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ABSTRACT. Time series of 6140, 613C, and concentration of atmospheric CO2 covering the last 12 years are available at the 
Krakow sampling site (southern Poland) representing an urban area exposed to anthropogenic pollution of both local and 
regional origin. The samples represent continuous monitoring in biweekly intervals. Observations covering the time period 
1983-1994 show a linear decrease of the 13(/12( ratio (613C = -9.6%o in Jan. 1983) with a slope of -0.02% a'1. The decreas- 
ing tendency in the case of 14C (614C = 227% in January 1983) is weaker with a broad minimum in 1991(614C =124%o) and 
subsequent gradual increase by ca. 10%o, coinciding with a substantial reduction of coal consumption in Poland (26% reduc- 
tion in 1991-1994 for heat and electricity production), partly compensated in agglomerations by increased gas consumption. 
The 12-year record of the CO2 concentration in Krakow points to a constant value fluctuating at a high level (average: 373 
ppmv) reaching a maximum yearly average of 376 ppmv. These carbon isotope signatures were used for the separation of fos- 
sils from biogenic and "background" components, reflecting the strength of relevant sources. The monthly mean of the fossil 
component varies from ca. 10 ppmv in June to 27.5 ppmv in March while the yearly mean decreased ca. 16 ppmv since 1991. 

INTRODUCTION 

Temporal and spatial changes of the carbon isotope composition of atmospheric CO2 yield informa- 
tion on the circulation of this element between the atmosphere, biosphere and introduced anthropo- 
genic disturbances. Studies of atmospheric CO2 were initiated in the early 1950s by Keeling (1958). 
Systematic measurements of carbon isotope composition in tropospheric CO2 have been performed 
since 1983 at the Department of Environmental Physics, University of Mining and Metallurgy. The 
sampling point site is in Krakow (50°3'N, 19°54'E), at ca. 25 m above the ground level (on the roof 
of the Faculty building), in the area bordering the recreation and sports grounds and the university 
campus. The Krakow area, with about a million inhabitants, is influenced by local sources as well 
as by anthropogenic pollution from the west (the Silesia coal-mining district and heavy industry 
with high consumption of fossil fuels). Transformation in industrial technologies since the early 
1990s has resulted in reduced usage of coal as fuel. In 1990-1994, the total use of coal in Poland for 
power and heating stations decreased from 82.0 Mt to 60.7 Mt (Rocznik Statystyczny 1996). At the 
same time, the use of gas for heating and other municipal purposes increased. For instance, in the 
Krakow region, consumption of natural gas has doubled, partly replacing coal (Raport z Prac Fazy 
I 1995). In the Krakow region there are also remarkable emissions from local industrial sources 
including a large steel factory (Huta Tadeusza Sendzimira) at the eastern outskirts of the city. The 
location of the sampling point is representative of the area of town. The Krakow region is in the tran- 
sition zone between a maritime climate, with prevailing influence of Atlantic Ocean, and a continen- 
tal climate, characterized by northeast and east circulation. 

The aim of the present work is: 1) to quantify changes in the carbon isotope ratio in atmospheric CO2 
and calculate the fossil component over an industrial and highly urbanized area (Krakow region) 
during intensive reconstruction of heavy industry and significant lowering of coal usage, and 2) to 
document the increasing contribution of CO2 from natural gas (using the stable isotope signal), and 
provide an estimate of this effect. 
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METHODS 

At the Krakow sampling station, atmospheric CO2 is continuously sampled by sorption in a molec- 

ular sieve in biweekly intervals. Sampled air (usually ca. 15 m3) is pumped through a container with 

a molecular sieve, and after thermal desorption, >5 dm3 of CO2 is obtained, from which 814C and 

813C are measured (Florkowski et al. 1975; Kuc 1991). The CO2 concentration is measured by the 

volumetric method, albeit with a relatively high error (< 5%). For carbon isotopic measurements 

(814C, 813C), we use liquid scintillation spectrometers (TriCarb®, Canberra-Packard), and mass 

spectrometers (VG Micromass 602 C and Finnigan Mat Delta S), respectively. The overall measure- 

went error is ca. ±8%o for 614C, and + _0.099% for S13C. 

The radiocarbon results are reported as b14C in per mil (%o) versus NBS Oxalic Acid (contemporary 

standard for 14C-dating laboratories) following the generally accepted notation (Stuiver and Polach 

1977), and corrected for decay since 1950. The stable carbon isotope ratio, S13C, is reported on the 

VPDB scale (Coplen 1995; Allison et a1.1995). N20 was not determined in the samples, and cor- 

rection for presence of this gas was not included. This could make a difference of ca. +0.2%o at the 

atmospheric concentration of N20 ca. 300 ppb (hook and Jongsma 1987). 

RESULTS AND DISCUSSION 

During 1983-1994, the carbon isotope composition in atmospheric CO2 at the Krakow sampling site 

showed well-pronounced seasonal oscillations superimposed on the long-term trends. Linearization 

of data, permissible for shorter time intervals (Kuc 1991) for this 12-year period, does not reflect the 

behavior of the isotope signals. Exponential smoothing of points measured biweekly reflects seasonal 

fluctuations; the long-term trend is approximated by a second-order polynomial (Fig. 1). Both 8'4C 

and b13C are gradually decreasing with time (M'4C -92%o, M13C -0.24%o for the 12-year inter- 

val). However, fits to 14C data point to a broad minimum in 1991 (Fig. la) with an increase following 

by Ca. 10%o to end of 1994. The observed decrease in S13C (Fig. lb) is well represented by a straight 

line. The record of CO2 concentrations reveals a constant level (within measurement error) with over- 

lapping seasonal oscillations. The 12-year average value is ca. 373 ppmv; the highest yearly mean 

(376 Ppmv) was recorded in 1991. A small decrease is evident over the last 3 years. At Schauinsland 

station (Germany), the yearly mean concentration increased from 345.0 to 357.7 ppmv between 1983 

and 1991(Levin et at. 1995); over the same period at K-Puszta station (Hungary), the increase was 

from 355.7 to 372.3 ppmv. However, since 1988, fluctuations of ca. 369 ppmv have been observed 

(Haszpra 1994). The station is subject to significant biospheric effects due to its location. 

The atmospheric 14C02 concentration at the Krakow site is systematically lower than the reported 

background fit for Europe (Levin et at. 1995). The difference reaches 44%o in January 1983, show- 

ing a tendency decreasing to 41%o in January 1993. However, the local minimum of b14C observed 

at Krakow, and the following small increase, diminishes this difference significantly after 1991. This 

effect is probably of regional significance, resulting from a remarkable reduction in the use of coal 

as fuel, mainly for industrial purposes and heating the city, since 1990. 

The S13C values of atmospheric CO2 at Krakow in 1983-1994, fitted with a second-order polyno- 

mial, show a linear decrease with the slope of -0.02%o a1 (Fig. la). The S13C value in 1983 (-9.9%o) 

is ca. 1.7%o more negative than the uncontaminated marine air in the Northern Hemisphere (hook et 

a1.1983), and ca. 0.95%o more negative compared to the Schauinsland data (Levin et a1.1995). The 

S13C of the upper envelope spot samples collected at Krakow in 1992-1993 (Fig. 3) corresponds with 

biweekly means for Schauinsland (Levin and Kromer 1997), and are more positive than the Krakow 

biweekly means. The Krakow values are Ca. 1.5%o more negative than the Schauinsland data. 



Changes of CO2 Sources and Sinks 419 

a $r 

-9 

-12 

Y=Axe+Bx+C 
A<5*104 %o/y2 
B=-0.02 %o/y 
C=-9.6 %o 

x=0 for 01.01.83 

-13 , 

1982 1983 1984 1995 1986 1987 1968 1989 1990 1991 1902 1993 1994 1995 

Years 

250 

200 

Y=Axe+Bx+C 
A=1.25 %o/y2 
B=-22.3 %c/y 

C= 226 %o 

x=0 for 01.01.83 

+ 
+ 

50 

+ 

+ 

0 
1962 1963 1964 1966 1986 1987 1968 1969 1990 1991 1962 1963 1994 1995 

Years 
Fig. 1. Trends of 813C (a), and 614C (b)in atmospheric CO2 in 1983-1994 at the Krakow sampling site. Biweekly means 
(crosses) are exponentially smoothed (solid line). The long-term trend (broken line) is represented by fit to second-order 
polynomial (polynomial coefficients indicated below graph a, and above graph b). 
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Fig. 2. Monthly mean detrended values of 614C and 813C averaged for 1983-1994 in atmospheric CO2 at the Krakow site 
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Fig. 3.813C of atmospheric CO2 at different sampling points (1992-1993). Schauinsland biweekly means after Levin and 

Kromer (1997). 

The well-pronounced seasonality of the isotope signal during the 12-year observation period (min- 

ima in winter and maxima in summer) makes it possible to calculate the average seasonal effects. 

The monthly mean and detrended values of 814C and 613C (before the average long-term trend was 

subtracted) are presented in Figure 2. The highest values of M13C and M14C were observed in the 
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summer months (June, July) reaching +0.33%0, and 24.8%o above the trend, respectively, while the 
lowest values of A813C appear in November (-0.39%) gradually increasing until summer. The 
observed peak-to-peak difference is ca. 0.71%x. For Ag14C, the minimum (-30.5%o) is observed 4 
months later than for 0813C (in February-March). 

We assume that the local atmospheric CO2 is a mixture of three components: 1) fossil CO2, which is 
generated during the burning of fossil fuels, 2) biogenic CO2, which is released from the biosphere, 
and 3) primary (background) CO2 representing the undisturbed regional signal. The known isotopic 
signatures (S14C, 813C) of each component allow for separation of fossil fuel from biogenic and pri- 
mary CO2 components. 

For the reference value (clean air) of the 14C concentration, we used numeric values of the Schauin- 
sland record with an introduced correction of +6%o (Levin and Kromer 1997), and for 1983 to June 
1994, the background fit from observations for Jungfraujoch (Levin et al. 1995), which we assume to 
be representative of the biogenic and background (atmospheric) component (b14Cb = 814Ca) over con- 
tinental Europe. 

The mass balance equations for carbon, 13C and 14C can be formulated as 

c=Cf+Cb+c8 (1) 

CS13C = Cf $13Cf + Cb 
$13C1, + Ca 

$13C8 (2) 

and 

(1 + S14C) C = (1 + S14Cf) Cf + (1 + Sl4Cb) 
Cb +(1 + S14Ca)C, 

where 

(3) 

C = atmospheric concentration (volumetric ratio), ppmv 
a = notation in %o 

(1+814Cf)=0, and 
f, b and a = fossil, biogenic and background (atmospheric) components, respectively. 

The fossil component (Ce), derived from Equation 3, used a mixture of two components: C, and Ca 
+ Cb, while S14C$ = b14Cb, and applying for concentration (C) values measured at the Krakow sam- 
pling point. 

The seasonal fluctuation of the derived fossil component (Cf) is correlated with the heating period in 
the urban area (Fig. 4). The yearly means of this component (Fig. 4a) show a remarkable decrease 
from 27.5 ppmv in 1990 to ca. 11.5 ppmv in 1994. This decrease is well correlated with the reported 
consumption of coal in power and heating stations in Poland (Fig. 4b) forming the "long-distance 
background", and substantial decrease in the local CO2 emissions (cuts in production and upgrading 
technology in the neighboring HTS foundry as well as change of heating method in the city, i. e., the 
shutdown of local, inefficient coal-heating stations, replaced partly by natural gas and electric heat- 
ing). We note that the reduced input of 14C-free CO2 to the atmosphere, marked in the 614C record, is 
not pronounced in the g13C data. This can be caused by a significant increase of gas burning for heat- 
ing purposes in the Krakow agglomeration (8% in 1990 to >16% in 1995, according to estimates by 
Raport z Prac Fazy I (1995)). The S13C of methane supplied to the city gas network is ca. 54.4%0 
(Miroslaw et al. 1997), which is characteristic for natural gas from the east-European suppliers. A 
simple "isotopic" calculation (Eq. 2) allows us to estimate the share of CO2 from natural gas (C) in 
the fossil component (Ci). For comparison, we choose the winters of 1990 and 1994. Assuming that in 
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Fig. 4. Monthly means of fossil component Cf, averaged for 1983-1994 in atmospheric CO2 at the Krakow sampling site 

(a). Yearly means of the fossil component, Cf (thin solid line), and total tonnage of coal burned in Polish power and heat- 

ing stations (thick solid line), after Rocznik Statystyczny (1996) (b). 

January-March 1990, Cf 1Cf = 0.1(10% of CO2 originated from natural gas), which determined 
8 

813Cf = -27.0%o, while measured parameters were 613C = -10.0 %o, C = 371 ppmv, and calculated 

C f = 35.2 ppmv. Four years later, in January-March 1994, respective values were 613C = 9.8%o, 

C = 367 ppmv, Cf =15.2 ppmv, and estimated 813Ca+b = -8.4%o. Based on this, one can calculate iso- 

topic composition of fossil component in winter 1994 (613C1 = -42.0%o). Known values of 613C for 

coal and natural gas (813CB = -54.4%o, 813Ccoa1= -24.0%o), applied to the balance the equation, point 

to a ca. 59% contribution of CO2 from natural gas in the fossil component (CJ, expressed as a concen- 

tration (C), is ca. 3.5 ppmv, and 9.0 ppmv for 1990 and 1994, respectively. In comparison, a >50% 

share of CO2 from natural gas in exhausted CO2 is reported for the Netherlands (Meijer et at. 1996). 

CONCLUSION 

14C concentrations (814C) in atmospheric CO2 recorded at the Krakow sampling point are systemat- 

ically lower than the reference background, which is a result of the fossil fuel effect. The calculated 

fossil component varies seasonally from ca. 27.5 ppmv in winter to ca. 10 ppmv in summer. The 

increase of 814C after 1991 is interpreted as a regional effect caused by the reduced consumption of 

14C-free fuels. A high contribution of anthropogenic CO2 is confirmed by generally low 813C, how- 

ever, an increased input of CO2 from the burned gas compensates for the expected trend towards 

higher values of 813C. 

The observed decrease of the fossil component in 1990-1994 is correlated with the total decrease in 

the quantity of coal burned in Polish power stations with a strong regional effect in the reduction of 

"consumption" of coal by the HTS foundry, and the reconstruction of the heating system in the his- 

toric city of Krakow. The assessed increased contribution of CO2 from natural gas in the Krakow 
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agglomeration in 1994 shows higher values than those reported after examination of the supply. This 
is probably because some of the industrial uses of gas are not taken into account. 

The measurement of isotopic ratios and concentration of atmospheric CO2 is a powerful tool for 
identifying sources and sinks in the regions strongly affected by anthropogenic activity. For model 
calculations and differentiation between effects on a regional and continental scale, a large number 
of accurate measurements of isotopic ratios is required. 
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