DETECTION OF ⁴¹CA WITH ⁷LI³⁷CI MOLECULAR PILOT BEAM

T. BABA, N. FUNAYA, N. MIYAZAKI, T. TAKAHASHI, T. KAIKURA, R. SEKI, S. SUENO and Y. NAGASHIMA

AMS Group, Tandem Accelerator Center, University of Tsukuba, Japan

The dating of foraminifera (Nagashima, Baba *et al.*, in press), which is one of our current interests, is extensively studied by ¹⁴C AMS technique with ⁷Li₂ pilot beam (Nagashima *et al.* 1994). As the next item on the dating program, dating of foraminifera with ⁴¹Ca has been tried. A long half-life of ⁴¹Ca enables us to investigate very old foraminifera (several hundred thousand years old). Expanding the idea of the molecular pilot beam method used in ¹⁴C, ²⁶Al, and ³⁶Cl measurements (Nagashima *et al.* 1994), a ⁷Li³⁷Cl molecular pilot beam has been introduced for stabilizing the terminal potential of ¹²UD pelletron machine.

⁴¹Ca standard was prepared with the ⁴⁰Ca neutron capture process in a nuclear reactor. ⁴¹Ca to ⁴⁰Ca ratio was controlled to be 1.0510–10. Under the chemical process, the form of CaCO₃ changes to CaF₂ in order to diminish oxygen. The CaF₂ sample is mixed with TiH₂, and LiCl and the mixture is pressed into the hole of an ion source sample holder. A CaH₃⁻ negative beam was created in the ion source as well as the ⁷Li³⁷Cl molecular pilot beam. The strong ⁴¹K background can be greatly decreased because there is no KH₃⁻ formation in the ion source. ~1mA CaH₃⁻ current can be extracted and ⁴¹CaH₃⁻ and ⁷Li³⁷Cl⁻ are transported into the ¹²UD through a 90-degree inflection magnet. After passing through the tandem, both ⁴¹Ca10⁺ and ³⁷Cl9⁺ are analyzed by an analyzing magnet. Here, the ³⁷Cl9⁺ beam can produce enough current on a pair of off-axis slits that are set at the image plane of the magnet and the current is used for terminal potential control. On the other hand, ⁴¹Ca10⁺ is guided into an AMS beam line and it is finally detected by a gas DE-SSD E counter. Overall beam transport efficiency is *ca*. 2.5%. We will report the method of ⁴¹Ca measurements.

References

Nagashima, Y. et al. 1994 Nuclear Instruments and Methods in Physics Research B92.

Nagashima, Y., Baba, T. et al., in press, Proceedings of 7th International Conference on Heavy Ion Accelerator Technology. Canberra, September 1995.

USE OF CHLORINE-36 AS TRACER FOR THE EVOLUTION OF WATERS IN GEOTHERMAL AND TECTONIC ACTIVE AREAS IN WESTERN TURKEY

W. BALDERER

Geological Institute, Engineering Geology, ETH Hönggerberg, CH-8093 Zürich, Switzerland

and

H.-A. SYNAL

Paul Scherrer Institut, c/o Institute for Particle Physics, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Within the joint, interdisciplinary project "Marmara" of ETH Zürich and the Istanbul Technical University (ITÜ), six areas along the North Anatolian Fault Zone (Schindler *et al.* 1993; Straub and Kahle 1994) are studied. In particular, effects of active tectonics as evidenced by geology, geodesy and seismology on groundwater circulation and on heat flow pattern are investigated. For groundwaters of such tectonic active regions the problem of residence time determination arises, as the usu-