# A REPORT ON PHASE 1 OF THE 5TH INTERNATIONAL RADIOCARBON INTERCOMPARISON (VIRI)

E Marian Scott<sup>1,2</sup> • Gordon T Cook<sup>3</sup> • Philip Naysmith<sup>3</sup> • Charlotte Bryant<sup>4</sup> • David O'Donnell<sup>1</sup>

**ABSTRACT.** The Fifth International Radiocarbon Intercomparison (VIRI) continues the tradition of the TIRI (third) and FIRI (fourth) intercomparisons (Scott 2003) and operates as an independent check on laboratory procedures in addition to any within-laboratory procedures for quality assurance. VIRI is a 4-yr project, with the first suite of samples (grain) sent out in September 2004 and the second suite (bone) sent out in December 2005. Further stages will include samples of peat, wood, and shell with a range of ages.

The 4 grain samples included 2 samples (A and C) of barley mash (20 g for radiometric analysis and 2 g for AMS), a grain (barley) byproduct from the manufacture of Glengoyne malt whiskey. The 2 remaining charred grain samples (B and D) were from excavations at Beth Saida and Tel Hadar, respectively (10 g for radiometric analysis and 4 seeds for AMS) and were provided by Elisabetta Boaretto of the Weizmann Institute. Consensus values for samples A and C are 109.2 (standard deviation [1  $\sigma$ ] = 2.73) and 110.6 pMC (1  $\sigma$  = 2.48), and 2805 (1  $\sigma$  = 162.7) and 2835 BP (1  $\sigma$  = 190.8) for samples B and D, respectively. Sample A is a new sample that was collected in 2001, while sample C was used in the FIRI trial as samples G & J (consensus value 110.7 pMC) and was collected in 1998. The expected ages (on archaeological grounds) of samples B and D are 2800 BP and 2850–2900 BP, respectively. The second suite of samples comprises bone, ranging in age from Medieval to "close to background," and was distributed in December 2005. Samples for both radiometric and AMS laboratories include E: mammoth bone (>5 half-lives); F: horse bone (from Siberia, excavated in 2001); and H, I: whalebone. Finally, sample G (human bone) was only for AMS laboratories. Some of the issues related to using bone in a laboratory intercomparison will be discussed.

#### INTRODUCTION

The Fifth International Radiocarbon Intercomparison (VIRI) has continued the tradition of the TIRI (third) and FIRI (fourth) intercomparisons (Scott 2003) as a <sup>14</sup>C community project, with samples provided by participants and a substantial participation rate. VIRI has been designed to address some of the criticisms of TIRI and FIRI while retaining some of their important features, namely, using natural samples and ensuring the anonymity of participating laboratories to prevent the creation of laboratory league tables. The particular changes in design are that VIRI is a 4-yr project, with the first suite of samples (grain) sent out in September 2004. Samples are being distributed regularly over the 4-yr period, with 3 or 4 samples being distributed in each of years 1 to 3, and finally, in year 4 a more general intercomparison is to be organized. Each year, a particular material is the focus of testing. Year 1 focused on grain, year 2 on bone, and year 3 will be wood, while the final intercomparison will include a variety of sample types and ages.

The grain samples used in Phase 1 comprised 2 modern samples (A and C), byproducts from the manufacture of malt whiskey (sample C was first used in the FIRI trial as samples G & J [consensus value 110.7 pMC]), and 2 archaeological samples of charred grain from Beth Saida and Tel Hadar (samples B and D). These samples had associated archaeological ages of 2800 BP and 2850–2900 BP, respectively.

A total of 70 laboratories, which are identified in Table 1, reported results by the main deadline. A further small number of laboratories submitted results after the deadline but before the circulation of

<sup>&</sup>lt;sup>1</sup>Department of Statistics, University of Glasgow, Scotland.

<sup>&</sup>lt;sup>2</sup>Corresponding author. Email: marian@stats.gla.ac.uk.

<sup>&</sup>lt;sup>3</sup>SUERC, Scottish Enterprise Technology Park, East Kilbride, Scotland.

<sup>&</sup>lt;sup>4</sup>NERC Radiocarbon Laboratory, Scottish Enterprise Technology Park, East Kilbride, Scotland.

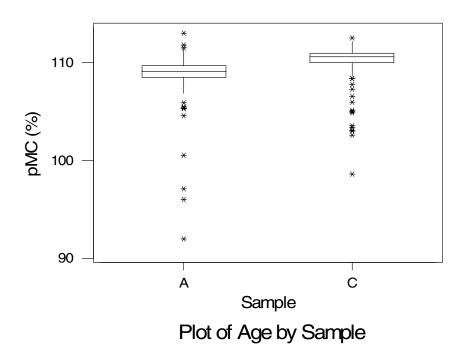
a preliminary report. As always, the actual number of results submitted was greater than the number of laboratories since several laboratories submitted results using several independent systems. As a consequence, more than 100 sets of results were returned. There were some differences in the format in which results were reported, and AMS laboratories in particular were able to submit replicate results (sometimes as many as 6) for individual samples. This paper summarizes the results obtained in Phase 1 and provides some further details on the Phase 2 samples distributed in December 2005.

Table 1 Participating laboratories.

| Laboratory name                                      | Lab method  | Country        |
|------------------------------------------------------|-------------|----------------|
| Laboratorio de Tritio y Radiocarbono, La Plata       | LSC         | Argentina      |
| ANSTO                                                | AMS         | Australia      |
| VERA, University of Vienna                           | AMS         | Austria        |
| Belarus Academy of Sciences                          | LSC         | Belarus        |
| Royal Institute for Cultural Heritage                | AMS         | Belgium        |
| Institute of Heavy Ion Physics, Peking University    | AMS         | China          |
| Institute of Earth Environment, CAS                  | AMS         | China          |
| Ruđjer Bošković Institute                            | GPC         | Croatia        |
| Charles University, Prague                           | LSC         | Czech Republic |
| Aarhus AMS Dating Laboratory                         | AMS         | Denmark        |
| Dating Laboratory, University of Helsinki            | AMS         | Finland        |
| Centre de Datation par le Radiocarbone, Lyon         | AMS, LSC    | France         |
| Heidelberg Akademie der Weissenschaften              | GPC         | Germany        |
| Radiocarbon Laboratory, Köln                         | GPC         | Germany        |
| AMS Laboratory, Erlangen                             | AMS         | Germany        |
| Deutches Archäologisches Institut, Berlin            | LSC and GPC | Germany        |
| Leibniz Institute for Applied Geosciences, Hannover  | GPC         | Germany        |
| Leibniz-Labor, Kiel                                  | AMS         | Germany        |
| Laboratory of Archaeometry, Attiki                   | GPC         | Greece         |
| Laboratory of Environmental Studies of INR/HAS       | GPC         | Hungary        |
| Birbal Sahni Institute of Palaeobotany               | LSC         | India          |
| Division of Geosciences, Physical Research           | LSC         | India          |
| Laboratory, Navrangpura                              |             |                |
| Radiocarbon Dating Lab, Physical Research Lab        | LSC         | India          |
| Weizmann Institute, Israel                           | LSC         | Israel         |
| Radiocarbon Dating Laboratory of Rome                | LSC         | Italy          |
| CEDAD, University of Lecce                           | AMS         | Italy          |
| CIRCE, University of Naples                          | AMS         | Italy          |
| ENEA, Bologna                                        | LSC         | Italy          |
| INFN, Florence                                       | AMS         | Italy          |
| Center for Chronological Research, Nagoya University | AMS         | Japan          |
| University Museum, University of Tokyo               | AMS         | Japan          |
| Radioisotope Research Laboratory, Vilnius            | LSC         | Lithuania      |
| Radiocarbon Laboratory, University of Mexico         | LSC         | Mexico         |
| Universiteit Utrecht                                 | AMS         | Netherlands    |
| Centre for Isotope Study, Groningen                  | AMS and GPC | Netherlands    |
| Rafter Radiocarbon Laboratory                        | AMS         | New Zealand    |
| University of Waikato                                | AMS and LSC | New Zealand    |
| Radiocarbon Lab, Trondheim                           | AMS         | Norway         |
| Poznań Radiocarbon Laboratory                        | AMS         | Poland         |
| Kraków Radiocarbon Laboratory                        | LSC         | Poland         |

Table 1 Participating laboratories. (Continued)

| Laboratory name                                      | Lab method        | Country      |
|------------------------------------------------------|-------------------|--------------|
| Gliwice Radiocarbon Laboratory                       | GPC, AMS, and LSC | Poland       |
| Archaeological and Ethnographical Museum, Łódź       | LSC               | Poland       |
| GIN, Moscow                                          | LSC               | Russia       |
| Radiocarbon Laboratory, Russian Academy of Sciences  | LSC               | Russia       |
| CIR, St. Petersburg                                  | LSC               | Russia       |
| Institute of Geology, RAS                            | LSC               | Russia       |
| Radiocarbon Laboratory of Institute Geography, RAS   | LSC               | Russia       |
| Geochron Laboratory, Geographical Research Institute | LSC               | Russia       |
| QUADRU, Pretoria                                     | GPC               | South Africa |
| Instituto de Quimica-Fisca Rocasolano, Madrid        | GPC               | Spain        |
| Radiocarbon Lab, Barcelona                           | LSC               | Spain        |
| Laboratorio de Datación, Universidad de Granada      | LSC               | Spain        |
| Tandem Laboratory, Uppsala University                | AMS               | Sweden       |
| Physics Institute, Bern                              | GPC               | Switzerland  |
| ETH/PSI, Zürich                                      | AMS               | Switzerland  |
| National Taiwan University                           | LSC               | Taiwan       |
| Ukraine Academy of Sciences, Kiev                    | LSC               | Ukraine      |
| Institute of Hygiene and Medical Ecology, Kiev       | LSC               | Ukraine      |
| Radiocarbon Dating Facility, Queen's University      | AMS and LSC       | UK           |
| Oxford Radiocarbon Accelerator Lab                   | AMS               | UK           |
| NERC, East Kilbride                                  | LSC and AMS       | UK           |
| SUERC, East Kilbride                                 | AMS               | UK           |
| INSTARR, University of Colorado                      | AMS               | USA          |
| Applied Isotope Studies, Georgia                     | LSC and AMS       | USA          |
| KCCAMS, University of California                     | AMS               | USA          |
| NOSAMS, WHOI                                         | AMS               | USA          |
| Lawrence Livermore National Laboratory               | AMS               | USA          |
| Illinois State Geographical Survey                   | LSC               | USA          |
| Beta Analytic, Miami                                 | LSC and AMS       | USA          |
| Arizona AMS Facility                                 | AMS               | USA          |


### **RESULTS**

In the analyses reported here, the replicate results from individual laboratories have been included as though they were an independent set of results, an assumption that is not unreasonable. Table 1 lists the laboratories that took part in the study, while Table 2 presents the results as reported for samples A–D. An \* indicates that a piece of information is missing. Table 3 lists the summary statistics for each sample (including the mean, median, standard deviation, minimum, and maximum), while Table 4 summarizes the results by laboratory type. Figures 1 and 2 show the distribution of results in the form of a boxplot including any outliers, which are identified. The boxplot shows the median and lower and upper 25th and 75th percentiles; any outliers are identified by \*. The results are shown for the "matched" samples and then for each sample by laboratory type (Table 2 on pages 416–426).

# Comments

Figure 1 allows comparison of the 2 pairs of samples (A and C and B and D). A clear difference in pMC is observed between samples A and C, reflecting the 4-yr change in atmospheric <sup>14</sup>C in the

# Plot of pMC by Sample



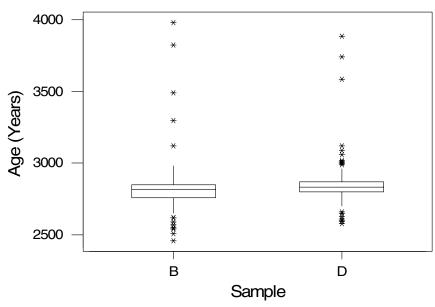



Figure 1 Boxplot showing the distribution of results for paired samples A and C (top) and B and D (bottom). Outliers are marked by  $\ast$ .

Northern Hemisphere. Similarly, a discernible difference can be seen in the age of samples B and D. Figure 2 allows the comparison of the results for the 3 laboratory types; it underlines the broad agreement in the results, but also highlights the more extreme outliers reported by LSC laboratories and the much-reduced range of results reported by AMS laboratories. Thus, the preliminary results show there is broad agreement across all laboratories, but there is clearly considerable scatter in the results when outliers are included (they correspond to approximately 10–15% of the full set of results, but are reported by only a small number of the laboratories).

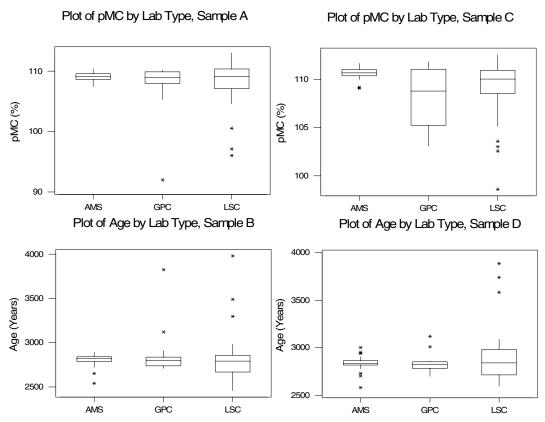



Figure 2 Boxplots of the distribution of results by laboratory type (AMS, GPC, and LSC) for samples A–D. Outliers are marked by \*.

Table 3 Overall summary statistics.

|                | Mean  | Median | Standard deviation | Minimum | Maximum |
|----------------|-------|--------|--------------------|---------|---------|
| Sample A (pMC) | 108.6 | 109.1  | 2.78               | 92      | 113     |
| Sample C (pMC) | 109.8 | 110.6  | 2.35               | 98.6    | 112.6   |
| Sample B (BP)  | 2825  | 2815   | 198.7              | 2460    | 3979    |
| Sample D (BP)  | 2859  | 2835   | 185.2              | 2580    | 3998    |

Sample A is a new barley mash sample that was collected in 2001, while sample C was used in the FIRI trial as samples G & J (consensus value 110.7 pMC) and was collected in 1998. Thus, the overall result (median) of 110.6 is very close to the previously published FIRI consensus value.

The expected ages (on archaeological grounds) of samples B and D are 2800 BP and 2850–2900 BP, respectively. Sample B has a median age of 2815 BP, very close to the expected archaeological age, but there is a suggestion (based on the median) that the overall age for D is younger (2835 BP) than expected.

The ranges of the results for samples A and C are 21 and 16 pMC, respectively, while for B and D the ranges are both approximately 1500 yr; however, the interquartile ranges are much narrower at only 1 pMC and 90 yr, respectively. There is a very strong and compelling argument for the removal of these outliers for later analyses.

From Table 4, it is notable that the interquartile range (IQR)  $(Q_3-Q_1)$  is much narrower than the full range, which is again dominated by outliers. The standard deviation and mean are summary statistics that are relatively sensitive to outlying values, so the table also includes the median and IQR, which are relatively robust. The difference between the mean and median highlights the effect of the outliers.

Table 4a Detailed summary statistics for sample A (pMC) by laboratory type.

|     |               |       |        | Standard  | Lower    | Upper    |       |       |
|-----|---------------|-------|--------|-----------|----------|----------|-------|-------|
|     | Nr of results | Mean  | Median | deviation | quartile | quartile | Min   | Max   |
| AMS | 61            | 109.1 | 109.1  | 0.665     | 108.6    | 109.6    | 107.4 | 110.4 |
| GPC | 14            | 107.6 | 108.9  | 4.690     | 108.2    | 109.8    | 92.0  | 110.2 |
| LSC | 32            | 108.1 | 109.15 | 3.870     | 107.6    | 110.3    | 96.0  | 113.0 |

Table 4b Detailed summary statistics for sample B (yr BP) by laboratory type.

|     | Nr of results | Mean | Median | Standard deviation |      |      | Min  | Max  |
|-----|---------------|------|--------|--------------------|------|------|------|------|
| AMS | 53            | 2809 | 2820   | 57.4               | 2790 | 2840 | 2540 | 2890 |
| GPC | 17            | 2865 | 2799   | 265.3              | 2750 | 2835 | 2710 | 2824 |
| LSC | 32            | 2830 | 2793   | 292.2              | 2683 | 2856 | 2460 | 3979 |

Table 4c Detailed summary statistics for sample C (pMC) by laboratory type.

|     |               |       |        | Standard  |          | 1.1      |       |       |
|-----|---------------|-------|--------|-----------|----------|----------|-------|-------|
|     | Nr of results | Mean  | Median | deviation | quartile | quartile | Min   | Max   |
| AMS | 59            | 110.7 | 110.7  | 0.537     | 110.4    | 111.0    | 109.1 | 111.6 |
| GPC | 16            | 108.2 | 108.8  | 3.059     | 105.8    | 111.0    | 103.1 | 111.8 |
| LSC | 30            | 109.0 | 110.1  | 3.213     | 108.7    | 110.9    | 98.6  | 112.6 |

Table 4d Detailed summary statistics for sample D (yr BP) by laboratory type.

|     | Nr of results | Mean | Median | Standard deviation |      | Upper<br>quartile | Min  | Max  |
|-----|---------------|------|--------|--------------------|------|-------------------|------|------|
| AMS | 54            | 2838 | 2838   | 59.20              | 2818 | 2864              | 2580 | 3000 |
| GPC | 13            | 2841 | 2822   | 111.4              | 2795 | 2842              | 2700 | 3120 |
| LSC | 32            | 2903 | 2841   | 305.8              | 2718 | 2968              | 2595 | 3887 |

#### **CONSENSUS VALUES**

As in previous studies, consensus values for the 4 samples have been calculated following the procedure in Scott (2003). Most importantly, individual results are excluded from the final calculation based on 2 criteria (their absolute value and size of quoted error). The final results are then calculated as a weighted average of the remaining results, and these are reported in Table 5.

Table 5 Consensus values for VIRI Phase 1 samples.

| Sample | Consensus value | Error (1 σ) |
|--------|-----------------|-------------|
| A      | 109.1 (pMC)     | 0.04        |
| C      | 110.7 (pMC)     | 0.04        |
| В      | 2820 (BP)       | 3.3         |
| D      | 2836 (BP)       | 3.3         |

Sample C has the same consensus value as originally reported (Scott 2003), while sample B has a consensus value within 20 yr of the expected archaeological age. However, the consensus value for sample D falls just outside the expected archaeological age.

#### PHASE 2

Phase 2 focuses on bone, and because of the difficulty in obtaining bone in sufficient quantity, one sample was distributed to AMS laboratories only. For radiometric laboratories, we have distributed samples ranging from 60–100 g. The limiting factor for bone samples, especially for radiometric laboratories, is both the quantity and quality of material required. The samples were dispatched in December 2005 and results should be returned by June 2006. A smaller number of laboratories accepted the bone samples, since for some laboratories such material is not routinely dated. This phase of VIRI will provide information on the different pretreatment procedures used in dating bone and of their contribution to variation in the results. The samples span an age range of <500 yr to close to background and are described below.

#### Sample E: Mammoth Bone (>5 half-lives)

This mammoth bone is from a site called Quartz Creek, Dawson City, Yukon Territory. The bone is a portion of the pelvis of a *Mammuthus* sp. specimen. The sample was collected in August 2003 by Ross Barnett of the Zoology Department, University of Oxford. It was supplied by Tom Higham of ORAU. In an initial test of the material, 0.58 g of collagen was recovered from 5 g of bone. The % carbon of this collagen sample was 41%.

# Sample F: Horse Bone (from Siberia, excavated in 2001, <1 half-life)

This sample was provided by Ganna Zaitseva of the Institute of History of Material Culture, St. Petersburg, and is from an archaeological investigation in Siberia at one of the Scythian burial sites; 0.34 g of collagen was recovered from 1.67 g of bone. The % carbon of this sample was 30.3%.

# Sample G: Human Bone

This is a sample from a young female buried with a neonate in a waterlogged dendrodated coffin and was provided by Alex Bayliss of English Heritage. This sample was sent to AMS laboratories only.

#### Sample H: Whalebone (approximately 2 half-lives)

This whale bone sample was submitted to the University of Washington in August 1983 and is the jawbone of a whale from sand deposits of a raised beach at Svalbard, Spitsbergen, Norway. It was provided by Paula Reimer of Queen's University, Belfast.

### Sample I: Whalebone (approximately 2 half-lives)

This whale bone is from the cranium of a whale, species not determined. It was found in August 1997 on Svalbard. This sample was provided by Steinar Gulliksen of the National Dating Laboratory, Trondheim.

#### CONCLUSIONS

The preliminary analysis of results from Phase 1 of VIRI has highlighted again the general and broad agreement among laboratories, but underlines the persistent problem with outlying data values from a relatively small number of laboratories. As mentioned earlier, no corrections have been made to the results (e.g. where a fractionation correction has not been applied), nor have we so far, as in the past, explored the source of variation and outlying values.

The demographic shift to more AMS and fewer radiometric laboratories is apparent from the list of participating laboratories. Overall, numbers of participating laboratories are slightly lower than in FIRI, but still represent a very healthy participation rate.

Phase 2 represents a more challenging material, and indeed because of size constraints implicit in acquiring the material, laboratories have received typical (perhaps non-optimal) sample sizes. Pretreatment method will also become a greater issue in understanding the variation in reported results. We have asked for additional (where possible) analyses, including some stable isotope analyses. Preliminary analyses of the Phase 2 results are expected to be completed by the end of 2006, and Phase 3 will then begin in January 2007.

# **ACKNOWLEDGMENTS**

The authors gratefully acknowledge the financial support of English Heritage. Samples for Phase 1 and Phase 2 have been received from Glengoyne distillery and Elisabetta Boaretto of Weizmann Institute (Phase 1); and Steinar Gulliksen, Paula Reimer, Tom Higham, Alex Bayliss, and Ganna Zaitseva (Phase 2). The authors are also grateful to all participating laboratories.

# **REFERENCES**

Scott EM. 2003. The Third International Radiocarbon Intercomparsion (TIRI) and the Fourth International Radiocarbon Intercomparison (FIRI). *Radiocarbon* 45(2):135–328.

Table 2a Sample A data table.

| Lab identifier | Method | $\delta^{13}C$ | Delta error | pMC     | pMC error |
|----------------|--------|----------------|-------------|---------|-----------|
| 1              | LSC    | *              | *           | 111.531 | *         |
| 2              | GPC    | -27.600        | 0.20        | 105.300 | 0.40      |
| 3              | GPC    | -29.900        | *           | 109.200 | 0.20      |
| 4              | AMS    | -28.300        | *           | 110.000 | 0.40      |
| 5              | AMS    | -26.500        | 1.50        | 108.580 | 0.29      |
| 6              | AMS    | -28.000        | *           | 109.020 | 0.23      |

Table 2a Sample A data table. (Continued)

| Lab identifier | Method | $\frac{\delta^{13}C}{\delta^{13}C}$ | Delta error | pMC                | pMC error |
|----------------|--------|-------------------------------------|-------------|--------------------|-----------|
| 6              | AMS    | -28.000                             | *           | 109.100            | 0.15      |
| 7              | LSC    | -29.316                             | *           | 108.480            | 0.49      |
| 8              | AMS    | -28.350                             | *           | 110.120            | 0.26      |
| 9              | LSC    | -30.457                             | 0.20        | 109.190            | 0.44      |
| 10             | AMS    | -32.400                             | 0.20        | 109.540            | 0.41      |
| 11             | LSC    | -26.920                             | *           | 109.450            | 0.84      |
| 12             | AMS    | -28.300                             | *           | 110.300            | 0.40      |
| 13             | AMS    | -25.900                             | 0.30        | 109.590            | 0.37      |
| 13             | AMS    | -25.700                             | 1.00        | 109.870            | 0.36      |
| 14             | LSC    | *                                   | *           | 108.770            | 1.00      |
| 15             | GPC    | -30.230                             | *           | 109.620            | 0.31      |
| 16             | AMS    | -29.000                             | *           | 109.460            | 0.37      |
| 16             | AMS    | -29.000                             | *           | 109.330            | 0.48      |
| 17             | LSC    | -30.590                             | 0.09        | 111.810            | 1.42      |
| 18             | LSC    | -29.560                             | *           | 105.400            | 0.30      |
| 19             | LSC    | -30.830                             | 0.02        | 96.030             | 0.48      |
| 20             | GPC    | -29.000                             | *           | 109.000            | 0.30      |
| 21             | AMS    | -26.830                             | 0.50        | 108.780            | 0.38      |
| 22             | AMS    | -29.600                             | *           | 109.000            | 0.32      |
| 22             | AMS    | -28.500                             | *           | 109.200            | 0.34      |
| 23             | AMS    | -28.000                             | *           | 108.900            | 0.20      |
| 24             | LSC    | -29.100                             | *           | 109.390            | 0.62      |
| 24             | LSC    | -29.300                             | *           | 110.000            | 0.59      |
| 25             | AMS    | -28.100                             | 0.40        | 109.740            | 0.28      |
| 25             | AMS    | -25.200                             | 0.20        | 109.350            | 0.25      |
| 25             | AMS    | -28.100                             | 0.40        | 109.230            | 0.20      |
| 25             | AMS    | -28.900                             | 0.60        | 109.350            | 0.19      |
| 25             | AMS    | -30.300                             | 0.20        | 109.480            | 0.18      |
| 26             | AMS    | -29.100                             | *           | 109.690            | 0.35      |
| 27             | AMS    | -29.620                             | *           | 109.750            | 0.49      |
| 27             | AMS    | -29.000                             | *           | 109.600            | 0.49      |
| 28             | LSC    | *                                   | *           | 104.600            | 1.20      |
| 29             | LSC    | -31.770                             | 0.04        | 113.000            | 3.00      |
| 30             | LSC    | -29.900                             | *           | 110.800            | 0.80      |
| 31             | LSC    | -27.700 $-31.720$                   | *           | 109.300            | 0.40      |
| 32             | LSC    | -25.000                             | 2.00        | 109.100            | 0.74      |
| 33             | LSC    | -29.600                             | *           | 110.240            | 0.43      |
| 34             | GPC    | -27.680                             | *           | 110.240            | 0.35      |
| 35             | AMS    | -27.000 $-28.150$                   | *           | 108.670            | 0.33      |
| 36             | LSC    | -26.130 $-31.720$                   | *           | 108.900            | 0.40      |
| 37             | AMS    | -28.900                             | *           | 108.420            | 0.40      |
| 37             | AMS    | -28.900 $-29.600$                   | *           | 108.420            | 0.52      |
| 37             | AMS    | -29.000 $-28.900$                   | *           | 103.330            | 0.55      |
| 37             | AMS    | -28.900 $-28.900$                   | *           | 107.730            | 0.36      |
| 37             |        |                                     | *           |                    | 0.30      |
| 37             | AMS    | -28.600<br>20.400                   | *           | 108.400            |           |
| 37<br>37       | AMS    | -29.400<br>20.500                   | *           | 108.260<br>108.310 | 0.47      |
| 37<br>37       | AMS    | -29.500                             | *           |                    | 0.58      |
|                | AMS    | -28.800                             | *           | 108.820            | 0.48      |
| 37<br>37       | AMS    | -29.600                             | *           | 108.460            | 0.42      |
| 31             | AMS    | -28.700                             | •           | 108.610            | 0.47      |

Table 2a Sample A data table. (Continued)

| Lab identifier | A data tat<br>Method | $\frac{\delta \text{le. }(Contino}{\delta^{13}\text{C}}$ | Delta error | pMC     | pMC error |
|----------------|----------------------|----------------------------------------------------------|-------------|---------|-----------|
| •              |                      |                                                          | *           | •       |           |
| 38             | LSC                  | -29.200                                                  |             | 111.400 | 0.63      |
| 39             | AMS                  | -26.800                                                  | 0.20        | 108.430 | 0.42      |
| 40             | LSC                  | -28.120                                                  |             | 108.790 | 0.76      |
| 41             | GPC                  | -30.300                                                  | 0.10        | 108.560 | 0.48      |
| 41             | GPC                  | -30.300                                                  | 0.10<br>*   | 108.200 | 1.20      |
| 42             | GPC                  | -30.200                                                  | *           | 108.300 | 0.30      |
| 43             | AMS                  | -28.480                                                  | *           | 110.300 | 0.52      |
| 43             | AMS                  | -28.480                                                  | *           | 109.080 | 0.52      |
| 43             | AMS                  | -28.450                                                  |             | 109.260 | 0.43      |
| 44             | AMS                  | -30.200                                                  | 0.20        | 109.500 | 0.50      |
| 45             | AMS                  | -28.000                                                  | 1.00        | 109.600 | 0.20      |
| 45             | AMS                  | -27.000                                                  | 1.00        | 109.700 | 0.20      |
| 46             | AMS                  | -29.300                                                  | *           | 108.660 | 0.31      |
| 46             | AMS                  | -28.700                                                  | *           | 108.460 | 0.29      |
| 46             | AMS                  | -28.900                                                  | *           | 108.480 | 0.29      |
| 46             | AMS                  | -28.500                                                  | *           | 108.770 | 0.29      |
| 46             | AMS                  | -28.200                                                  | *           | 108.690 | 0.29      |
| 47             | AMS                  | -29.100                                                  | *           | 109.190 | 0.44      |
| 48             | LSC                  | -25.000                                                  | *           | 105.500 | 0.50      |
| 49             | LSC                  | -25.000                                                  |             | 97.090  | 0.48      |
| 50             | GPC                  | -28.000                                                  | 0.20        | 108.800 | 0.50      |
| 50             | GPC                  | -30.400                                                  | 0.20        | 109.700 | 0.50      |
| 50             | GPC                  | -28.900<br>*                                             | 0.20        | 110.200 | 0.50      |
| 51             | LSC                  | *                                                        | *           | 105.940 | 2.62      |
| 52             | LSC                  |                                                          |             | 100.550 | 3.04      |
| 53             | GPC                  | -30.510                                                  | *           | 109.840 | 0.25      |
| 54             | GPC                  | -29.600                                                  |             | 109.950 | 0.36      |
| 55             | AMS                  | -29.100                                                  | 0.60        | 109.490 | 0.35      |
| 56             | LSC                  | -31.100                                                  | 0.20        | 109.200 | 0.40      |
| 57             | AMS                  | -30.590                                                  | 0.09<br>*   | 110.430 | 0.49      |
| 58             | AMS                  | -30.600                                                  | *           | 109.390 | 0.35      |
| 59             | LSC                  | -30.900                                                  |             | 109.700 | 0.50      |
| 60             | AMS                  | -26.600                                                  | 1.3         | 109.200 | 0.45      |
| 61             | LSC                  | -29.100                                                  | 0.05        | 110.640 | 0.52      |
| 61             | LSC                  | -29.810<br>*                                             | 0.05        | 110.710 | 0.56      |
| 62             | AMS                  | *                                                        | *           | 108.800 | 0.24      |
| 62             | AMS                  | *                                                        | *           | 108.800 | 0.24      |
| 62             | AMS                  |                                                          |             | 109.080 | 0.32      |
| 63             | AMS                  | -28.600                                                  | 1.10        | 109.660 | 0.50      |
| 63             | AMS                  | -27.400                                                  | 1.10        | 109.770 | 0.49      |
| 64             | AMS                  | -28.300                                                  | *           | 110.400 | 0.40      |
| 65             | LSC                  | -29.070                                                  | *           | 109.000 | 0.20      |
| 66             | AMS                  | -31.400                                                  | *           | 108.650 | 0.51      |
| 67             | GPC                  | -25.000                                                  | *           | 107.300 | 0.80      |
| 67             | LSC                  | -25.000                                                  | *           | 106.900 | 0.60      |
| 69             | LSC                  | -25.000                                                  | *           | 107.800 | 0.60      |
| 69<br>70       | LSC                  | -26.500                                                  | *           | 108.200 | 0.60      |
| 70<br>70       | AMS                  | -29.100                                                  | *           | 107.800 | 0.30      |
| 70             | AMS                  | -29.100                                                  | *           | 108.900 | 0.30      |
| 70             | AMS                  | -29.100                                                  | *           | 108.500 | 0.50      |

Table 2a Sample A data table. (Continued)

| Lab identifier | Method | $\delta^{13}C$ | Delta error | pMC     | pMC error |
|----------------|--------|----------------|-------------|---------|-----------|
| 72             | LSC    | -30.300        | *           | 110.390 | 0.87      |
| 73             | AMS    | -27.8          | *           | 110.20  | 0.45      |
| 74             | LSC    | -28.98         | 0.2         | 101.05  | 0.24      |
| 75             | AMS    | -30.1          | *           | 108.96  | 0.26      |
| 76             | AMS    | -33            | 2           | 109.39  | 0.22      |
| 77             | LSC    | -24            | 1           | 108.61  | 1.06      |
| 78             | LSC    | -29.3          | *           | 108.0   | 0.44      |
| 79             | AMS    | -22.36         | 0.45        | 108.84  | 0.32      |
| 67             | LSC    | -25.000        | *           | 106.900 | 0.60      |
| 69             | LSC    | -25.000        | *           | 107.800 | 0.60      |
| 69             | LSC    | -26.500        | *           | 108.200 | 0.60      |
| 70             | AMS    | -29.100        | *           | 107.800 | 0.30      |
| 70             | AMS    | -29.100        | *           | 108.900 | 0.30      |
| 70             | AMS    | -29.100        | *           | 108.500 | 0.50      |
| 72             | LSC    | -30.300        | *           | 110.390 | 0.87      |
| 73             | AMS    | -27.8          | *           | 110.20  | 0.45      |
| 74             | LSC    | -28.98         | 0.2         | 101.05  | 0.24      |
| 75             | AMS    | -30.1          | *           | 108.96  | 0.26      |
| 76             | AMS    | -33            | 2           | 109.39  | 0.22      |
| 77             | LSC    | -24            | 1           | 108.61  | 1.06      |
| 78             | LSC    | -29.3          | *           | 108.0   | 0.44      |
| 79             | AMS    | -22.36         | 0.45        | 108.84  | 0.32      |

Table 2b Sample B data table.

| Lab identifier | Method | δ <sup>13</sup> C | Error | Age BP | Age error | pMC   | pMC error |
|----------------|--------|-------------------|-------|--------|-----------|-------|-----------|
| 1              | LSC    | *                 | *     | 2660   | 110       | 71.81 | 0.98      |
| 2              | GPC    | -22.700           | 0.20  | 3120   | 35        | 67.80 | 0.30      |
| 3              | GPC    | -23.000           | *     | 2835   | 15        | 70.26 | 0.13      |
| 4              | AMS    | -22.200           | *     | 2838   | 35        | 70.24 | 0.31      |
| 5              | AMS    | -22.700           | 3.10  | 2759   | 39        | 70.92 | 0.34      |
| 5              | AMS    | -21.300           | 1.70  | 2771   | 26        | 70.82 | 0.23      |
| 6              | AMS    | -22.000           | *     | 2840   | 15        | 70.24 | 0.12      |
| 7              | LSC    | -22.737           | *     | 2955   | 50        | 69.22 | 0.42      |
| 8              | AMS    | -21.060           | *     | 2855   | 30        | 70.09 | 0.26      |
| 9              | LSC    | -23.279           | 0.20  | 2850   | 37        | 70.13 | 0.46      |
| 10             | AMS    | -24.000           | 0.20  | 2847   | 35        | 70.16 | 0.31      |
| 11             | LSC    | -23.300           | *     | 2550   | 70        | 72.80 | 0.63      |
| 12             | AMS    | -23.400           | *     | 2885   | 40        | 69.80 | 0.40      |
| 13             | AMS    | -16.500           | 1.50  | 2786   | 26        | 70.69 | 0.23      |
| 13             | AMS    | -19.100           | 1.40  | 2817   | 29        | 70.42 | 0.25      |
| 14             | LSC    | *                 | *     | 2690   | 80        | 71.56 | 0.71      |
| 15             | GPC    | -23.750           | *     | 2771   | 28        | 70.83 | 0.25      |
| 16             | AMS    | -22.500           | *     | 2820   | 20        | 70.45 | 0.24      |
| 16             | AMS    | -22.500           | *     | 2820   | 20        | 70.35 | 0.25      |
| 17             | LSC    | -23.250           | 0.24  | 2506   | 149       | 73.20 | 1.31      |
| 18             | LSC    | -23.200           | *     | 2800   | 120       | 70.50 | 0.30      |
| 19             | LSC    | -22.550           | 0.03  | 3979   | 81        | 60.94 | 0.61      |
| 20             | GPC    | -22.600           | *     | 2781   | 30        | 70.70 | 0.30      |

Table 2b Sample B data table. (Continued)

| Lab identifier | Method | $\delta^{13}$ C | Error | Age BP | Age error | pMC   | pMC error |
|----------------|--------|-----------------|-------|--------|-----------|-------|-----------|
| 21             | AMS    | -22.440         | 0.71  | 2834   | 35        | 70.27 | 0.31      |
| 22             | AMS    | -21.600         | *     | 2819   | 28        | 70.40 | 0.25      |
| 22             | AMS    | -21.500         | *     | 2842   | 28        | 70.20 | 0.24      |
| 23             | AMS    | -23.100         | *     | 2819   | 34        | 70.40 | 0.30      |
| 24             | LSC    | -22.800         | *     | 2790   | 56        | 70.66 | 0.48      |
| 25             | AMS    | -20.900         | 0.50  | 2820   | 20        | 70.41 | 0.15      |
| 25             | AMS    | -21.900         | 0.70  | 2790   | 20        | 70.66 | 0.16      |
| 25             | AMS    | -17.600         | 0.40  | 2820   | 15        | 70.37 | 0.13      |
| 25             | AMS    | -18.700         | 0.50  | 2840   | 15        | 70.24 | 0.12      |
| 25             | AMS    | -20.500         | 0.40  | 2805   | 15        | 70.54 | 0.12      |
| 26             | AMS    | -23.200         | *     | 2777   | 32        | 70.78 | 0.28      |
| 27             | AMS    | -22.360         | *     | 2835   | 40        | 70.26 | 0.36      |
| 28             | LSC    | *               | *     | 2855   | 65        | 70.09 | 0.57      |
| 29             | LSC    | -25.000         | *     | 2700   | 200       | 71.45 | 1.78      |
| 30             | LSC    | -23.300         | *     | 2770   | 85        | 70.80 | 0.80      |
| 31             | LSC    | -25.250         | *     | 2750   | 40        | 71.01 | 0.35      |
| 32             | LSC    | -25.000         | 2.00  | 2620   | 60        | 72.19 | 0.56      |
| 33             | LSC    | -24.800         | *     | 2761   | 36        | 70.91 | 0.32      |
| 34             | GPC    | -21.800         | *     | 2710   | 30        | 71.35 | 0.28      |
| 35             | AMS    | -21.820         | *     | 2850   | 25        | 70.13 | 0.20      |
| 36             | LSC    | -25.250         | *     | 2750   | 40        | 71.01 | 0.35      |
| 37             | AMS    | -21.900         | *     | 2890   | 50        | 69.80 | 0.46      |
| 37             | AMS    | -22.000         | *     | 2840   | 35        | 70.22 | 0.31      |
| 37             | AMS    | -21.900         | *     | 2780   | 35        | 70.76 | 0.31      |
| 37             | AMS    | -22.100         | *     | 2730   | 30        | 71.16 | 0.26      |
| 37             | AMS    | -21.900         | *     | 2790   | 30        | 70.62 | 0.29      |
| 38             | LSC    | -24.100         | *     | 2620   | 70        | 72.84 | 0.63      |
| 39             | AMS    | -21.600         | 0.20  | 2540   | 45        | 72.89 | 0.41      |
| 40             | LSC    | -22.590         | *     | 2850   | 70        | 70.14 | 0.58      |
| 41             | GPC    | -24.260         | 0.10  | 2910   | 50        | 69.57 | 0.46      |
| 41             | GPC    | -24.260         | 0.10  | 2720   | 40        | 71.24 | 0.27      |
| 41             | GPC    | -24.260         | 0.10  | 2780   | 70        | 70.72 | 0.61      |
| 41             | GPC    | -24.260         | 0.10  | 2730   | 180       | 71.20 | 1.60      |
| 41             | GPC    | -24.260         | 0.10  | 2710   | 160       | 71.40 | 1.40      |
| 41             | GPC    | -24.260         | 0.10  | 2800   | 170       | 70.60 | 1.50      |
| 41             | GPC    | -24.260         | 0.10  | 2750   | 100       | 71.08 | 0.86      |
| 42             | GPC    | -23.400         | *     | 2815   | 45        | 70.40 | 0.20      |
| 43             | AMS    | -22.180         | *     | 2834   | 35        | 70.27 | 0.31      |
| 43             | AMS    | -22.180         | *     | 2830   | 60        | 70.29 | 0.54      |
| 43             | AMS    | -22.190         | *     | 2768   | 44        | 70.85 | 0.39      |
| 43             | AMS    | -22.190         | *     | 2836   | 47        | 70.26 | 0.42      |
| 44             | AMS    | -23.300         | 0.20  | 2802   | 33        | 70.60 | 0.30      |
| 45             | AMS    | -22.000         | 1.00  | 2752   | 18        | 71.00 | 0.20      |
| 46             | AMS    | -22.400         | *     | 2840   | 25        | 70.22 | 0.19      |
| 46             | AMS    | -22.400         | *     | 2850   | 25        | 70.15 | 0.19      |
| 46             | AMS    | -23.000         | *     | 2860   | 25        | 70.05 | 0.18      |
| 46             | AMS    | -23.200         | *     | 2855   | 25        | 70.10 | 0.19      |
| 47             | AMS    | -22.400         | *     | 2835   | 35        | 70.26 | 0.31      |
|                |        |                 |       | -      |           |       |           |

Table 2b Sample B data table. (Continued)

| Lab identifier | Method | δ <sup>13</sup> C | Error | Age BP | Age error | pMC   | pMC error |
|----------------|--------|-------------------|-------|--------|-----------|-------|-----------|
| 48             | LSC    | -25.000           | *     | 2460   | 50        | 73.62 | 0.46      |
| 49             | LSC    | -25.000           | *     | 3490   | 50        | 64.76 | 0.38      |
| 50             | GPC    | -22.500           | 0.20  | 2810   | 30        | 70.50 | 0.20      |
| 51             | LSC    | *                 | *     | 2570   | 80        | 72.62 | 0.72      |
| 52             | LSC    | *                 | *     | 3296   | 281       | 67.16 | 2.29      |
| 53             | GPC    | -22.800           | *     | 2840   | 25        | 70.20 | 0.21      |
| 54             | GPC    | -24.800           | *     | 2799   | 33        | 70.58 | 0.29      |
| 55             | AMS    | -24.700           | 0.20  | 2800   | 30        | 70.56 | 0.27      |
| 56             | LSC    | -22.600           | 0.20  | 2855   | 32        | 70.10 | 0.30      |
| 57             | AMS    | -23.250           | 0.24  | 2811   | 40        | 70.47 | 0.35      |
| 58             | AMS    | -22.900           | *     | 2805   | 27        | 70.52 | 0.24      |
| 59             | LSC    | -22.800           | *     | 2890   | 70        | 69.78 | 0.61      |
| 60             | AMS    | -21.5             | 0.4   | 2820   | 40        | 69.89 | 0.35      |
| 61             | LSC    | -23.150           | 0.05  | 2850   | 75        | 69.72 | 0.66      |
| 62             | AMS    | *                 | *     | 2815   | 20        | 70.42 | 0.19      |
| 62             | AMS    | *                 | *     | 2795   | 25        | 70.59 | 0.20      |
| 63             | AMS    | -24.200           | 1.10  | 2721   | 44        | 71.27 | 0.39      |
| 63             | AMS    | -24.000           | 1.10  | 2652   | 44        | 71.88 | 0.39      |
| 64             | AMS    | -22.500           | *     | 2760   | 35        | 70.92 | 0.31      |
| 65             | LSC    | -22.600           | *     | 2857   | 25        | 70.07 | 0.22      |
| 66             | AMS    | -23.700           | *     | 2855   | 40        | 70.08 | 0.36      |
| 66             | LSC    | -22.510           | *     | 2795   | 30        | 70.60 | 0.27      |
| 67             | GPC    | -25.000           | *     | 3125   | 71        | 67.80 | 0.60      |
| 67             | LSC    | -25.000           | *     | 2851   | 49        | 70.10 | 0.40      |
| 69             | LSC    | -23.100           | *     | 2860   | 70        | 70.00 | 0.60      |
| 69             | LSC    | -22.900           | *     | 2980   | 60        | 69.00 | 0.60      |
| 70             | AMS    | -22.600           | *     | 2770   | 40        | 70.80 | 0.30      |
| 70             | AMS    | -22.600           | *     | 2860   | 30        | 70.00 | 0.30      |
| 70             | AMS    | -22.600           | *     | 2880   | 30        | 69.80 | 0.30      |
| 71             | LSC    | -24.260           | 0.10  | 2760   | 60        | 70.92 | 0.53      |
| 72             | LSC    | -23.500           | *     | 2590   | 80        | 72.45 | 0.68      |
| 73             | AMS    | -24.6             | *     | 2770   | 40        | 70.87 | 0.34      |
| 74             | LSC    | -22.62            | 0.2   | 3070   | 60        | *     | *         |
| 75             | AMS    | -22.9             | *     | 2782   | 28        | 70.73 | 0.24      |
| 76             | AMS    | -24               | 2     | 2815   | 30        | 70.44 | 0.26      |
| 78             | LSC    | -21.7             | *     | 2825   | 35        | *     | *         |
| 79             | AMS    | -22.26            | 0.3   | 2824   | 38        | 70.36 | 0.33      |
| 80             | LSC    | -22.3             | *     | 2820   | 50        | *     | *         |

Table 2c Sample C data table.

| Lab identifier | Method | $\delta^{13}C$ | Error | pMC     | pMC error |
|----------------|--------|----------------|-------|---------|-----------|
| 1              | LSC    | *              | *     | 110.477 | *         |
| 2              | GPC    | -27.70         | 0.20  | 107.300 | 0.50      |
| 3              | GPC    | -29.90         | *     | 110.600 | 0.20      |
| 4              | AMS    | -28.00         | *     | 110.100 | 0.40      |
| 5              | AMS    | -26.00         | 1.10  | 110.100 | 0.26      |
| 6              | AMS    | -29.00         | *     | 110.330 | 0.29      |

Table 2c Sample C data table. (Continued)

| Lab identifier | Method | δ <sup>13</sup> C | Error | pMC     | pMC error |
|----------------|--------|-------------------|-------|---------|-----------|
| 6              | AMS    | -29.00            | *     | 110.650 | 0.21      |
| 7              | LSC    | -29.16            | *     | 110.170 | 0.50      |
| 8              | AMS    | -28.72            | *     | 111.650 | 0.26      |
| 11             | LSC    | -30.18            | *     | 111.230 | 0.81      |
| 12             | AMS    | -27.80            | *     | 110.500 | 0.40      |
| 13             | AMS    | -26.30            | 0.30  | 111.200 | 0.36      |
| 13             | AMS    | -28.70            | 1.50  | 111.240 | 0.37      |
| 15             | GPC    | -28.57            | *     | 111.220 | 0.36      |
| 16             | AMS    | -28.50            | *     | 111.060 | 0.39      |
| 16             | AMS    | -28.50            | *     | 110.750 | 0.49      |
| 17             | LSC    | -30.72            | 0.15  | 112.570 | 1.36      |
| 18             | LSC    | -28.30            | *     | 98.600  | 0.30      |
| 19             | LSC    | -30.98            | 0.01  | 103.000 | 1.40      |
| 20             | GPC    | -29.00            | *     | 111.100 | 0.30      |
| 21             | AMS    | -26.76            | 0.61  | 110.480 | 0.39      |
| 22             | AMS    | -28.80            | *     | 110.800 | 0.36      |
| 22             | AMS    | -27.70            | *     | 110.600 | 0.32      |
| 23             | AMS    | -28.40            | *     | 110.400 | 0.21      |
| 24             | LSC    | -29.10            | *     | 110.100 | 0.59      |
| 24             | LSC    | -29.10            | *     | 111.020 | 0.60      |
| 25             | AMS    | -25.50            | 0.30  | 110.750 | 0.23      |
| 25             | AMS    | -24.40            | 0.20  | 110.600 | 0.19      |
| 25             | AMS    | -27.10            | 0.30  | 110.990 | 0.19      |
| 25             | AMS    | -24.40            | 0.40  | 110.920 | 0.20      |
| 25             | AMS    | -26.00            | 0.20  | 111.300 | 0.19      |
| 26             | AMS    | -28.40            | *     | 110.890 | 0.36      |
| 27             | AMS    | -29.40            | *     | 110.690 | 0.50      |
| 27             | AMS    | -28.25            | *     | 111.450 | 0.61      |
| 28             | LSC    | *                 | *     | 109.000 | 1.00      |
| 29             | LSC    | -31.49            | 0.07  | 111.000 | 3.00      |
| 30             | LSC    | -30.00            | *     | 110.700 | 0.80      |
| 31             | LSC    | -31.24            | *     | 108.400 | 0.40      |
| 32             | LSC    | -25.00            | 2.00  | 109.900 | 0.71      |
| 33             | LSC    | -29.40            | *     | 110.910 | 0.43      |
| 34             | GPC    | -27.14            | *     | 110.080 | 0.55      |
| 35             | AMS    | -29.17            | *     | 110.610 | 0.28      |
| 36             | LSC    | -31.24            | *     | 108.400 | 0.40      |
| 37             | AMS    | -29.30            | *     | 110.560 | 0.36      |
| 37             | AMS    | -29.30            | *     | 110.680 | 0.45      |
| 37             | AMS    | -29.20            | *     | 111.590 | 0.50      |
| 37             | AMS    | -29.00            | *     | 110.850 | 0.39      |
| 37             | AMS    | -29.20            | *     | 111.010 | 0.38      |
| 37             | AMS    | -29.20            | *     | 110.020 | 0.42      |
| 37             | AMS    | -28.80            | *     | 109.090 | 0.41      |
| 37             | AMS    | -29.20            | *     | 110.730 | 0.38      |
| 38             | LSC    | -29.40            | *     | 108.600 | 0.74      |
| 39             | AMS    | -26.30            | 0.20  | 110.670 | 0.30      |
| 40             | LSC    | -27.98            | *     | 109.880 | 0.86      |
|                |        |                   |       |         |           |

Table 2c Sample C data table. (Continued)

| Lab identifier | Method | δ <sup>13</sup> C | Error | pMC     | pMC error |
|----------------|--------|-------------------|-------|---------|-----------|
| 41             | GPC    | -31.59            | 0.10  | 103.360 | 0.46      |
| 41             | GPC    | -31.59            | 0.10  | 103.100 | 2.00      |
| 41             | GPC    | -31.59            | 0.10  | 106.600 | 1.90      |
| 41             | GPC    | -31.59            | 0.10  | 105.000 | 2.10      |
| 41             | GPC    | -31.59            | 0.10  | 104.900 | 1.20      |
| 42             | GPC    | -29.80            | *     | 110.700 | 0.40      |
| 43             | AMS    | -28.65            | *     | 111.040 | 0.44      |
| 43             | AMS    | -28.65            | *     | 111.030 | 0.53      |
| 43             | AMS    | -28.61            | *     | 109.190 | 0.71      |
| 43             | AMS    | -28.61            | *     | 110.070 | 0.60      |
| 44             | AMS    | -30.40            | 0.20  | 111.000 | 0.40      |
| 45             | AMS    | -29.00            | 1.00  | 110.900 | 0.20      |
| 45             | AMS    | -28.00            | 1.00  | 110.700 | 0.20      |
| 46             | AMS    | -27.90            | *     | 110.290 | 0.30      |
| 46             | AMS    | -28.00            | *     | 110.260 | 0.30      |
| 46             | AMS    | -28.60            | *     | 110.330 | 0.30      |
| 46             | AMS    | -28.20            | *     | 110.000 | 0.30      |
| 46             | AMS    | -28.00            | *     | 110.090 | 0.38      |
| 47             | AMS    | -29.30            | *     | 110.420 | 0.44      |
| 48             | LSC    | -25.00            | *     | 112.200 | 0.50      |
| 50             | GPC    | -28.80            | 0.20  | 111.800 | 0.50      |
| 50             | GPC    | -30.60            | 0.20  | 110.900 | 0.40      |
| 51             | LSC    | *                 | *     | 105.120 | 2.94      |
| 52             | LSC    | *                 | *     | 102.580 | 3.25      |
| 53             | GPC    | -30.55            | *     | 109.820 | 0.25      |
| 54             | GPC    | -29.40            | *     | 111.550 | 0.33      |
| 56             | LSC    | -31.90            | 0.20  | 111.000 | 0.40      |
| 57             | AMS    | -30.72            | 0.15  | 111.560 | 0.54      |
| 58             | AMS    | -31.20            | *     | 110.780 | 0.35      |
| 59             | LSC    | -30.80            | *     | 109.800 | 0.50      |
| 60             | AMS    | -25.7             | 1.2   | 111.05  | 0.46      |
| 61             | LSC    | -29.33            | 0.05  | 109.060 | 0.55      |
| 62             | AMS    | *                 | *     | 110.160 | 0.25      |
| 62             | AMS    | *                 | *     | 111.090 | 0.26      |
| 62             | AMS    | *                 | *     | 110.250 | 0.27      |
| 62             | AMS    | *                 | *     | 110.560 | 0.26      |
| 62             | AMS    | -27.10            | 0.10  | 110.510 | 0.13      |
| 63             | AMS    | -28.40            | 1.10  | 111.440 | 0.54      |
| 63             | AMS    | -29.10            | 1.10  | 111.420 | 0.53      |
| 64             | AMS    | -28.40            | *     | 111.400 | 0.40      |
| 65             | LSC    | -29.04            | *     | 110.700 | 0.20      |
| 66             | AMS    | -27.55            | *     | 111.540 | 0.47      |
| 66             | LSC    | -30.83            | *     | 110.340 | 0.44      |
| 67             | GPC    | -25.00            | *     | 107.800 | 0.90      |
| 67             | LSC    | -25.00            | *     | 110.400 | 0.60      |
| 69             | LSC    | -26.70            | *     | 109.300 | 0.60      |
| 69             | LSC    | -25.60            | *     | 110.000 | 0.70      |

Table 2c Sample C data table. (Continued)

| Lab identifier | Method | $\delta^{13}C$ | Error | pMC     | pMC error |
|----------------|--------|----------------|-------|---------|-----------|
| 70             | AMS    | -30.00         | *     | 110.600 | 0.30      |
| 70             | AMS    | -30.00         | *     | 110.800 | 0.30      |
| 70             | AMS    | -30.00         | *     | 111.600 | 0.50      |
| 71             | LSC    | -31.59         | 0.10  | 103.590 | 0.85      |
| 72             | LSC    | -29.20         | *     | 111.740 | 0.88      |
| 73             | AMS    | -27.6          | *     | 110.84  | *         |
| 74             | LSC    | -28.38         | 0.2   | 109.42  | 0.26      |
| 74             | LSC    | -29.19         | 0.2   | 109.81  | 0.28      |
| 75             | AMS    | -28.8          | *     | 110.19  | 0.43      |
| 76             | AMS    | -27.3          | 3     | 110.31  | 0.39      |
| 77             | LSC    | -24            | 1     | 108.16  | 2.13      |
| 78             | LSC    | -30.1          | *     | 109.85  | 0.45      |
| 79             | AMS    | -21.48         | 0.15  | 110.47  | 0.30      |

Table 2d Sample D data table.

| Lab identifier | Method | δ <sup>13</sup> C | Error | Age BP | Age error | pMC   | pMC error |
|----------------|--------|-------------------|-------|--------|-----------|-------|-----------|
| 1              | LSC    | *                 | *     | 3060   | 110       | 68.32 | 0.94      |
| 2              | GPC    | -22.300           | 0.20  | 3120   | 35        | 67.80 | 0.30      |
| 2 3            | GPC    | -22.500           | *     | 2842   | 15        | 70.20 | 0.13      |
| 4              | AMS    | -22.200           | *     | 2835   | 35        | 70.26 | 0.31      |
| 5              | AMS    | -20.200           | 0.60  | 2809   | 24        | 70.49 | 0.21      |
| 6              | AMS    | -23.000           | *     | 2840   | 20        | 70.21 | 0.16      |
| 7              | LSC    | -22.340           | *     | 2875   | 45        | 69.91 | 0.40      |
| 8              | AMS    | -20.710           | *     | 2870   | 30        | 69.96 | 0.26      |
| 9              | LSC    | -23.055           | 0.20  | 2852   | 37        | 70.12 | 0.46      |
| 10             | AMS    | -25.400           | 0.20  | 2842   | 36        | 70.20 | 0.31      |
| 11             | LSC    | -22.330           | *     | 2660   | 60        | 71.85 | 0.55      |
| 12             | AMS    | -23.100           | *     | 3000   | 40        | 68.80 | 0.40      |
| 13             | AMS    | -23.900           | 0.10  | 2805   | 33        | 70.53 | 0.29      |
| 13             | AMS    | -19.900           | 1.20  | 2826   | 30        | 70.34 | 0.26      |
| 14             | LSC    | *                 | *     | 2650   | 60        | 71.93 | 0.54      |
| 15             | GPC    | -23.280           | *     | 2819   | 29        | 70.40 | 0.25      |
| 16             | AMS    | -22.100           | *     | 2850   | 20        | 70.17 | 0.25      |
| 16             | AMS    | -22.100           | *     | 2850   | 20        | 70.12 | 0.24      |
| 17             | LSC    | -23.580           | 0.16  | 2928   | 101       | 69.45 | 0.82      |
| 18             | LSC    | -23.330           | *     | 3887   | 170       | 61.60 | 0.20      |
| 19             | LSC    | -22.210           | 0.02  | 3740   | 57        | 62.78 | 0.45      |
| 20             | GPC    | -22.300           | *     | 2822   | 22        | 70.40 | 0.20      |
| 21             | AMS    | -21.070           | 0.48  | 2859   | 28        | 70.05 | 0.24      |
| 22             | AMS    | -22.500           | *     | 2894   | 26        | 69.75 | 0.23      |
| 22             | AMS    | -21.500           | *     | 2851   | 28        | 70.12 | 0.24      |
| 23             | AMS    | -22.400           | *     | 2842   | 34        | 70.20 | 0.30      |
| 24             | LSC    | -22.600           | *     | 2867   | 50        | 69.98 | 0.43      |
| 25             | AMS    | -20.000           | 0.20  | 2875   | 20        | 69.90 | 0.16      |
| 25             | AMS    | -23.400           | 0.50  | 2825   | 20        | 70.36 | 0.15      |
| 25             | AMS    | -21.000           | 0.30  | 2855   | 20        | 70.07 | 0.16      |
| 25             | AMS    | -19.400           | 0.20  | 2845   | 15        | 70.18 | 0.12      |
| 25             | AMS    | -21.600           | 0.30  | 2850   | 15        | 70.15 | 0.12      |
| 26             | AMS    | -23.900           | *     | 2866   | 32        | 69.99 | 0.28      |

Table 2d Sample D data table. (Continued)

| Lab identifier | Method | $\frac{\delta^{13}C}{\delta^{13}C}$ | Error | Age BP | Age error | pMC   | pMC error |
|----------------|--------|-------------------------------------|-------|--------|-----------|-------|-----------|
| 27             | AMS    | -22.040                             | *     | 2850   | 40        | 70.10 | 0.38      |
| 28             | LSC    | *                                   | *     | 2595   | 50        | 72.39 | 0.45      |
| 29             | LSC    | -25.220                             | 0.05  | 2710   | 140       | 71.37 | 1.24      |
| 30             | LSC    | -22.400                             | *     | 2760   | 60        | 70.90 | 0.50      |
| 31             | LSC    | -24.930                             | *     | 2820   | 40        | 70.39 | 0.35      |
| 32             | LSC    | -25.000                             | 2.00  | 2720   | 60        | 71.29 | 0.55      |
| 33             | LSC    | -23.200                             | *     | 2784   | 35        | 70.71 | 0.31      |
| 34             | GPC    | -21.290                             | *     | 2730   | 40        | 71.18 | 0.36      |
| 35             | AMS    | -20.420                             | *     | 2900   | 25        | 69.72 | 0.21      |
| 36             | LSC    | -24.930                             | *     | 2815   | 40        | 70.44 | 0.35      |
| 37             | AMS    | -20.600                             | *     | 2950   | 30        | 69.27 | 0.28      |
| 37             | AMS    | -22.100                             | *     | 2730   | 30        | 71.15 | 0.29      |
| 37             | AMS    | -21.800                             | *     | 2800   | 35        | 70.58 | 0.33      |
| 37             | AMS    | -21.000                             | *     | 2580   | 30        | 72.50 | 0.29      |
| 38             | LSC    | -23.200                             | *     | 2600   | 84        | 73.06 | 0.74      |
| 39             | AMS    | -21.000                             | 0.10  | 2702   | 35        | 71.44 | 0.31      |
| 40             | LSC    | -22.240                             | *     | 2700   | 70        | 71.42 | 0.59      |
| 41             | GPC    | -23.650                             | 0.10  | 2860   | 35        | 70.03 | 0.31      |
| 41             | GPC    | -23.650                             | 0.10  | 3010   | 45        | 68.70 | 0.38      |
| 41             | GPC    | -23.650                             | 0.10  | 2700   | 60        | 71.43 | 0.53      |
| 42             | GPC    | -29.800                             | *     | 2770   | 45        | 70.90 | 0.30      |
| 43             | AMS    | -22.700                             | *     | 2862   | 45        | 70.02 | 0.40      |
| 43             | AMS    | -22.700                             | *     | 2820   | 55        | 70.39 | 0.50      |
| 43             | AMS    | -21.530                             | *     | 2889   | 41        | 69.79 | 0.36      |
| 44             | AMS    | -21.300                             | 0.20  | 2804   | 32        | 70.50 | 0.30      |
| 45             | AMS    | -20.000                             | 1.00  | 2811   | 19        | 70.50 | 0.20      |
| 45             | AMS    | -19.000                             | 1.00  | 2832   | 18        | 70.30 | 0.20      |
| 46             | AMS    | -22.100                             | *     | 2840   | 25        | 70.23 | 0.18      |
| 46             | AMS    | -23.000                             | *     | 2870   | 25        | 69.96 | 0.21      |
| 46             | AMS    | -23.000                             | *     | 2865   | 25        | 70.00 | 0.20      |
| 46             | AMS    | -22.900                             | *     | 2815   | 25        | 70.43 | 0.18      |
| 46             | AMS    | -21.400                             | *     | 2835   | 30        | 70.26 | 0.25      |
| 47             | AMS    | -22.600                             | *     | 2885   | 35        | 69.83 | 0.30      |
| 48             | LSC    | -25.000                             | *     | 2840   | 50        | 70.22 | 0.44      |
| 49             | LSC    | -25.000                             | *     | 3090   | 50        | 68.04 | 0.39      |
| 50             | GPC    | -22.100                             | 0.20  | 2800   | 40        | 70.60 | 0.30      |
| 51             | LSC    | *                                   | *     | 2990   | 50        | 68.92 | 0.43      |
| 52             | LSC    | *                                   | *     | 3584   | 242       | 64.81 | 1.90      |
| 53             | GPC    | -22.320                             | *     | 2835   | 25        | 70.25 | 0.21      |
| 54             | GPC    | -23.200                             | *     | 2795   | 36        | 70.61 | 0.32      |
| 55             | AMS    | -22.400                             | 0.40  | 2830   | 30        | 70.31 | 0.26      |
| 56             | LSC    | -22.500                             | *     | 2842   | 33        | 70.20 | 0.30      |
| 57             | AMS    | -23.580                             | 0.16  | 2832   | 43        | 70.29 | 0.38      |
| 58             | AMS    | -22.600                             | *     | 2833   | 23        | 70.29 | 0.20      |
| 59             | LSC    | -22.500                             | *     | 2960   | 70        | 69.18 | 0.60      |
| 60             | AMS    | -22.3                               | 0.3   | 2790   | 40        | 70.22 | 0.36      |
| 61             | LSC    | -22.350                             | 0.05  | 2610   | 50        | 71.81 | 0.41      |
| 62             | AMS    | *                                   | *     | 2835   | 30        | 70.26 | 0.28      |
| 62             | AMS    | *                                   | *     | 2820   | 30        | 70.38 | 0.25      |
| 62             | AMS    | *                                   | *     | 2870   | 25        | 69.97 | 0.21      |

Table 2d Sample D data table. (Continued)

| Lab identifier | Method | $\delta^{13}C$ | Error | Age BP | Age error | pMC   | pMC error |
|----------------|--------|----------------|-------|--------|-----------|-------|-----------|
| 62             | AMS    | *              | *     | 2800   | 30        | 70.59 | 0.26      |
| 63             | AMS    | -24.500        | 1.10  | 2817   | 44        | 70.42 | 0.38      |
| 63             | AMS    | -22.900        | 1.10  | 2796   | 45        | 70.61 | 0.39      |
| 64             | AMS    | -22.200        | *     | 2780   | 35        | 70.75 | 0.31      |
| 65             | LSC    | -22.260        | *     | 2829   | 25        | 70.07 | 0.22      |
| 66             | AMS    | -20.450        | *     | 2905   | 40        | 69.66 | 0.36      |
| 66             | LSC    | -22.240        | *     | 3020   | 45        | 68.68 | 0.38      |
| 67             | GPC    | -25.000        | *     | 2824   | 72        | 70.40 | 0.60      |
| 67             | LSC    | -25.000        | *     | 2865   | 49        | 70.00 | 0.40      |
| 69             | LSC    | -21.500        | *     | 3000   | 60        | 68.90 | 0.50      |
| 69             | LSC    | -22.100        | *     | 2800   | 50        | 70.60 | 0.50      |
| 70             | AMS    | -22.900        | *     | 2940   | 30        | 69.30 | 0.30      |
| 70             | AMS    | -22.900        | *     | 2830   | 30        | 70.30 | 0.30      |
| 70             | AMS    | -22.900        | *     | 2800   | 40        | 70.30 | 0.30      |
| 71             | LSC    | -23.650        | 0.10  | 2780   | 60        | 71.09 | 0.52      |
| 72             | LSC    | -22.300        | *     | 2630   | 70        | 72.08 | 0.65      |
| 73             | AMS    | -24.0          | *     | 2770   | 40        | 70.80 | 0.35      |
| 74             | LSC    | -22.35         | 0.20  | 3040   | 60        | *     | *         |
| 75             | AMS    | -22.5          | *     | 2807   | 49        | 70.51 | 0.43      |
| 76             | AMS    | -23            | 2     | 2862   | 23        | 70.03 | 0.20      |
| 78             | LSC    | -21.5          | *     | 2865   | 35        | *     | *         |
| 79             | AMS    | -22.37         | 0.22  | 2805   | 27        | 70.53 | 0.23      |
| 80             | LSC    | -22.3          | *     | 2820   | 50        | *     | *         |