HIATUS IN PREHISTORIC CHRONOLOGY OF THE CIS-BAIKAL REGION, SIBERIA: PATTERN OR ARTIFACT?

Yaroslav V Kuzmin
Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Radio St. 7, Vladivostok 690041, Russia. Email: ykuzmin@tig.dvo.ru.

ABSTRACT. The problem of a hiatus at about 6100–5300 BP (about 4900–4200 cal BC) in the prehistoric chronology of the Cis-Baikal region in Siberia is discussed. Based on a critical evaluation of existing evidence, there was no discontinuity found in the cultural sequence between the Kitoi and Serovo/Glazkovo complexes of the Neolithic, and the proposed “hiatus” may be an artifact based on underestimation of solid data. Conventional 14C dates are presented that were generated in the 1980s to early 2000s for Cis-Baikal prehistoric burial grounds, and were later dated by the accelerator mass spectrometry (AMS).

INTRODUCTION

The Cis-Baikal (Pribaikalye, or pre-Baikal in Russian geographical sources; e.g. Suslov 1961) region of Siberia is one of the best-studied areas in northern Asia in terms of prehistoric archaeology. Surveys and excavations began there in the 1880s and continue until today (see summary of research done before the 1990s: Khlobystin 1996; Weber 1995). Since the 1970s, radiocarbon dating was actively used to study the chronology of the Cis-Baikal Neolithic and Bronze Age complexes, and first results were released in the late 1970s and 1980s (Khlobystin 1978; Konopatsky 1982; Mamonova and Sulerzhitsky 1989). Later on, a group of scholars led by A W Weber presented a model of prehistoric chronology and periodization in the Cis-Baikal (e.g. Weber 1995; Weber et al. 2002, 2006) with an indication of a chronological “hiatus” between the Kitoi and Isakovo/Serovo Neolithic complexes (Table 1), which reflects, in their opinion, cultural discontinuity and significant depopulation of the region in the mid-Holocene. The intensive Russian-Canadian archaeological research in the Cis-Baikal since the 1990s (e.g. Lam 1994; Katzenberg and Weber 1999; Weber and McKenzie 2003; Weber et al. 1993, 1998, 2002, 2004, 2005) makes the release of original data of more importance for the international scholar community. Here, the issue of a “hiatus” in the Cis-Baikal archaeological chronology is discussed, along with the presentation of the first conventional 14C dates for burial grounds later dated by Weber et al. (2006).

Table 1 Culture-history model of the prehistoric cultural complexes in Cis-Baikal, Siberia (after Weber et al. 2006).

<table>
<thead>
<tr>
<th>Period</th>
<th>Culture/mortuary complex</th>
<th>14C age BP</th>
<th>Calibrated age BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Mesolithic</td>
<td>Early Kitoi</td>
<td>–7000–6100</td>
<td>–5800–4900</td>
</tr>
<tr>
<td>Early Neolithic</td>
<td>Late Kitoi</td>
<td>–8000–7000</td>
<td>–6800–5800</td>
</tr>
<tr>
<td>Middle Neolithic</td>
<td>Hiatus</td>
<td>–6100–5300</td>
<td>–4900–4200</td>
</tr>
<tr>
<td>Late Neolithic</td>
<td>Early Isakovo/Serovo-Glazkovo</td>
<td>–5300–4800/4400</td>
<td>–4200–3400/3000</td>
</tr>
<tr>
<td>Bronze Age</td>
<td>Late Isakovo/Serovo-Glazkovo</td>
<td>–4800/4400–3300</td>
<td>–3400/3000–1000</td>
</tr>
</tbody>
</table>

THE MID-HOLOCENE HIATUS ISSUE: EVIDENCE PRO AND CONTRA

The major problematic point in the prehistoric chronology of the territory around Lake Baikal, in my opinion, is the existence of an apparent “hiatus” at about 6100–5300 BP (about 4900–4200 cal BC) (e.g. Weber et al. 2002:230, 2006:127; originally stated: Weber 1995:154). In addition to numerous 14C dates from burial grounds (see summary: Weber et al. 2006), some other lines of evidence were used to argue in favor of this pattern. For example, food and demographic stresses and possible environmental impact might be responsible for the “loss of archaeological visibility” of the late Kitoi complex according to Weber et al. (2002:285–6). It was concluded that “…the discontinuity
between the Kitoi and Serovo-Glazkovo cultures was a concrete event and not the result of archaeological invisibility” (Weber et al. 2002:290).

However, since the early 1980s several $^{14}$C dates between ~6040 BP and ~5430 BP (Table 2) are known from the literature for the Cis-Baikal region (e.g. Michael 1992); these dates argue against the interpretation of a “hiatus.” Upon examination of arguments in favor of a hiatus (Weber 1994, 1995; Weber et al. 2002), I found out that only $^{14}$C dates from burials were accepted, while dates from some “habitation sites” were apparently not considered (e.g. Weber 1994:8, caption to Figure 3). Some other $^{14}$C values run on human bone from the Semenovo I cemetery, ~6040 BP, and Sarminskii Mys, ~5500 BP (Table 2; Mamonova and Sulerzhitsky 1989:22; Goriunova 2003:19), can also be cited as examples of human presence occurring during the hiatus.

As for the reliability of $^{14}$C dates from habitation sites, it is true that some are controversial. For example, the difference between 2 $^{14}$C values for grave 3 (excavations of 1972) at the Shamanskii Mys is about 800 yr (Table 2), and this makes them less reliable. However, the validity of 2 other dates, from the Tudugu and “Zhertvennoe Mesto 101-go Kilometra” sites with ritual animal burials (Konopatsky 1982)—challenged due to the fact that they “…came from features of unknown or uncertain cultural association” (Weber 1995:135)—does not seem to be the issue in our case. It is obvious that these ritual structures were deliberately created by humans inhabiting the Cis-Baikal region at about 5880–5580 BP (Table 2), and the lack of exact cultural affiliation is not important for the question of the hiatus existence.

<table>
<thead>
<tr>
<th>Site name, geographic location</th>
<th>$^{14}$C date uncalib. BP</th>
<th>Material dated</th>
<th>Lab code &amp; nr.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shamanskii Mys (cultural layer 1), Ol’khon Island</td>
<td>5990 ± 40</td>
<td>charcoal</td>
<td>SOAN-845</td>
<td>Konopatsky 1982; Orlova 1995</td>
</tr>
<tr>
<td>Shamanskii Mys (grave 3), Ol’khon Island</td>
<td>5720 ± 50</td>
<td>wood</td>
<td>LE-1076^a</td>
<td>Konopatsky 1982</td>
</tr>
<tr>
<td>Sagan-Zaba (layer 3), Ol’khon Island vicinity</td>
<td>6000 ± 40</td>
<td>animal bone</td>
<td>SOAN-1572</td>
<td>Orlova 1995; Goriunova 2003</td>
</tr>
<tr>
<td>Tudugu, Olkhon Island vicinity</td>
<td>5875 ± 50</td>
<td>animal bone</td>
<td>SOAN-1681</td>
<td>Konopatsky 1982; Orlova 1995</td>
</tr>
<tr>
<td>Ityrkhei (layer 6), Ol’khon Island vicinity</td>
<td>5700 ± 200</td>
<td>animal bone</td>
<td>GIN-4881</td>
<td>Goriunova 2003</td>
</tr>
<tr>
<td>Ityrkhei (layer 5), Ol’khon Island vicinity</td>
<td>5680 ± 60</td>
<td>soil from hearth^b</td>
<td>SOAN-3341</td>
<td>Orlova 1998; Goriunova 2003</td>
</tr>
<tr>
<td>Sarminskii Mys (grave 11b), Ol’khon Island vicinity</td>
<td>5500 ± 400</td>
<td>human bone</td>
<td>GIN-5599</td>
<td>Goriunova 2003</td>
</tr>
<tr>
<td>Ulan-Khada (layer 10), Ol’khon Island vicinity</td>
<td>5495 ± 125</td>
<td>soil from hearth^b</td>
<td>SOAN-3336</td>
<td>Orlova 1998; Goriunova 2003</td>
</tr>
<tr>
<td>Semenovo (burial 6), Angara River</td>
<td>6040 ± 100</td>
<td>human bone</td>
<td>GIN-3878</td>
<td>Mamonova and Sulerzhitsky 1989</td>
</tr>
<tr>
<td>Gorely Les (layer 5a), Angara River</td>
<td>5430 ± 120</td>
<td>charcoal</td>
<td>Ri-52</td>
<td>Veksler 1989; Goriunova 2003</td>
</tr>
<tr>
<td>Zhertvennoe Mesto 101-go Kilometra, Lena River</td>
<td>5575 ± 270</td>
<td>animal bone</td>
<td>SOAN-1682</td>
<td>Konopatsky 1982; Orlova 1995</td>
</tr>
</tbody>
</table>

^aSecond date run on wood from the same grave No. 3 (excavations of 1972) is 6550 ± 35 BP (SOAN-790) (Konopatsky 1982: 72).

^bHumic acids extracted from soil were dated.

^cBirch bark $^{14}$C date from the same grave is 4430 ± 40 BP (GIN-5598) (Goriunova 2003).
I would agree that some problematic $^{14}$C dates, such as one from the Shamanskii Mys (“Khuzhir” in Weber 1995:143) site, appear to still be trustworthy. This $^{14}$C value of about 5990 BP (Table 2) was considered less reliable due to the uncertainty in association with a particular cultural layer (Weber 1995:143). However, in the original report there is a clear indication that the date belongs to the upper cultural layer, depth of 0.35–0.40 m below the surface (Orlova 1995:218). This cultural component contains net-impressed pottery (Konopatsky 1982:32), which is quite characteristic for the Early Neolithic of Cis-Baikal (e.g. Goriunova 2003).

The analysis of ceramic assemblages associated with the selected “hiatus” sites (Table 2) shows that most of them have pottery with net-impressed design: Shamanskii Mys (Konopatsky 1982:71); Ulan-Khada (layer 10), Sagan-Zaba (layer 3), and Gorely Les (layer 5a) (Khlobystin 1996); and Ityrkhei (layers 5 and 6) and Sarminskii Mys (Goriunova 2003). Weber (1995:145) accepts that the net-impressed pottery manifests the beginning of the Neolithic, i.e. the Kitoi complex. Most probably, the $^{14}$C dates for these sites of about 6000–5430 BP reflect the existence of the Kitoi-Serovo continuum. It would appear that Kitoi-like populations with net-impressed pottery continued to survive in the Cis-Baikal region after ~6100 BP, and some of the Serovo burials (e.g. Sarminskii Mys, grave 6, ~5500 BP) are older than other graves belonging to this complex, about 5200–3000 BP (e.g. Goriunova 2003). Thus, this evidence should also be considered to document the possibility of a continuation of human presence in the Cis-Baikal region after about 6100 BP. It should also be noted that one of the coauthors of Weber et al. (2006) disagreed with the discontinuity in the cultural chronology: Goriunova (2003:19) cited several $^{14}$C dates from 5 sites of the Ol’khon Island area for the time interval of about 6000–5430 BP (see also Table 2).

In my opinion, the issue of possible environmental impact on the late Kitoi population (Weber et al. 2002) cannot be considered as one of the causes of the hiatus in human occupation. Data on vegetation and climate of the Cis-Baikal region for the Holocene (e.g. Bezrukova 1999; Horiuchi et al. 2000; Krivonogov et al. 2004) show that no significant changes occurred at about 8000–5000 BP; during this time, the environment was represented by conifer forests, with fluctuations in the spruce/fir-pine ratio (Bezrukova 1999:114). In the broader scale of southern Siberia, there were no sharp climatic anomalies in the mid-Holocene compared with modern values (e.g. Monserud et al. 1998; Tarasov et al. 1998). The suggestion that “…not the Atlantic but the Subboreal period that saw the warmest temperatures during Holocene times in the Baikal region” (Weber et al. 2002:292) is not supported by primary evidence (e.g. Bezrukova 1999; Horiuchi et al. 2000; but see Karabanov et al. 2000). Under any conditions, the hiatus could have occurred before the beginning of the Subboreal period at about 4500 BP.

CONSTRUCTION OF CIS-BAIKAL CULTURAL CHRONOLOGY: FACTS AND PROBLEMS

After the publication of Weber et al. (2006), which summarized new results of AMS $^{14}$C dating from burials in Cis-Baikal region, I would like to review the contribution of earlier Russian researchers. However, their original papers are often difficult to access due to the language barrier and their limited circulation. In the following, I list the “first-generation” conventional (i.e. liquid scintillation counting) $^{14}$C dates and their sources, which add primary data to the compendium of AMS values by Weber et al. (2006).

At the Lokomotiv burial ground, 7 $^{14}$C values were obtained for the Kitoi cultural complex: grave 8, 6870 ± 70 BP (GIN-3329); grave 10, 6780 ± 80 BP (GIN-330); grave 22, 6740 ± 180 BP (GIN-3331) and 6700 ± 150 BP (GIN-3333); grave 23, 6750 ± 60 BP (GIN-4033); grave 24, 6830 ± 80 BP (GIN-4034); and grave 28, 6820 ± 100 BP (GIN-4035) (Mamonova and Sulerzhitsky 1989:22). These $^{14}$C dates were later republished by Weber (1995:138). They are in most cases consistent with
new AMS $^{14}$C date series from the Lokomotiv site (Weber et al. 2006:129–38). For example, from grave 22, 3 dates are of about 6490–6660 BP; from grave 23, 6710 ± 60 BP; from grave 24, 6 dates are of about 6440–6660 BP; and from grave 28, 6380 ± 60 BP (Weber et al. 2006:134–5). One $^{14}$C value, 3445 ± 75 BP (SOAN-5168), was obtained for grave 5, which belongs to the Bronze or Early Iron Age complex (Turkin and Kharinskii 2004:150).

The Shamanka II cemetery was originally excavated by Turkin and Kharinskii (2004). They reported 4 $^{14}$C dates from graves of the Glazkovo complex: burial 2, 3900 ± 130 BP (SOAN-3895); burial 3, 3890 ± 45 BP (SOAN-5165); burial 5, 3600 ± 70 BP (GIN-11229); and burial 9, 3520 ± 60 BP (GIN-11230). The AMS $^{14}$C value from grave 9 obtained by Weber et al. (2006:140), 3600 ± 50 BP, corresponds well to the GIN date. Two dates are associated with the cultural complex preceding the Glazkovo, perhaps the Kitoi one: 6600 ± 180 BP (GIN-10290) for grave 4; and 6090 ± 130 BP (GIN-10208) for grave 6 (Turkin and Kharinskii 2004:142).

For the Ust’-Ida I site, 1 $^{14}$C date for grave 2, 4080 ± 100 BP (GIN-3881), was first published by Mamonova and Sulerzhitsky (1989) and repeated by Weber (1995:139). Later, Naumova et al. (1997) published 7 other $^{14}$C dates for this site: burial 16, skeleton 1, 4640 ± 50 BP (GIN-7526); burial 16, skeleton 2, 4710 ± 60 BP (GIN-7525); burial 20, skeleton 1, 4890 ± 100 BP (GIN-6295); burial 26, skeleton 1, 5170 ± 120 BP (GIN-6290); burial 30, 4710 ± 60 BP (GIN-8006); burial 38, 4480 ± 70 BP (GIN-7110); and burial 41, 4480 ± 70 (GIN-7111). The AMS $^{14}$C dates made by Weber et al. (2006:145–7) are the following: burial 16 (skeleton 1), 4710 ± 70 BP; burial 20 (skeleton 1), 4540 ± 60 BP; burial 26 (skeleton 1), 4740 ± 70 BP; burial 30, 4860 ± 110 BP; burial 38, 4730 ± 60 BP; and burial 41, 4790 ± 70 BP. Clearly, a difference between the 2 date series exists but is not very large, up to a few hundred $^{14}$C years.

For the Khuzhir-Nuge XIV burial ground, 3 $^{14}$C dates were originally obtained (see Weber et al. 2004:68): burial 2, 2900 ± 200 BP (GIN-7523); burial 4, 3860 ± 100 BP (GIN-7522); and burial 5, 3840 ± 150 BP (GIN-8182). The AMS $^{14}$C date for burial 5, 3910 ± 60 BP (Weber et al. 2006:150), is quite close to the GIN value.

The Khotoruk site originally produced 1 $^{14}$C date for grave 2a: 7370 ± 250 BP (GIN-4107) (Mamonova and Sulerzhitsky 1989); this was later republished (Weber 1995:139). A new $^{14}$C date for this individual, obtained by the AMS method, 7020 ± 70 BP (Weber et al. 2006:161), is in general agreement with the previous date, if we take into account the GIN-4107 value with ±2 σ.

For the Shamanskii Mys (or “Burkhan,” “Ol’khon,” and “Khuzhir” in other sources) cemetery, 2 $^{14}$C dates were generated prior to research led by Weber: 4140 ± 50 BP (GIN-4099) for burial 2 excavated in 1972; and 3980 ± 40 BP (GIN-4098) for burial 2 excavated in 1973 (Mamonova and Sulerzhitsky 1989; see also Weber 1995:140). The new AMS dates for grave 2 (1972) are of about 4100–4150 BP; for burial 2 (1973), 3990 ± 50 BP (Weber et al. 2006:161). The new values are very close to the GIN dates.

For the Makrushina burial ground, Vetrov et al. (1995) reported 6 $^{14}$C dates. Three of them are associated with the Kitoi cultural complex: burial 1, 7340 ± 120 BP (GIN-6288); burial 2, 6370 ± 80 BP (GIN-6816); and burial 9, 6520 ± 50 BP (GIN-7765). New AMS dates for the Makrushina are the following: grave 1, 6920 ± 70 BP; and grave 2, 6720 ± 70 BP (Weber et al. 2006:161). The results are somehow different from the GIN $^{14}$C values. As for the later Eneolithic (Vetrov et al. 1995:114) or Glazkovo (Weber et al. 2006:163) cultural component of the Makrushina, 3 $^{14}$C dates were generated: burial 3, 4070 ± 90 BP (GIN-6831); burial 13, 4200 ± 40 BP (GIN-7766); and burial 14, 4310 ± 40 BP (GIN-7767).
This brief encounter with the first set of 14C dates produced for the Cis-Baikal Neolithic and Bronze Age complexes, presented here especially for non-Russian speaking scholars, show that in most cases, new results (e.g. Weber et al. 2002, 2004, 2005, 2006) broadly confirmed the earlier conclusions (e.g. Konopatsky 1982:70–80; Mamonova and Sulerzhitsky 1989:28–31). Numerous AMS 14C dates from burial grounds in the Cis-Baikal (in total 335 values; see Weber et al. 2006) do not change significantly the previous cultural chronology.

There are some other aspects of presentation of original data for the Cis-Baikal prehistoric cemeteries. Unfortunately, Weber et al. (2006) appear not to give sufficient credit, in my view, to the contribution of previous Russian researchers. For example, it is said: “A number of 14C determinations were produced for the UID [Ust'-Ida I] cemetery in Russian laboratories; none, however, have been published thus far” (Weber et al. 2006:144). I would note in response that 1 14C value for Ust'-Ida I was published by Mamonova and Sulerzhitsky (1989:22, listed as Ust'-Uda; see above), and was already mentioned in other papers (e.g. Weber 1995:139; Weber et al. 2005:1487). In Naumova et al. (1997), 7 other 14C dates for the Ust'-Ida I cemetery were also presented (see above).

In earlier publications of the 14C date series from the Khuzhir-Nuge XIV cemetery, 3 14C values produced in Russia are listed (Weber et al. 2004:68); in a later article, 1 value, 2900 ± 200 BP (GIN-7523), is not included (Weber et al. 2005:1484).

CONCLUSION

Based on the results obtained for the Neolithic assemblages from the Cis-Baikal region in southern Siberia and their 14C ages, it seems that the “hiatus” at the transition from the Late Kitoi culture to the Early Isakovo/Serovo-Glazkovo complex may be an artifact of the limited sampling rather than a pattern in the archaeological chronology. Perhaps the Neolithic population size decreased in the Cis-Baikal to some extent at about 6100–5300 BP; this is reflected in the smaller number of 14C-dated sites and burial grounds compared with the previous “classical” Kitoi time period, about 7000–6100 BP. However, it is hard to imagine a complete or significant depopulation on the background of quite stable environment and food resources. I believe that the primary data testifies in favor of a continuous occupation and the existence of “mixed” Kitoi-Serovo assemblages.

ACKNOWLEDGMENTS

I am grateful to A W Weber for supplying me with some publications, and A J T Jull and an anonymous reviewer for editorial suggestions.

REFERENCES


Y V Kuzmin


Weber AW, Link DW, Katzenberg MA. 2002. Hunter-gatherer culture change and continuity in the Middle Holocene of the Cis-Baikal, Siberia. Journal of As-
