yr⁻¹ based on nine samples and adjusted for snow cover. Considering the uncertainties in the exposure time, snow density, and muonic scaling, the uncertainty in this production rate is ±12%.

Preliminary results based on ⁴⁰Be measurements of two samples collected from a Provo Lake wave cut shoreline (1.5 km, 41°N) will also be presented. The results suggest the time-averaged ⁴⁰Be production rate for 14.4 ¹⁴C kyr (Oviatt, Currey and Sak 1992; 17.6 cal kyr) of exposure at sea level >60° latitude is 5.4 ± 0.6 atoms · g⁻¹ yr⁻¹ (uncertainty assigned as above).

ADDITIONAL REFERENCES


THE ²¹Ne PRODUCTION RATE IN A SI TARGET AT MOUNTAIN ALTITUDES

Th. Graf,¹ K. Marti and R. C. Wiens²

University of California, San Diego, La Jolla, California 92093-0317 USA

The isotopic signature of cosmic ray produced Ne was first measured in Antarctic rocks (Graf et al. 1991; Niedermann et al. 1993). Production rates of cosmogenic Ne were determined in quartz from glacially polished Sierra Nevada rocks which were exposed for only ca. 10⁴ yr (Niedermann et al. 1994). However, past and present production rates of ²¹Ne and other relevant cosmic ray produced nuclides are still poorly known. Temporal variations in the production rates can be studied by determinations of the products in well dated rocks and minerals thereof. The present production rates can