ray counting and was later observed to have a
long half-life of 5730 yr. It was also found to be present naturally at a measurable level of about 15
beta-ray emissions per minute per gram of carbon, and this was followed by the bold proposal by
Willard Libby (1946) that it could be used for dating the past. Dating was then demonstrated by
patiently counting the number of beta-rays emitted from a known mass of historical carbon in a
given time and using the laws of radioactive decay to determine the age relative to the half-life of
14C. This demonstration was impressively successful and launched 14C dating by beta-ray counting.
As the method depended upon the constancy of the generation of 14C in the atmosphere by cosmic
rays, such a demonstration was necessary and the skeptics were partly correct in that the cosmic-ray
intensity does vary with time. However, even with the addition of anthropogenic 14C from nuclear
fission and fusion neutrons, released during nuclear weapons tests (Münnich and Vogel 1958; Nydal
and Lövseth 1965), the method flourished as ways were found to surmount the problems (Olsson
1970).

There have been several important breakthroughs in 14C technologies, starting from the Libby
counter, followed by proportional gas counters, liquid scintillation spectrometers, and finally the
development of accelerator mass spectrometry (AMS), which has shifted the analytical concept
from counting of 14C decay products (and waiting for beta-electrons) into direct counting of 14C
atoms present in a sample. As the half-life of 14C is relatively long, the number of 14C atoms present
in a sample compared to the number of 14C beta-decays observed during 1 day of counting is ~3 ×
106, significantly favoring the use of AMS. Recently, we have developed into a stage when bulk
sample analysis has been replaced by compound-specific analysis, e.g. in gas chromatography-AMS
coupled analytical systems, which has opened new dimensions in 14C science.
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This review on 14C technology developments is organized as follows: after discussing developments
in beta-counting techniques (written by P P Povinec) we follow with developments of AMS (written
by A E Litherland), and finally we describe recent developments in AMS, focusing on ocean science
and compound-specific analysis (written by K von Reden).

BETA-COUNTING TECHNIQUES

The Libby Counter

After nuclear physics studies of 14C properties (Kurie 1934; Bonner and Brubaker 1936; Burcham
and Goldhaber 1936), its half-life (Ruben and Kamen 1941; Reid et al. 1946), the estimation of its
production in the atmosphere by interaction of cosmic rays with nitrogen atoms (Libby 1946), and
its observation in the environment in 14C-enriched biomethane (Anderson et al. 1947) at the pre-
dicted concentration, Libby (1946, 1955) came up with the idea to use cosmogenic 14C for dating.
Calculations showed, however, that 14C activity in samples was very small, and the thermal diffu-
sion enrichment was too complicated to be widely used for dating (Libby 1967).

A traditional method of activity measurement using a low-current ionization chamber would not
give meaningful results. It was fortunate that gas counters for direct counting of pulses originating
in the radiation detector as a result of radioactive decay of nuclei and emission of beta-particles were
already in use (Geiger and Müller 1929). Willard Libby was well prepared for this task, as he
already developed a screen-wall Geiger-Müller detector (Libby 1934), which he used for studying
properties of soft beta-emitters, such as 35S, 87Rb, and others (Libby and Lee 1939), which were sim-
ilar to that of 14C. Solid samples to be analyzed were internally attached to the detector body, and a
mixture of 100 torr of argon and 5 torr of ethylene was used as a standard filling of the detector.
Libby also used CO2 as an admixture to this standard counting gas (Engelkemeir et al. 1949); how-
ever, finally Libby decided to go to solid carbon, internally fixed on the detector wall, which
allowed him to analyze bigger samples.

The method was not sensitive enough, however, as the counter background was too high, around
500 counts per minute (cpm). Inserting the counter inside a 20-cm-thick iron shield (to protect it
against external radiation represented by cosmic rays and surrounding radioactive materials)
decreased the detector background to ~100 cpm. A further decrease by at least a factor of 10 was
required as a count rate from a modern 14C sample was expected to be ~10 cpm. Libby recognized
that the hard component of cosmic rays (muons) penetrating even the heavy iron shield should be at
least partially eliminated to weaken their contribution to the detector background (Anderson et al.
1947). Such a trigger was used for the first time by Blackett and Occhialini (1933) to identify tracks
of positrons in cosmic radiation by timing expansion of a cloud chamber. Libby found a revolution-
ary solution in using a similar tracking system, however, in an anticoincidence regime, which elim-
inated pulses coming from the central detector, if they were simultaneously registered by Geiger-
Müller tubes surrounding the central detector as a protective guard (Figure 1). This arrangement
decreased the counter background by a factor of 20 (to ~5 cpm), and was good enough to proceed
with regular 14C measurements.

Libby found that the simplest form of the 14C sample inside the counter (Figure 2) would be a carbon
cylinder, prepared from a sample (Anderson and Libby 1951; Anderson et al. 1951). He already
knew that 14C emits only low-energy beta-electrons, and therefore an external measurement would
be very difficult. Such a simple solution was quite laborious as the counter should be opened and
cleaned before introducing a new sample. However, he solved the problems with 14C measurements,
and the first 14C data on biospherical samples (Anderson et al. 1951) and on ages of known samples
were reported soon after (Arnold and Libby 1949).
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Proportional Gas Counters

It has been clear from the beginning of 14C measurements that for achieving larger 14C data outputs
and to ensure better precision, the Libby counter should be replaced by another type of a detector.
Because of the low energy of 14C beta-electrons (their maximum energy is only 156 keV), the best
solution would be to incorporate a sample in a form of a gas directly into the sensitive volume of the
detector. Therefore, it was natural to try carbon dioxide, the first product of sample combustion,
which contains 14C atoms from the sample. To assure the highest sensitivity, the best solution would
be to use CO2 as a counting gas without any additives. It was already known (Curran et al. 1949) that
single ions can be recorded in a proportional counter with better counting characteristics than in pre-
viously used Geiger-Müller counters. 

After several trials, this had been achieved, although it was recognized that CO2 must be well
cleaned to get reasonable counting characteristics (de Vries and Barendsen 1952, 1953). Almost
simultaneously, Crathorn (1953) and Suess (1954) developed methods for preparation of acetylene,
Burke and Meinschein (1955) for methane, and Faltings (1952) for ethane as suitable 14C counting
gases. However, CO2 became the most popular gas to fill proportional counters used for 14C mea-
surements, and several laboratories developed this technique almost simultaneously (Fergusson
1955; Brannon et al. 1955; Nydal and Sigmond 1957; Olsson 1957; Östlund 1957; Broecker et al.
1959). Even now, CO2 represents over 80% of the counting gases used in 14C laboratories.

Figure 1 Libby’s counting system with guard counters in anticoincidence (after
Libby 1955).

Figure 2 Libby screen counter with solid carbon sample (after
Libby 1955).
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The second piece of important information gathered during building of the first 14C laboratories was
the fact that only radioactivity-free construction materials must be used (e.g. quartz, electrolytical
copper), especially for the construction of gas counters, if low background should be reached. Sev-
eral such clean proportional counters were constructed, well shielded against the soft component of
cosmic rays and surrounding radioactive sources by lead or iron passive shielding, accompanied by
an active anticosmic shielding against the cosmic ray muons (e.g. Rafter and Fergusson 1957; Nydal
1962; Olsson et al. 1962; Oeschger 1963; Suess 1965; Damon et al. 1966; Povinec et al. 1968; Nydal
et al. 1977; Stuiver et al. 1979; Schoch et al. 1980; Tans et al. 1982). These and many other 14C lab-
oratories have contributed significantly to 14C science, especially to better understanding of the
behavior of 14C in the environment. Most high-precision 14C results (a relative precision of Δ14C of
modern samples below 0.5%) for the development of 14C calibration curves were obtained using
these types of detectors (e.g. Suess 1980; Stuiver et al. 1993; Stuiver and van der Plicht 1998; Kita-
gawa and van der Plicht 1998).

Multiwire Guard Counters

Another important development in the gas counting of 14C was the introduction of a multiwire guard
detector, connected in anticoincidence with the surrounding central (main) detector (Figure 3)
(Raeth at al. 1951; Houtermans and Oeschger 1955; Drever et al. 1957; Nydal 1962; Geyh 1967;
Povinec 1972a, 1992; Moúcicki and Zastawny 1977; SrdoË et al. 1977). This helped to optimize the
detector design as the inner cathode of the detector with proper thickness could be chosen from a
material with a minimum radioactive contamination. The second advantage was in improving the
efficiency of the cosmic-muon discrimination due to a better shielding of the central detector. If
radioactively pure materials were used for the detector construction, especially for the inner cath-
ode, it became possible to reach very low detector background (<1 cpm/L). If it was necessary to
increase the detector sensitivity, the detectors could operate under higher than atmospheric pressure.

By analysis of background components of a multiwire counting system, it has been found that the
most important contribution to the background of the central detector is the thickness and the mate-
rial of the inner cathode (Oeschger and Loosli 1977). The inner cathode should be very thin so the
contribution of δ-electrons originating in the cathode by interactions of gamma-rays with the cath-
ode material should be minimized. The detector background can be expressed in the form (Oeschger
and Loosli 1977): 

Figure 3 Proportional counter of the Oeschger type with a copper foil between the inner and the multiwire
guard counter (after Povinec 1978).
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where Fµ is the flux of unregistered muons; S is the surface of the counter; F is the flux of alpha and
beta particles from the inner counter wall; V is the counter volume; ρ is the density of the counting
gas; Rp and Re are the average range of recoil nuclei and electrons, respectively; Fnp is the flux of
recoil nuclei from collisions with neutrons; and Fe is the flux of gamma-induced secondary electrons.

A detector with the lowest background should have an optimized thickness of the inner cathode for
stopping beta-electrons (originating from radioactive decay of 14C nuclei) from the guard counter. In
the case of 14C beta-electrons, the optimum thickness is ~10 mg/cm2. The cathode should be made,
for example, from a radioactively pure organic foil with metal cover (gold-coated Mylar foil). Such
an Oeschger counter (Geyh 1967; Oeschger and Wahlen 1975) with properly chosen construction
materials reached a background below 1 cpm per liter of sensitive volume. In the Bern underground
laboratory (at 70 m of water equivalent [w.e.]), backgrounds of proportional counters with volumes
between 0.02 and 1 L were further decreased by a factor of 2–4.

As the Mylar foil is very fragile, another possibility is to use a thin foil made of electrolytical copper
(Povinec 1978). A disadvantage of both designs is the need for a larger sample size, as the same gas
filling is used in the both central and guard detectors. A separate filling and operation of the central
and guard detector is possible (Charalambus and Goebel 1963); however, it requires a more compli-
cated gas filling system. 

Microcounters

It was recognized in the early stages of the development of proportional counters for 14C measure-
ments that this technique is specifically suitable for large volume samples. Typically, a 1-L counter
filled with CO2 at atmospheric pressure would require a sample size of 0.5 g of carbon, which was
a limiting factor in many investigations where usually milligram samples were only available, e.g.
in archaeology.

Therefore, it was natural to look for small counters with volumes of the order of a few mL, which
would require only a few mg of carbon in the sample. Such small microcounters were developed for
extraterrestrial and neutrino research (Stoenner et al. 1960), and later also for 14C measurements
(e.g. Geyh 1967; Currie et al. 1978, 1983; Harbottle et al. 1979; Loosli and Oeschger 1982; Hut et
al. 1983; SrdoË et al. 1983). Figure 4 shows 2 of 6 microcounters placed in an anticosmic shield
made of an NaI(Tl) scintillation detector (Otlet et al. 1983). A disadvantage of such measurements
was the very long counting time, about 1 month. Although many counters can be running simulta-
neously, microcounters did not find widespread use, as AMS matured quickly to analyze very small
samples with the required precision.

Gas Fillings

It has been fortunate that the most simple gas filling of a proportional counter, i.e. CO2, could be
used for 14C measurements. It was recognized from the beginning that CO2 requires special cleaning
from impurities such as water vapors, nitrogen and sulfur oxides, and halogen compounds (de Vries
and Barendsen 1953; Rafter and Fergusson 1957; Nydal 1962). Later, it was documented that this is
due to CO2 sensitivity to electronegative impurities present in CO2 (Figure 5), which dramatically
decrease the transit time of electrons from a place of their origin to the anode (Povinec 1979). The
great advantage of CO2 filling was also the fact that the same CO2 sample was transferred to a mass
spectrometer for measuring 13C/12C ratio without possible instrumentation change in the isotope
ratio.
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However, other gases, such as CH4, C2H2, and C2H6, have much better and stable counting charac-
teristics, and the 2 latter cases also have the advantage that 2 carbon atoms can be incorporated into
1 gas molecule, thus doubling the sensitivity of the counting system. Methane has been used in sev-
eral laboratories (e.g. Burke and Meinschein 1955; Lal 1965; Povinec 1972b; SrdoË et al. 1983). 14C
results obtained by the Suess and Oeschger laboratories were based on acetylene counting (Suess
1954, 1965; Oeschger 1963).

Pulse Analysis

As the maximum energy of beta-electrons emitted by decaying 14C nuclei is only 156 keV, there is
room for decreasing the counter background by discriminating pulses either by amplitude and/or
pulse shape (Davis et al. 1968; Povinec 1981; Curie et al. 1983). This is possible either by a multi-
channel analyzer for pulse-amplitude evaluation, or by a time-amplitude analysis. Such a registra-
tion system has also an advantage in simultaneous registration of pulses from a sample and back-
ground, which could help in discriminating false pulses originating either in various electromagnetic

Figure 4 Assembly of 2 microcounters in 1 of the 6 compartments housing
totally six 5-mL and six 30-mL counters shielded by a 305-mm-diameter and
305-mm-long NaI(Tl) detector (after Otlet et al. 1983).

Figure 5 Transit time of electrons in carbon gases in the proportional counter with
a cathode diameter of 46 mm and an anode diameter of 50 µm. (Note: *CH4 values
are for the counter with 92 mm diameter; after Povinec 1979.)
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disturbances, or by sudden changes in cosmic-ray intensity (the Forbush decreases). As in 14C anal-
yses (the counting times are typically over a few days), such background monitoring is useful.
Recently developed digital multichannel analyzers have even better characteristics for such long-
term measurements.

Background of Proportional Counters

The most comprehensive study of background of proportional counters used in 14C measurements
(Mook 1983) showed that only a few laboratories had achieved a low background, close to the
expected one (Figure 6). An inner lead shield between the central and the guard detectors (at least of
4 cm thickness) used in thick wall detectors decreased the counter background due to the absorption
of gamma-rays (Nydal et al. 1977). An anti-neutron shield made of light material (e.g. paraffin) was
also necessary, if a low background to be achieved (de Vries 1956). However, the lowest counter
background was obtained using Oeschger type counters operated underground (0.2 cpm/L). A radio-
nuclide contamination of construction materials of detectors, as well as of surrounding materials
(40K, U, and Th and their decay products), and the surrounding air (222Rn and its decay products),
plus an insufficient shielding against cosmic muons have been responsible for higher backgrounds
of some 14C gas counters.

Further reduction in the proportional counter background can be reached by placing the detector in
an underground laboratory (Loosli et al. 1986). Even a 10-m w.e. overburden can decrease the flux
of secondary cosmic ray particles such as nucleons and gamma-rays by about 4 orders of magnitude
(Povinec et al. 2008). Figure 6 shows that counters placed in underground laboratories have the low-
est background, even at high counter volumes and/or gas pressures. However, as the hard muon
component of cosmic rays at such depths decreases only negligibly, operation of detectors at deeper
underground laboratories would further increase the counting sensitivity.

Figure 6 Normalized counter background to 1 atm and the effective counter size (represented by the
normalized standard activity A). Circles represent surface and squares underground laboratories
(filled symbols show laboratories with anti-neutron shielding). The solid line indicates a favorable
trend B = 0.3 A2/3 (after Mook 1983).
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A simple single-wire inner counter can be replaced by a system of cells, thus forming a multi-ele-
ment detector. Such a detection system can be used for tracking beta-electrons from 14C decays
inside the detector. An even more sophisticated high-spatial-resolution time projection chamber
(possibly inserted into a magnetic field) can be constructed for tracking single beta electrons from
14C decays (Povinec 1980). However, these techniques would again require large sample volumes.

Another possibility of increasing the sensitivity of analysis would be 14C enrichment using a thermal
diffusion system (e.g. Grootes 1997), similar to what was done by Libby in his first trials of envi-
ronmental 14C measurements (Anderson et al. 1947). However, problems with contamination of old
samples (with ages over 50,000 yr) and requirements for large sample volumes did not allow for
wide use of this technique. With the successful developments of AMS, new 14C installations have
been dominated by this technique, which further opened new applications in natural and biomedical
sciences.

Liquid Scintillation Counters

Scintillation Cocktail 

Development of liquid scintillation counting started in 1950 (Reynolds et al. 1950), and specifically
for 14C in 1954 (Arnold 1954), almost simultaneously with gas counting techniques. It was natural
that the first system was developed in the Libby laboratory (Arnold 1954). The scintillation cocktail
usually consists of an activator (a soluble scintillator, e.g. PPO); a secondary scintillator (e.g.
POPOP), which shifts the light emission spectrum of the scintillator to the maximum sensitivity of
the photomultiplier; and an organic solvent prepared from a sample. It took almost 10 yr until an
optimum solvent (benzene) was mastered (Starik et al. 1961; Tamers et al. 1961; Noakes et al. 1963;
Tamers 1965; Tamers and Pearson 1965), as original trials were based on ethanol and hexaneoctane
(Arnold 1954), toluene (Pringle et al. 1955), methanol (Pringle et al. 1955), trimethylborate (Pringle
et al. 1957), acetylene in toluene (Audric and Long 1954), liquid CO2 in toluene (Barendsen 1957),
etc. The benzene solvent has the advantage that it contains 92% of carbon, has excellent scintillation
properties, is stable, and can be produced entirely from the sample carbon. Its preparation is based
on trimerization of acetylene, and it found large applications when high-yield chromium and vana-
dium catalysts were developed (Starik et al. 1963; Noakes et al. 1965).

Liquid Scintillation Detectors and Electronics

As in the case of gas detectors with anticosmic shielding, an important breakthrough in liquid scin-
tillation counting was the use of coincidence electronics. A simple system based on a connection of
a photomultiplier with a scintillation vial has several disadvantages because of thermal noise pro-
duced in the photomultiplier, and due to radioactive contamination of photomultiplier window. The
operation of the liquid scintillation detector considerably improved when 2 photomultipliers were
used to view the scintillation vial, both connected to a coincidence unit, which registers only light
pulses originating in the scintillator within a resolution time of the coincidence unit (Bell and Hayes
1958; Laney 1971). As the response time of organic scintillators is very short, the resolution time
can be also short (usually around 10 ns), which helps to decrease the detector background.

Although the scintillator volume (due to high concentration of carbon in the sample, e.g. C6H6 vs.
CO2) has decreased to 0.1–10 mL only (instead of around 1 L in the case of gas counting), there was
still room for further background reduction either by an anticoincidence shielding of the scintillator
(Noakes et al. 1973) against the hard component of secondary cosmic rays (the scintillation vial has
already been shielded against soft cosmic rays and surrounding radioactive materials by 5–10 cm
layer of lead), or by pulse discrimination. The anticosmic shielding made of a plastic scintillator has
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been incorporated, for example, into a Quantulus liquid scintillation spectrometer (Polach et al.
1988).

Further background reduction can be achieved by discriminating pulses with higher amplitudes than
observed in the measured 14C spectrum (similar to what has been described for gas counters), the
detection system works therefore as an energy spectrometer capable of discriminating pulses origi-
nating above the 14C spectrum, and simultaneously monitoring the detector background (Povinec
1981). Another way to decrease the detector background is pulse-shape discrimination (Brooks
1958), as pulses from low-energy beta-rays are shorter than from a higher-energy radiation. Thus,
for small counting vials (0.3–3 mL) made of a clean material (e.g. Teflon or silica), background
below 0.1 cpm and 14C efficiency 70–90% has been obtained (Hogg et al. 1991; Kalin et al. 1991).
These were great achievements when compared to the original values obtained in the late 1950s with
10% 14C efficiency and 60 cpm background (Horrocks 1974). A considerable decrease in the detec-
tor background (at least by a factor of 2), especially for >10-mL vial volumes has been achieved by
operation of liquid scintillation spectrometers either in shallow (Long and Kalin 1992) or deep
(Plastino and Kaihola 2006) underground laboratories.

An important advantage of liquid scintillation spectrometers (especially when they are placed in a
remote laboratory) is their operation in an automatic mode, which does not require any surveillance.
Thanks to the development of the high-efficiency benzene scintillation cocktail, and application of
state-of-the-art electronics, the sensitivity and stability of liquid scintillation spectrometers have
been comparable to proportional gas counters, and they have been successfully applied in 14C stud-
ies (e.g. Burchuladze et al. 1980; Polach et al. 1988; Long and Kalin 1992), including high-precision
measurements for developing 14C calibration curves (e.g. Pearson 1979; McCormac 1992).

However, as in the case of gas counting, after the successful developments of AMS technologies,
there has been a clear shift to AMS, which also opened up new 14C applications, especially in sci-
ences requiring submilligram samples.

There have also been large-scale applications of liquid scintillation detectors in cutting-edge sci-
ence, e.g. in particle or cosmic-ray physics. The largest liquid scintillation detector recently con-
structed is the Borexino detector (Arpesella et al. 2008) located in the Gran Sasso underground lab-
oratory (~3500 m w.e.). The Borexino experiment aims to measure low-energy solar neutrinos in
real time by elastic neutrino-electron scattering. The detector uses 300 t (fiducial volume 100 t) of
Pseudocumene (1,2,4-trimethylbenzene) liquid scintillator to detect the scattered electrons. As a
presence of 14C in the liquid scintillator is of crucial importance for obtaining extremely low back-
ground, it was necessary to measure the 14C/C ratio down to ~10–18, the lowest ratio ever measured
(we remain that the natural 14C/C ratio is ~10–12). Such a sensitivity can be obtained presently only
by AMS.

RADIOCARBON DATING AND ACCELERATOR MASS SPECTROMETRY 

During the 12th Nobel Symposium on Radiocarbon Variations and Absolute Chronology (Olsson
1970), a suggestion was made again that counting the atoms by mass spectrometry would be quicker
and more efficient, as had already been mentioned at the very beginning of the development of 14C
dating by Zacharias to Libby (as cited by Arnold 1987). However, the ion counting method was
developed only after 30 yr of 14C research, when finally the negative ion method was shown to be
possible in 1977 using equipment developed for nuclear physics.

The long half-life of 14C implies that the number of atoms of the isotope 14C in a contemporary sam-
ple is very large, about 6 × 1010 per gram. This number is needed to support the beta-ray counting
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rate of 15 dpm, and so, to reach a counting accuracy of ±1%, or ±80 yr, requires a beta-ray counting
time of about 10 hr for a gram of carbon. However, a 16-µA ion source current of 12C ions implies
a 14C ion counting rate for modern carbon of ~120 ions per second from only a 1-mg sample of con-
temporary carbon. The nature and significance of such a revolutionary development has been
described well by Stuiver (1978). Unfortunately, 14C dating by atom counting was technically diffi-
cult, but bold attempts were made nevertheless. In the meantime, 14C dating by beta-ray counting
flourished as a result of the ingenuity of the many researchers who followed the lead of Libby and
his colleagues (e.g. Olsson 1970; Berger and Suess 1979).

Origins of 14C Ion Counting by AMS

In the 1930s, Rutherford and others first created the isobars tritium (3H) and 3He, by bombarding
deuterium with deuterons (Oliphant et al. 1934). They concluded from their measurements that tri-
tium was the stable isotope, but then failed to detect it in nature by mass spectrometry. The very low
abundance of 3H+ was hard to detect by mass spectrometry because of the high abundance of the
HD+ and H3

+ molecular ions (Rutherford 1937). During 1939, Alvarez (1981), in a response to this
failure, conceived the idea of using a cyclotron to detect such rare isotopes. Some of the basic prin-
ciples of what later became known as AMS were clearly stated at that time. They were that the high-
energy ions, accelerated by the cyclotron, could be separated completely as 3H+ and 3He++ ions. In
addition, the final rare ions could also be identified and counted by the methods of nuclear physics.
Alvarez and Cornog (1939a,b) then went on to prove conclusively, using a nuclear reaction, that the
rare ions they were detecting in helium gas were indeed due to the 3He isotope, which was present
naturally at sub-parts per million of 4He. The radioactive isotope 3H is also present but hard to detect
by mass spectrometry. The idea of separating the atomic isobars 3H and 3He, and the molecular iso-
bars as well, at higher energies by using an accelerator was born with the Alvarez suggestion. The
separation of 14N and 14C ions by the greater range in matter of 14C was implicit in the early work
with the cyclotron. Also, removal of the molecular interferences could in principle be accomplished
by the resonant acceleration of the ions in the cyclotron. Consequently, the atomic ion counting
method for 14C at high energy was available even before the discovery of 14C dating, but this was
technically a very difficult task. The ion source memory effect would have had to be solved, for
example. The proposal by Muller (1977) to actually use a cyclotron for 14C dating was not made
until 1977 after extensive development work on accelerators, ion sources, and sensitive detection
methods. The maturity of nuclear physics was then also generating imaginative ways to look for free
quarks (Muller et al. 1977; Stephenson et al. 1977), super heavy elements (Schwartzschild et al.
1977), and other trace entities suggested by the developments in the physics of the nucleon and
nucleus. In 1977, the beta-ray counting method was state of the art and the time was clearly right for
further attempts to measure 14C by ion counting at higher energies, so that smaller as well as older
samples could be analyzed more quickly.

The First Attempts to Use Ion Counting for Radiocarbon Dating

The original beta-ray counting method used by Libby rapidly developed and by 1977 had become a
precise if demanding tool (Olsson 1970; Berger and Suess 1979) for dating in archaeology and geo-
physics. The ion counting idea for 14C was, however, not forgotten4 and an imaginative new
approach by Anbar (1975) and Schnitzer et al. (1975) started in the early 1970s, which culminated
in a determined attempt to detect 14C at natural abundances by mass spectrometry. The idea was to

4H Oeschger, J Houtermans, H Loosli, and M Wahlen - comments on p 471–98 in Olsson (1970); and by H W Wilson on
p 238 in Berger and Suess (1979).
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remove the 14N ion from interfering with the 14C ion detection not by using high energy but by elim-
inating the N ions at the ion source, exploiting the supposedly well-known inability of N or N2 to
form negative ions. Then, mass spectrometry using C or CN− ions was postulated to be a possibility.

Ion sources for generating large C ion beams became available in 1959 as a result of the develop-
ment of the tandem electrostatic accelerator for nuclear physics. This development was also stimu-
lated by Alvarez (1951) after the device was invented in the 1930s by Bennett (1940) and Kallmann
and Kuhn (1940). The drawing in the latter patent application looks very much like a modern com-
pact vacuum-insulated tandem for 14C dating! Such negative ion sources were initially rather com-
plicated as they required the charge changing of C+ ions into negative ions by first accelerating them
to a 25-kV electrode, and then passing them though a suitable gas, where several collisions resulted
in a fraction of the C+ ions becoming C ions (Weinman and Cameron 1956). The many µA of neg-
ative ions, now at 50 keV after what was also tandem acceleration, were then suitable for injecting
into the ion optics of the long high gradient, ~1 MV/m, acceleration tubes of the new large tandem
electrostatic accelerators (Bromley 1974; Hellborg 2005). These negative ions were then acceler-
ated towards a high-voltage electrode at about 5 MV, where they were changed by gas stripping into
positive ions for further acceleration in order to have both the energy and ion current suitable for
studying nuclear reactions. Such negative ion sources were soon known to have large memory
effects, as well as also producing no detectable N ions (Kuehner et al. 1960; Litherland 1962).

A simpler ion source was chosen by Anbar (1975, 1978), and Aberth and Peterson (1967), as it was
known that the CN ion had a high electron binding energy and could be made directly in the ion
source using an admixture of CO2 and N2 gases. Unfortunately, unlike the N ion, the N2 ion was later
found to be metastable. This was shown much later (Gnaser 1997; Middleton and Klein 1999) when
the ion was first discovered. This pioneering work in 14C dating by atom counting was discontinued
in mid-1975 after almost reaching the level of natural 14C (Anbar 1978). The problem was identified
then as being due to the interfering 29Si− isotope. This problem would have been quickly solved if
the CN ions had been injected into a tandem accelerator and identified at higher energy using the
principles stated by Alvarez in 1939. Here, it should be emphasized that it would not have been a
simple change, as the CN ions would also have had to be accelerated to about 40 to 50 keV in order
to be accepted efficiently by the tandem accelerator. The additional problem of ion source memory,
which was almost certainly present, was not studied in this pioneering work. Unfortunately, the pio-
neering work by the chemists using CN for isobar separation, in the early 1970s, was unknown to the
nuclear physicists, whose work was focused on high-current ion source developments for nuclear
physics.

The Cs+ Sputter Ion Source Development

The ion current and memory problem was solved, however, by the contemporary development of
the Cs+ sputter ion source for nuclear physics, after a conference in 1972 (Chapman 1972). The ion
source that was later to be used extensively for 14C measurements was developed as a result of the
need for a negative ion source that could generate many µA of heavy atomic ions such as C, Ca, and
all elements up to uranium for studies in nuclear structure. Here, it is worth noting that atomic neg-
ative ions usually have rather low binding energies and are consequently not easy to make in quan-
tity. Previously, gas ion sources dominated the scene, but they were not flexible enough for the
nuclear physics requirements and had long memories of the previous samples used in the ion source.
The long memories were no more than a nuisance for nuclear physics, although once the carbon
memory effect produced a 12C ion beam suitable for nuclear physics studies and so hastened the dis-
covery of rotational bands in the nucleus 20Ne (Litherland et al. 1961). The cesium ion sputter
sources, however, used solid samples with low-work function surfaces, which are suitable for gen-
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erating large ion currents of low-electron affinity atoms, and it was found possible to make an
almost universal ion source (Middleton and Adams 1974) by simply changing the elements used in
the ion source targets. The attractive feature for 14C dating by ion counting was the expected low
level of ion source memory of previous samples due to the use of solid carbon samples, as well as
the high C ion current and the potential for using several 14C samples in rapid succession.

The Remarkable Year of AMS 1977 

In 1977, several developments were converging on solutions to the atom counting problem of 14C
for 14C dating. The cyclotron was revived by Alvarez as a mass spectrometer during a search for
integrally charged quarks (Muller et al. 1977) and, as a result of that experience, Muller (1977) pro-
posed the use of a cyclotron for 14C dating. At about the same time, the mass spectrometry problem
was again being approached with a suggestion (Hall et al. 1978) for laser isotope enrichment of 14C
to overcome some of the problems of the very small 14C/C ratio in natural samples. Isotope enrich-
ment benefits the beta-ray counting method too, as was found at the beginning of the 14C develop-
ment (Anderson et al. 1947). In addition, the tandem accelerator had been proposed (Purser 1977)
for mass spectrometry to reach very low abundance levels of stable isotopes by molecular dissocia-
tion during high-voltage charge changing. The problem of the degree of instability of the N was
again being considered because the elimination of the huge flux of 14N ions at the ion source was
considered to be the best way to attack the difficulty of eliminating them, and the new sputter ion
source was just beginning to be used on nuclear physics tandem accelerators.

It is then maybe not surprising that tests with the new Cs+ sputter ion sources quickly demonstrated
that the 14N ions did not interfere with the detection of 14C ions at natural levels, and that conse-
quently, quite a small tandem accelerator could be used to remove the molecular ions present for 14C
dating. The surprising result was that the background was so low (Purser et al. 1977). The very first
results showed that the background from a tandem accelerator system, helped by the natural level of
instability of N, could be as low as about 14C/C ~ 10–15, corresponding to about 60,000 yr in dating.
The low level of 14N anions was rapidly confirmed (Nelson et al. 1977). It was a relief to realize that
quite small accelerators could be used and that the higher energies used originally by Alvarez were
not necessary for 14C dating if negative ions were used. As a result of the early work, small 3MV
tandems were designed specifically for 14C dating (Purser and Handley 1978) and many nuclear
physics tandems were adapted for such measurements (Nelson et al. 1977); a partial list up to 1984
is available (Litherland 1984).

As described by Gove (1999) in his book From Hiroshima to the Ice Man, the early days of AMS
included tests to see how well cyclotrons and tandems could measure 14C in natural samples. For 14C
dating, the tandem came out on top due partly to the simpler operation of the tandem and partly due
to the use of negative ions. However, subsequent attempts to extend the measurements to some of
the longer-lived isotopes such as 10Be, 36Cl, and 99Tc (Fifield 2000) demonstrated that high energy
was exceedingly useful when the interferences could not be resolved at the ion source. For about 30
yr, several important isotopes have had to be analyzed at the highest possible ion energies in order
to separate the isobars, and certainly 36Cl was one of them, although even that isotope proved to be
difficult for cyclotrons too.

The ease with which a tandem accelerator could be used for 14C dating and the difficulties encoun-
tered with positive ions and large cyclotrons (Muller 1978) resulted in the proposal (Muller et al.
1981; Bertsche et al. 1990) for small 50-keV cyclotrons exploiting negative ions. These machines
were then successfully developed (Chen et al. 2000). However, when it was necessary to detect rare
atoms like 39Ar and 81Kr in nature (Collon et al. 2000), the cyclotron has so far proved to be superior
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using positive ions, as such atoms make negative ions with difficulty. They must also be accelerated
as positive ions to such a high energy that they can be completely stripped of all their electrons for
certain identification. It is still true that higher energies are very useful for the general mass spec-
trometry of long-lived radioactive isotopes. However, even the largest accelerators were found
(Henning 1987) to be insufficient for separating the heavier isobars 205Pb and 205Tl, even at 2 GeV
ion energy.

Radiocarbon Dating by Ion Counting: The Learning Phase

Some of the early work (Litherland 1978) was specifically directed towards the design of a compact
tandem system for 14C dating, and while these machines were being constructed several tandems
previously engaged entirely in nuclear physics research were quickly adapted for dating. Several
modifications were added such as electric analyzers to specify the ion energy before (Kilius et al.
1987) and after (Elmore et al. 1984) tandem acceleration. This reduced the background in the final
ion detector due to charge-changing collisions in the tandem acceleration tubes. However, it took
some time to put it in adequate electric analysis, and in the meantime there was found to be a definite
need to use the high-energy particle detection techniques to clean up the particle spectrum. Then, it
was found empirically that the extra information provided by the high-energy analysis was useful
and that ion identification added confidence to the isotope ratio measurements, which were unfamil-
iar to most nuclear physicists. Much early data was taken with some degree of pulse-height analysis
to compensate for inadequate electric and magnetic filtering.

The measurement of the carbon isotope ratios was first done in rapid sequence and the first attempt
to measure the 13C and 14C isotopes simultaneously was made (Southon et al. 1990). Later,
improved ion optical devices (Litherland and Kilius 1990) were employed. These in turn became
more difficult to use by the steady improvements in the ion currents of 12C. Currents as high as 8 mA
of 12C anion have been reported (Ishikawa 1995) and it is probably true to say that accurate dating
with such ion currents will be a challenge. It is likely that dating will become progressively more
difficult in the future using simultaneous measurements on the isotopes because of the power
requirements of even small tandems. Even if such high-current 14C dating AMS were undertaken,
the understanding and control of the effects of space charge will create new problems. The alterna-
tive of rapid pulsing may be more adaptable to 14C dating by AMS in the future, as the 12C− ion cur-
rents continue to rise due to ion source developments.

Accuracy of Radiocarbon Dating by AMS

The early years of 14C dating with tandem accelerators were a learning experience for all concerned,
as much of the equipment that was used had to be modified for isotope ratio measurements in a
range of ratios previously unexplored (Bennett et al. 1978). A particularly difficult problem encoun-
tered at the beginning was the creation of graphite targets for the sputter ion sources as these empir-
ically gave the largest ion currents. The cracking of acetylene was an early contender for the recom-
mended method, but it was replaced after the first decade of research by the now standard catalytic
cracking method introduced at McMaster University (Vogel et al. 1987). This method matched
much better the rapid development of the early porous frit-based sputter ion sources to ones with a
solid hemispherical ionizer. One of these newer ion sources was later to give the largest negative ion
current of some 250 to 325 µA (Fallon et al. 2007) at an AMS laboratory. These developments are
continuing and the exploitation of such large ion currents, especially at elevated energies, requires
experience. There is a strong indication that the higher efficiency for 14C obtained at the higher cur-
rents is partly attributable to space charge-assisted extraction (Asi 2001). This is a new dimension
to the problem that will require study in future.
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The isotope ratios of 12C:13C:14C are all needed for a complete 14C measurement, because of the iso-
tope fractionation occurs at many places in an AMS system. The emitted ion ratios from a sputter
target show pronounced sputter fractionation (Gnaser 2008), which can be corrected appropriately
by comparing the unknown rapidly and frequently with a standard such as oxalic acid I or II and
more recently ANU sucrose as a standard. Fractionation also occurs in the stripping of the anions in
the tandem, but again, by rapid intercomparisons with standards, this problem can be corrected and
in general it is found that the stability of the tandem accelerator and its subsystems is quite adequate.
For some time, the rapid pulsing method (Suter et al. 1984) competed with an attempt to measure the
isotope ratios simultaneously (Litherland and Kilius 1990; Southon et al. 1990). Initially, only 13C
and 14C were measured simultaneously and later for the World Ocean Circulation Experiment
(WOCE), discussed below, all isotopes were intended to be put through the tandem simultaneously
to attain the highest accuracy. Unfortunately, simultaneous injection methods are really best suited
for measurements of stable isotopes, and the huge abundance difference between 14C and the stable
isotope 12C of over 1012 was found to be difficult to use. Thus, the intense isotopic beam was rapidly
chopped mechanically to 1% of the time and the rare isotope counted during the 99% of the time
when the intense pulses were not present. This reduces the background but removes partly the
advantage of simultaneous measurement. It was found that the 13C and 14C could be counted simul-
taneously at modest 30-µA 12C negative ion currents, but the method of rapid pulsing now seems to
be becoming more common as the ion currents can then be increased still further—although new
problems will undoubtedly arise to be solved in their turn.

The early comparisons between beta-ray measurements and those from AMS (Bennett et al. 1978)
were in general satisfactory. After experience was gained, the agreement between the blind mea-
surements between AMS using tandems and the best beta-ray counting systems were indeed excel-
lent as shown in Table 1 (Beukens 1992). These measurements were followed by the very large
study in connection with the WOCE. This is an impressive study discussed later and demonstrates
an overall reproducibility of better than ±0.4% for many thousands of samples. The early blind tests
using a tandem given in Table 1 were a little more reproducible than that, but were only for a few
samples that received special treatment. The overall picture is one of results that are comparable
between laboratories using beta-ray counting and ion counting, with ion counting requiring much
smaller samples, which was an essential feature of the use of AMS for WOCE. The collection for
beta-counting of barrels of seawater at various depths was replaced by 500-mL bottles for AMS. A
future study of the dispersal of the natural and human created 14C may require a shipboard 14C dat-
ing device with high throughput capability. These devices may not use AMS ion counting methods.

Although the accuracy of beta-ray and ion counting can be similar for samples <10,000 yr old, the
situation becomes quite different when older samples are analyzed as is shown in Table 1. Finite
ages are often recorded for samples well over 50,000 14C yr old, using AMS, but as there are no cal-
ibration data for such 14C dating extending securely that far back in time, the meaning of such mea-
surements is still open to discussion. Measurements are being carried out to extend the calibration
data (Stuiver and van der Plicht 1998) so that the older dates can be put into a proper context. Inter-

Table 1 Comparison of 14C results obtained by beta counting and AMS. 

Quaternary Research Center,
University of Washington
(yr BP)

IsoTrace Laboratory,
University of Toronto
(yr BP)

4132 ± 18 4157 ± 21 
6973 ± 20 7019 ± 20

≥55,000 53,100 ± 600
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laboratory comparisons are now carried out extensively and the analyses published in Radiocarbon
(Scott 2003). The enormity of this task is matched by the importance to the 14C dating community.

As an example of general-purpose AMS facilities, we present 2 typical designs, frequently used for
14C research. Figures 7 and 8 show the 3MV Tandetron machine from High Voltage Engineering
Europe (HVEE, the Netherlands), which is the modern general-purpose AMS machine operating at
the Institute of Earth Environment, Xi’an, China. The key components of this machine are the 2 ion
sources and the rotatable electric analyzer, which allows 2 different ion sources to be made available
quickly, or the servicing of 1 ion source while the other is in operation (as it is essential to clean ion
sources frequently to reduce the memory effect of the earlier samples). Another key component, also
present at the VERA AMS facility, Vienna University (Figure 9), which has been regarded as abso-
lutely essential, is the second high-energy magnet after the large electric analyzer, which is remov-
ing the remains of the gas scattering of the heavier elements in the first magnet. Although the Pel-
letron machine from National Electrostatics Corporation (NEC, USA) in Vienna is of an older
design (Kutschera 2005), it has modern peripheral equipment enabling a wide range of applications
in environmental, nuclear, and atomic sciences.

Figure 7 A schematic view of the Tandetron (High Voltage Engineering Europa, the Netherlands) general-purpose
AMS facility at the Xi’an AMS Centre, China.

Figure 8 Photo of the Tandetron (HVEE) general-purpose AMS facility at the Xi’an AMS Centre, China
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How Old is the Oldest Radiocarbon?

In this section, the evidence that 14C samples greater than 100,000 14C yr old exist will be presented.
However, conventional beta-ray counting and AMS alone are not yet adequate to measure such sam-
ples and, in addition, their actual age is unknown, as the 14C clock has to be calibrated to that period.

At a 14C/C ratio of less than about 10–18, evidence has been found that such samples can come from
underground hydrocarbons, such as natural gas, that have been isolated from cosmic rays and ura-
nium ores for a long time. Large organic scintillation detectors, such as the Borexino 100-ton under-
ground test detector for solar neutrino studies, have been made from these sources as they would
have to have a low beta-ray background counting rate from 14C. Before the construction of the Bor-
exino detector, the level of 14C in deep underground material was not known reliably, so that a series
of measurements, using 100× industrially (Isotec) enriched 13C, was made by AMS (Beukens 1993;
Beukens et al. 2004; Arpesella et al. 2008). These samples were calculated to be enriched in 14C by
a factor of 200 and so when the normal background of 14C was observed at near 4 × 10–16 for 14C/C,
it was concluded that the original natural gas had a 14C/C ratio of less than about 2 × 10–18. The
degree of enrichment of the samples in this case was obvious from the relative intensity of the 13C
to the 12C anions generated by the ion source. The Borexino detector was later made using petroleum
from deep underground and gave a 14C counting rate corresponding to the same background limit,
which is a remarkable coincidence (Alimonti et al. 1998). What is even more, the spectrum of pulses
from the large scintillation detector gave measurement of the shape of the 14C beta-spectrum at such
a low level of 14C. The level reached is undoubtedly due to contamination of the AMS measurement,

Figure 9 A schematic view of the Pelletron (National Electrostatics Corporation, USA)
general AMS facility at the VERA Laboratory, University of Vienna, used for the anal-
ysis of 14C, 10Be, 26Al, U, and Pu isotopes, PIXE, and nuclear and atomic physics studies
(after Kutschera 2005).
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however, the Borexino data represents the oldest 14C dates ever obtained. It is expected that in the
future carbonaceous materials with 14C/C ratios much less than 2 × 10–18 will be found.

Subsequently, tests showed that the background due to the AMS could be lowered arbitrarily so that
the limitation of the age will be due entirely to the 14C contamination of the sample. Contributions
are also possible from the contamination of the residual gas of the vacuum system and the contam-
ination of the ion source materials (Litherland et al. 2005). It is indeed remarkable that the back-
ground routinely reached at present by AMS is not very different from that obtained with the very
first measurement (Purser et al. 1977). Very low background detectors must of course be constructed
to extend our knowledge of the universe, and the recent successes of the Sudbury Neutrino Obser-
vatory and other underground laboratories indicate an increasing understanding of the sources of
radioactive contamination. The possibility of actually constructing and operating devices com-
pletely underground, to avoid the cosmic-ray intensity at the surface of the Earth has been appreci-
ated by 14C daters for nearly 60 yr. As 50,000-ton organic scintillation counters are being considered
(Marrodán Undagoitia et al. 2006), it is likely that this low-background research into materials will
be continued in spite of the difficulties.

The Future of AMS for Radiocarbon Dating

Very small accelerators have been developed (Synal et al. 2000, 2007; Skog 2007) for measuring
14C. Voltages of 250 kV are used to destroy the molecular anions of 12CH2 and 13CH, as then
repeated collisions with gas molecules destroy them so that their abundance decreases exponentially
with gas pressure (Lee et al. 1984). The 14N is eliminated by the use of negative ions. The additional
multiple scattering during the conversion from anions to singly charged cations is accommodated by
increasing the apertures of the mass spectrometry. In addition, special counters using very thin (~50
nm) uniform Si3N4 windows and cooled preamplifiers are used. At 250 kV, it is not necessary to use
a pressurized tandem and one AMS version of the small accelerator simply has the final mass spec-
trometry in air (Skog 2007) at that voltage. Another version (Suter et al. 2007) uses vacuum insula-
tion for the tandem.

These small accelerators are now becoming more common for 14C dating, but they can be used for
other long-lived radioactive atoms (Tanner et al. 2002). How small a voltage can be used on such
machines has yet to be determined as molecular anions or cations can be also destroyed at eV ion
energies in chemical reaction cells (Bandura et al. 2006) either by chemical reactions or by collision
induced dissociation (CID) at “elevated” ion energies of ~100 eV. At very low energies, the detec-
tors developed for nuclear physics become much less useful and ion identification becomes impos-
sible by the methods initially proposed by Alvarez (1981). A partly compensating advantage is that
Q = +1 can be used and at ~250 keV the efficiency becomes near optimum; therefore, more
advanced ion detectors can be used at least for the light elements (Jull et al. 2008). At higher ion
energies, charge state division becomes important and that tends to reduce the ion detection effi-
ciency, but then the specificity of the ion detection becomes greater.

Tandem accelerators with voltages of about 3 MV seem to be a very good compromise between all
the conflicting requirements for an AMS system that is capable of a wide variety of research. For
example, information on the structure of the molecules used for AMS can be obtained because in
several cases the molecular fragments and their add-up peaks can be recorded simultaneously in the
final ionization counter. Ions that have the same E/Q and M/Q are all transmitted through the high-
energy mass spectrometry and are only separated by their actual energy and their dE/dx in the final
counter. The ions 12C+3 and 16O+4 from the same molecule are examples. The identification of mul-
tiple fluorides (Kubik and Elmore 1989) is particularly useful.
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Positive ion sources can also be used when the higher-energy mass spectrometry is located at volt-
age. This variation of AMS is potentially important because positive ions as well as anions can be
separated in chemical reaction cells prior to the acceleration through 250 kV. This has not yet been
tried, but the potential to separate isobars using cations (Bandura et al. 2006) is probably greater
than that for using anions (Litherland et al. 2007). For both anions and cations, 14C dating can in
principle be carried out with the help of chemical reaction cells. Laser separation of isobars of
anions has also been shown to work (Berkovits et al. 1989; Lu and Wendt 2003; Forstner et al.
2008). By retarding the ions to low energies to increase the time they spend in the laser field, the dis-
sociation of the lower binding energy isobaric anion can be used for attenuation. For specialized
applications, no further acceleration for identification purposes may be needed.

RADIOCARBON AND THE OCEAN SCIENCES – VIEWED FROM THE PERCH OF A DEDICATED
14C AMS FACILITY

In the late 1980s, a Request for Proposals was issued by the National Science Foundation to estab-
lish a dedicated facility to analyze samples of marine science origin for 14C, using accelerator mass
spectrometry. The main driver for this project was the new WOCE project that was expected to gen-
erate in excess of 13,000 seawater samples to be analyzed for dissolved inorganic carbon at such a
laboratory. The Woods Hole Oceanographic Institution was awarded the project and the National
Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) was established in 1989 under
the leadership of Glenn Jones in the Department of Geology and Geophysics (Jones et al. 1990).
During the past almost 20 yr, over 1100 scientific papers have been published that cite or rely on 14C
results produced at this facility. In some instances, other AMS laboratories may also have been
involved in the measurements. This review will attempt to show how progress in the marine sci-
ences was affected by the data that were obtained at NOSAMS and distributed to numerous
researchers all over the world. Only publications that explicitly or implicitly acknowledge AMS
measurements that were performed at NOSAMS are included in this review. Technical aspects of
the AMS measurements will not be covered as those have been discussed extensively in the previous
chapter, as well as in the proceedings of the international AMS conferences. Clearly, there will not
be enough space to mention all of our “clients’” research in this chapter and emphasize that this does
not constitute judgment over the importance of any specific topic. There will be coverage of 4 main
areas: Tracer mapping programs, Paleoresearch, Biogeochemical applications, and Future trends.
The hope is that this review will give readers, who do not have time to scan the entire range of field-
specific journals, entry points into aspects of 14C research in neighboring disciplines.

Large-Scale Tracer Mapping Programs, Feeding Into Ocean Circulation Models

The original NOSAMS task, extracting dissolved inorganic carbon (DIC) from seawater samples
and subsequent AMS analysis for 14C, has not stopped with the completion of the WOCE program
(McNichol et al. 2000). We are still analyzing around 1000 samples per year for the follow-up CLI-
VAR (Climate Variability and Predictability) study (http://www.clivar.org.), designed to fill in some
of the gaps in the prior projects and revisit sites for the assessment of time dependence of the 14C
concentration in the oceans. Figure 10 (von Reden et al. 1999) shows an example of the extent of the
raw data set that was accumulated until the late 1990s. Δ14C (a measure of the offset from pre-bomb
natural 14C) is shown for the upper 1200 m of the water column in the Pacific, Southern, and Indian
oceans, reflecting the penetration of 14C generated in the 1960s by tropospheric nuclear bomb test-
ing. The enormous task of compiling the data into formats usable in modeling and other types of
interpretative assessments has been carried out by Princeton scientist Robert Key (Key 1996; Key et
al. 1996, 2002, 2004). The new data set vastly expands and refines the 14C maps available from prior
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programs (e.g. GEOSECS, http://ingrid.ldeo.columbia.edu/SOURCES/.GEOSECS/). Since the
mid-1990s, numerous papers have been published that use the new data together with other ocean
parameters to arrive at new answers to some very important questions. One very obvious question
is: how much 14C has been taken up by the oceans during the bomb tests? Using modeling simula-
tions, Peacock (2004) discusses a discrepancy between assessments from the 1990s (Broecker et al.
1995; Hesshaimer et al. 1994), arriving at a number between the 2 earlier estimates for the mid-
1970s, in the order of about 2.5 × 1028 atoms, and 3.2–3.5 × 1028 atoms (±10%) for the mid-1990s.
These results were confirmed by Naegler and Levin (2006) using a different model, starting from a
global bomb 14C production estimate between 1945 and 1980 of 6.0–6.3 × 1028 atoms. Based on
these estimates, other important parameters could be reassessed: the air-sea gas exchange rate and
the oceanic CO2 uptake rate. Sweeney et al. (2007) report updated estimates that are significantly
lower than those from the early 1990s. For the air-sea gas exchange rate, they estimate 14.6 ± 4.7
cm/hr (in rough agreement with Naegler and Levin 2006, but 33% down from Wanninkhof 1992).
Their corresponding value for the oceanic uptake of CO2 for the 1990s is 1.8 ± 0.5 PgC/yr, lower but
still in statistical agreement with an average value of 2.1 ± 0.2 PgC/yr from other publications since
2000. Matsumoto (2007) revisits the question how 14C can help to determine the circulation age of
the world oceans. He uses the gridded data by Key et al. (2004) to establish a map of 14C ages that
takes proper account of surface reservoir ages. The measured 14C levels at depths below 1500 m
suggest maximum “ages” above 2000 yr for the Pacific, whereas the corrected values are less than
1200 yr. Averages for the 4 main basins are 288 yr (Atlantic), 889 yr (Pacific), 716 yr (Indian), and
295 yr (Southern, with a 50°S northern boundary). Jones and collaborators (Jones et al. 1994) as
well as Schlosser and collaborators (Schlosser et al. 1997) found a significantly higher replacement
time (~450 yr) than for the remainder of the Arctic Ocean in the deep waters of the Canadian Basin,
effectively separated from the North Atlantic by the Lomonosov Ridge.

Figure 10 Distribution of 14C in the upper 1200 m of the Pacific, Southern, and Indian Ocean basins in the 1990s. The
penetration of 14C generated by the nuclear bomb test series of the 1950s and 1960s is roughly indicated in the transition
from green to light blue (assuming about –60‰ as the pre-bomb Δ14C ocean surface value).
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Paleoceanography/Paleoclimatology

Given the high degree of complexity involved in assessing modern ocean parameters, using 14C as
a tracer, it is not surprising that the reconstruction of past environments is no less difficult. The vast
majority of samples (other than DIC) submitted to NOSAMS originate from sediments in the world
oceans and lakes. However, a fair number of samples come from other marine sources like corals,
mollusks, and speleothems. Since a large part of the NOSAMS activities was directed toward the
WOCE project during the 1990s, the focus here will be mostly on the more recent past with respect
to citations. One of the major questions throughout the 50 yr of 14C research has been the calibration
of measurement results to a reliable timescale. Other laboratories using β-counting or AMS methods
have carried the bulk of these analyses, limiting the NOSAMS contribution to a few sometimes
shared efforts. Among these, Edouard Bard and colleagues have been very active in the attempt to
extend the calibration curve beyond the “safe” terrestrial tree-ring curve, by analyzing Polynesian
corals and Iberian Margin sediments (Bard et al. 2004a,b). Researchers in our own lab have aimed
at expanding the knowledge of bomb 14C history to the North Atlantic by analyzing mollusk shells
growing at latitudes too cold for corals (Weidman and Jones 1993). Much of the paleoceanographic
research focuses on the oceanic role in climate variability during the last ice age and the Holocene.
Here, 14C usually plays the role of a time marker perhaps in conjunction with other dating methods.
For this reason, 14C AMS measurements tend to be hidden in time axes on diagrams for other param-
eters. The actual source of the measurements is sometimes simply omitted (in which case the work
is not cited in this review) or given only in supplemental material to the journal article. Here are
some highlights from the last 2 decades. They include the work of Lloyd Keigwin and his collabo-
rators on late Pleistocene and Holocene climate change events (Keigwin 1996, 2004; Keigwin and
Pickart 1999; Keigwin et al. 2005, 2006; Keigwin and Boyle 2008). Much attention is given by
many researchers to the role of the North Atlantic and its important part in the overall ocean circu-
lation and climate change during these time periods (Came et al. 2003, 2008; Oppo et al. 2003; Ras-
mussen et al. 2003; McManus et al. 2004; Robinson et al. 2005; Lynch-Stieglitz et al. 2007). The
effect of solar cycles on North Atlantic climate was discussed by Gerard Bond and colleagues, using
AMS measurements from ETH Zürich, Arizona, and NOSAMS (Bond et al. 2001).

Related to these investigations is research on past sea levels, affecting coastal areas around the
world. For instance, the ventilation of the Black Sea throughout this time period received special
attention (Ballard et al. 2000; Ça ¢gatay et al. 2003; Giosan et al. 2006; Eri Ås et al. 2007; Ivanova et al.
2007). Work on corals and sclerosponges addressing more recent climate pattern questions is repre-
sented for example by (Grottoli et al. 2003; Cohen and Hart 2004; Rosenheim and Swart 2007). Fig-
ure 11 shows coral 14C data from the Grottoli paper reflecting the excellent agreement of the AMS
measurements performed at CAMS and NOSAMS, pinpointing the +1.7% Δ14C shift in 1947 at
Fanning Island.

This decade has seen increasing interest in the history of storms and their effect on coastal areas.
WHOI’s Jeff Donnelly and Ilya Buynevich have been active in this area (Donnelly et al. 2004a,b;
Buynevich et al. 2007; Donnelly and Woodruff 2007), analyzing, for example, storm surge sedimen-
tation from historical storms.

Paleoclimate research dealing with terrestrial effects of regional and global climate patterns has
made use of 14C AMS dating at our facility. South American tropical climate history was discussed
in Baker et al. (2001a,b). Growth behavior of tropical and subtropical fauna was the subject of sev-
eral investigators (Bush et al. 2004; Biondi et al. 2007). Central and South African climate history
during the late Holocene was investigated by Russell et al. (2003), Patrut et al. (2007), and Russell
and Johnson (2007).
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While diverse in research direction, all of the paleoresearch above relies on a common assumption:
new layers in sedimentation, shell and coral structures, and plant growth contain “younger” carbon
than older layers. When age reversals occur in the data, explanations can range from errors in any
stage of the analysis, reworking, bioturbation, to presence of carbon from sources other than the
sample material of interest. If the analyzed material is a complex mixture of organic and inorganic
carbon compounds, there is a good chance that the 14C content of the individual compounds is dif-
ferent from that of the bulk sample. For this reason, there has been a substantial effort over the last
2 decades to develop methods to use AMS for the analysis of individual compounds in ever smaller
sample sizes. Some of these new techniques also now allow the refinement of paleoresearch
approaches. The following section will describe some of the efforts ongoing at the NOSAMS Facil-
ity and in its user community.

Biogeochemistry and Microscale AMS

Researchers using NOSAMS have played a major role in the development of the new compound-
specific 14C analysis (CSRA) method, using chromatography to isolate specific compounds or com-
pound classes from organic samples and trapping the effluents for later combustion and generation
of very small AMS samples (<<100 μg C) (Eglinton et al. 1997). The measurement of such small

Figure 11 The excellent agreement between CAMS and NOSAMS analyses gives high levels of confidence
in the timing of the shift in near-monthly skeletal 14C of Fanning Island Porites corals. Two bulk annual 14C
measurements for 1956 and 1959 (*) are plotted as well (reprinted with permission from Grottoli et al. 2003).
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samples required a parallel development of microscale AMS techniques (Pearson et al. 1998; von
Reden et al. 1998) matching similar efforts at other laboratories. Figure 12 shows an example of the
large difference in dates obtained from individual compound groups in the same segment of a sedi-
ment core. The number of studies investigating the heterogeneity of carbon sources in environmen-
tal samples is growing fast. Polycyclic aromatic hydrocarbons (PAH) have been one of the subjects
(Reddy et al. 2002a,b; Mandalakis et al. 2004; Gregory et al. 2005; Zencak et al. 2007). The origin
of fatty acids in sediments has also been studied (Pearson et al. 2001; Hwang and Druffel 2003;
Ohkouchi et al. 2003). Alkenones in sediments co-occurring with foraminifera were investigated by
(Mollenhauer et al. 2003, 2005a,b). Discussion of carbon remineralization effects on sediments and
transport of terrestrial carbon to the oceans can be found in Blair et al. (2003), Aller and Blair (2004
2006), and Drenzek et al. (2007). Many studies conclude that total carbon analyses can lead to erro-
neous dating results not only down core but also due to lateral redistribution of sediments. (For the
latter, see e.g. Mollenhauer et al. 2006). The influx of anthropogenic carbon, mostly from fossil fuel
burning and spills have been extensively investigated (Reddy et al. 2002a,b; Tanner et al. 2004;
Slater et al. 2005, 2006; Smittenberg et al. 2005; White et al. 2005; Wakeham et al. 2006). Interest-
ingly, not all suspected pollution indicators are necessarily man-made. Two papers report that cer-
tain halogenated organic compounds found in marine life are in fact natural products (Reddy et al.
2004; Teuten et al. 2005).

CSRA to this date has one major drawback: it takes multiple chromatography runs and many hours
of work to isolate enough material of a single compound to generate a viable AMS graphite sample.
The last part of this section will describe the methods we are developing to deal with this problem.

Figure 12 A sediment core segment (2– 4 cm) from the Arabian Sea displays a 10,000-yr span
in dates obtained from different organic compound groups. This clearly indicates the importance
of the careful assessment of the carbonaceous components in a sample to obtain a reliable result
(reprinted with permission from Eglinton et al. 1997).
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Developments and Future Trends

The equivalent of the search for the Golden Fleece in 14C AMS has been the development of an effi-
cient low-memory CO2 gas-accepting AMS ion source for something we have named: continuous-
flow 14C analysis. Such a system would avoid the potentially contaminating graphitization step in
the AMS analysis. So-called hybrid gas sources have been around for a while, but their operation
requires either exchange of frits between samples or extensive time-consuming flushing, making the
real-time analysis of rapidly incoming sample peaks from a chromatogram impossible. NOSAMS is
currently commissioning a dedicated system for continuous-flow AMS analysis based on a micro-
wave plasma ion source (Schneider et al. 1998; Kim et al. 2002; Han et al. 2007; Roberts et al. 2007;
von Reden et al. 2007). Initial tests of the microwave source on our Tandetron system in 2002 have
resulted in respectable currents (–20 μA 12C) from a 100-μL modern sample (OX-1) for about 30
seconds, obtaining ~600 14C counts. Figure 13 shows the first ever 14C spectrum obtained with a
microwave ion source during these tests (Kim et al. 2002). The conditions for that test were much
less than optimal: the injector allowed only about 30% transmission, compounding the fact that the
intrinsic ion efficiency of a positive ion plasma source coupled with a charge exchange canal is 10–
100 times lower than that of a traditional sputter source. The reduction in transmission stems from
the fact that the emittance from a 5-mm-diameter plasma orifice is at least 2–3 times larger than that
from a 1-mm sputter spot. For this reason, we designed the new system with a very large acceptance
solid angle (see Han et al. 2007). The first benchmark results with a sputter ion source have con-
firmed the notion held by a number of AMS experts that a large acceptance also benefits traditional
AMS, especially when currents of more than 150 μA are extracted with notably higher emittance
than more moderate currents would have.

The chromatographic efficiency problem mentioned above still poses a challenge to continuous-flow
AMS. Without additional development of the injection scheme, AMS will have to be performed in
multiple runs through a chromatogram (von Reden et al. 2008), to achieve sufficient statistics on a
given compound of interest. However, recent development of very high throughput chromatography
and combustions methods (McIntyre and Sylva 2008), boosting the carbon content of a single com-

Figure 13 First AMS 14C counts from a microwave gas ion source, recorded with a gas ionization detector. Sub-
stantial but well separated background events are caused by the poor match of the large emittance plasma source
ion beam with the simultaneous injector of the NOSAMS Tandetron (witnessed by Gerlach et al. 2002).
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pound peak in a chromatogram to ~1 μg, will allow an acceptable AMS analysis of a chromatogram
in a single run!

OUTLOOK

We have seen that great developments have been made in 14C science during the last 60 yr when a
simple gas counter with solid carbon sample was replaced either by proportional counters with
active gas fillings, or by liquid scintillation spectrometers with benzene medium, and finally reached
the present state-of-the-art technology based on coupling of a gas chromatograph with AMS for
compound-specific 14C analyses.

As a result of these developments, the analysis of long-lived radioactive isotopes, such as 14C, by ion
counting and other methods is still developing in ways that almost defy prediction of future capabil-
ity. However, the intense interest and the importance of 14C dating and tracing as a technique con-
tinue to fascinate the researcher who will in the future have increasingly more compact equipment
to use for such measurements. The research into the counting of beta-rays, atomic ions, and even
atoms will all continue to produce answers to the problems first envisaged by W F Libby 60 yr ago.

It is our expectation that high-precision 14C AMS will continue to rely on high-current sputter ion
sources for the foreseeable future. The necessary precision for oceanic or atmospheric tracer mea-
surements will require the highest possible ion efficiencies in AMS systems, placing the plasma ion
sources at a disadvantage for these applications. However, in the field of paleoresearch we expect
the increased use of CSRA to confirm or resolve discrepancies between different dating methods.
The main field of expansion will most likely be in the field of biogeochemical (and medical) AMS,
when dedicated AMS systems will be used in similar ways that stable isotope mass spectrometers
are used now for analyzing chromatograms.

14C dating by 14C ion counting is not the only alternative to beta-ray counting, as has been shown in
recent years. The use of lasers (Murnick et al. 2008) to excite the 14C in a CO2 gas sample can result
in the repeated detection of the same 14C atoms in a sample so that their number can be estimated
and the age determined. Alternatively, converting 14C to 15C by adding a neutron can shorten the
lifetime as was done in 1965 for 129I (16 Myr half-life) by converting it to 130I (9 min half-life) in a
nuclear reactor (Watson et al. 1965). This gained a factor of 1012 in the decay rate as a result. The
large 20-barn neutron cross-section for conversion of 129I to 130I makes this procedure possible and
it predated the first AMS measurements. In contrast, the thermal neutron capture cross-section for
14C is less than 1 µbarn and so a nuclear reaction such as the 14C(d,p)15C would have to be used and
the energetic beta-rays from 15C counted. The half-life of 15C is about 7 × 1010 times shorter than
14C. However, unlike the case of 129I, this method does seem to be quite impractical, and it cannot
compete with AMS. 

While during the first 60 yr of 14C measurements, beta-counting, specifically gas counting, was the
dominant technique, we believe that in the future AMS will be the dominant technology. Recent
developments of very high throughput chromatography and combustions methods (McIntyre and
Sylva 2008), will allow coupled GS-AMS analysis of a ~1 μg carbon content of a single compound
peak in a gas chromatograph.
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