Radiocarbon

Published by THE AMERICAN JOURNAL OF SCIENCE

EditorMINZE STUIVER

Associate Editors

To serve until January 1, 1989 STEPHEN C PORTER Seattle, Washington

To serve until January 1, 1985
W G MOOK Groningen, The Netherlands
HANS OESCHGER Bern, Switzerland

To serve until January 1, 1987 RONALD B DAVIS Orono, Maine

Editor at Large
IRVING ROUSE New Haven, Connecticut

Managing Editor RENEE S KRA

Kline Geology Laboratory Yale University New Haven, Connecticut 06511

ISSN: 0033-8222

Radiocarbon

Proceedings of the 11th International Radiocarbon Conference Seattle, 20-26 June 1982

Radiocarbon, Volume 25, Number 2, 1983 @ \$50.00

Please order from: Radiocarbon

Kline Geology Laboratory

Yale University PO Box 6666

New Haven, CT 06511

NOTICE TO READERS AND CONTRIBUTORS

Since its inception, the basic purpose of Radiocarbon has been the publication of compilations of ¹⁴C dates produced by various laboratories. These lists are extremely useful for the dissemination of basic ¹⁴C information.

In recent years, Radiocarbon has also been publishing technical and interpretative articles on all aspects of ¹⁴C. We would like to encourage this type of publication on a regular basis. In addition, we will be publishing compilations of published *and unpublished* dates along with interpretative text for these dates on a regional basis. Authors who would like to compose such an article for his/her area of interest should contact the Managing Editor for information.

Another section is added to our regular issues, "Notes and Comments". Authors are invited to extend discussions or raise pertinent questions to the results of scientific investigations that have appeared on our pages. The section includes short, technical notes to relay information concerning innovative sample preparation procedures. Laboratories may also seek assistance in technical aspects of radiocarbon dating. Book reviews will also be included for special editions.

Manuscripts of radiocarbon papers should follow the recommendations in *Suggestions to Authors** and *RADIOCARBON* Style Guide (R, 1984, v 26, p 152-158). Our deadline schedule is:

For	Date
Vol 27, No. 2, 1985	Jan 1, 1985
Vol 27, No. 3, 1985	May 1, 1985
Vol 28, No. 1, 1986	Sept 1, 1985

Half life of 14 C. In accordance with the decision of the Fifth Radiocarbon Dating Conference, Cambridge, 1962, all dates published in this volume (as in previous volumes) are based on the Libby value, 5570 ± 30 yr, for the half life. This decision was reaffirmed at the 11th International Radiocarbon Conference in Seattle, Washington, 1982. Because of various uncertainties, when 14 C measurements are expressed as dates in years BP the accuracy of the dates is limited, and refinements that take some but not all uncertainties into account may be misleading. The mean of three recent determinations of the half life, 5730 ± 40 yr, (Nature, v 195, no. 4845, p 984, 1962), is regarded as the best value presently available. Published dates in years BP, can be converted to this basis by multiplying them by 1.03.

 $AD/BC\ Dates$. In accordance with the decision of the Ninth International Radiocarbon Conference, Los Angeles and San Diego, 1976, the designation of AD/BC, obtained by subtracting AD 1950 from conventional BP determinations is discontinued in Radiocarbon. Authors or submitters may include calendar estimates as a comment, and report these estimates as AD/BC, citing the specific calibration curve used to obtain the estimate.

Meaning of $\delta^{14}C$. In Volume 3, 1961, we endorsed the notation Δ (Lamont VIII, 1961) for geochemical measurements of ${}^{14}C$ activity, corrected for isotopic fractionation in samples and in the NBS oxalic-acid standard. The value of $\delta^{14}C$ that entered the calculation of Δ was defined by reference to Lamont VI, 1959, and was corrected for age. This fact has been lost sight of, by editors as well as by authors, and recent papers have used $\delta^{14}C$ as the observed deviation from the standard. At the New Zealand Radiocarbon Dating Conference it was recommended to use $\delta^{14}C$ only for age-corrected samples. Without an age correction, the value should then be reported as percent of modern relative to 0.95 NBS oxalic acid (Proceedings 8th Conference on Radiocarbon Dating, Wellington, New Zealand, 1972). The Ninth International Radiocarbon Conference, Los Angeles and San Diego, 1976, recommended that the reference standard, 0.95 times NBS oxalic acid activity, be normalized to $\delta^{13}C = -19\%e$.

In several fields, however, age corrections are not possible. $\delta^{14}C$ and Δ , uncorrected for age, have been used extensively in occanography, and are an integral part of models and theories. For the present, therefore, we continue the editorial policy of using Δ notations for samples not corrected for age.

^{*} Suggestions to Authors of the Reports of the United States Geological Survey, 6th ed, 1978, Supt of Documents, U S Govt Printing Office, Washington, DC 20402.

RADIOCARBON

Editor: Minze Stuiver
Managing Editor: Renee S Kra
Published by

THE AMERICAN JOURNAL OF SCIENCE

Editors: John Rodgers, John H Ostrom, Robert A Berner Managing Editor: Marie C Casey

Published three times a year, in Winter, Spring, and Summer, at Yale University, New Haven, Connecticut 06511.

Subscription rate \$75.00 (for institutions), \$50.00 (for individuals), available only in whole volumes. The price of the full volume 22, nos. 1-4, is \$60.00 for individuals and \$80.00 for institutions. The Proceedings of the Tenth International Radiocarbon Conference, vol 22, nos. 2 and 3, are available for \$60.00. The Proceedings of the Eleventh International Radiocarbon Conference, Vol 25, No. 2, 1983, is \$50.00.

All correspondence and manuscripts should be addressed to the Managing Editor, RADIOCARBON, Kline Geology Laboratory, Yale University, 210 Whitney Ave, PO Box 6666, New Haven, Connecticut 06511.

Reprints. The minimum reprint order for each article will be 50 copies without cover. No reprints will be furnished free of charge unless page charges are paid. The cost of additional copies will, of course, be greater if the article is accompanied by plates involving unusual expense. Copies will be furnished with a printed cover giving the title, author, volume, page, and year, when specially ordered.

Page charges. Each institution sponsoring research reported in a technical paper or a date list, will be asked to pay a charge of \$80.00 per printed page. Institutions or authors paying such charges will be entitled to 100 free reprints without covers. No charge will be made if the author indicates that his institution is unable to pay them, and payment of page charges on an article will not in any case be a condition for its acceptance.

Back issues and price lists may be obtained from the office of RADIOCARBON.

Missing issues will be replaced without charge only if claim is made within three months (six months for India and Australia) after the publication date. Claim for missing issues will not be honored if absence results from failure by the subscriber to notify the Journal of an address change.

Illustrations should include explanation of symbols used. Copy that cannot be reproduced cannot be accepted; it should be capable of reduction to not more than 10 by 17.5, all lettering being at least 1/6 inch high after reduction. When necessary, one large map or table can be accepted, if it will not exceed 17.5 inches in width after reduction. Line drawings should be in black India ink on white drawing board, tracing cloth, or coordinate paper printed in blue and should be accompanied by clear ozalids or reduced photographs for use by the reviewers. Photographs should be positive prints. Photostatic and typewritten material cannot be accepted as copy for illustrations. Plates (photographs) and figures (line drawings) should each be numbered consecutively through each article, using arabic numerals. If two photographs form one plate, they are figures A and B of that plate. All measurements should be given in SI (metric units).

Citations. A number of radiocarbon dates appear in publications without laboratory citation or reference to published date lists. We ask that laboratories remind submitters and users of radiocarbon dates to include proper citation (laboratory number and datelist citation) in all publications in which radiocarbon dates appear.

Radiocarbon Measurements: Comprehensive Index, 1950-1965. This index covers all published ¹⁴C measurements through Volume 7 of RADIOCARBON, and incorporates revisions made by all laboratories. It is available to all subscribers to RADIOCARBON at \$20.00 US per copy.

List of laboratories. The comprehensive list of laboratories at the end of each volume appears in the third number of each volume. Changes in names or addresses should be reported to the Managing Editor by May 1.

Annual Index. All dates appear in index form at the end of the third number of each volume. Authors of date lists are asked to supply indexed material of archaeologic samples only with their date lists.

CONTENTS

	Radiocarbon Dating in the Southern Levant James M Weinstein	297
	DATE LISTS	
HAM	H W Scharpenseel, Heinrich Schiffmann, and Peter Becker Hamburg University Radiocarbon Dates IV	367
IRPA	Michèle Dauchot-Dehon, Mark Van Strydonck, and Jos Heylen Institut Royal du Patrimoine Artistique Radiocarbon Dates X	384
Lu	Sören Håkansson University of Lund Radiocarbon Dates XVII	392
QC	Richard R Pardi, Lynn Tomecek, and Walter S Newman Queens College Radiocarbon Measurements IV	412
SFU	K A Hobson and D E Nelson Simon Fraser University Radiocarbon Dates III	431
VRI	Heinz Felber Vienna Radium Institute Radiocarbon Dates XIV	441
Z	Dušan Srdoč, Bogomil Obelic, Nada Horvatinčic, Ines Krajcar, and Adela Sliepčevic Rudjer Boskovic Institute Radiocarbon Measurements VIII	449
	List of Laboratories	461
	Index to Volume 26	473

Radiocarbon

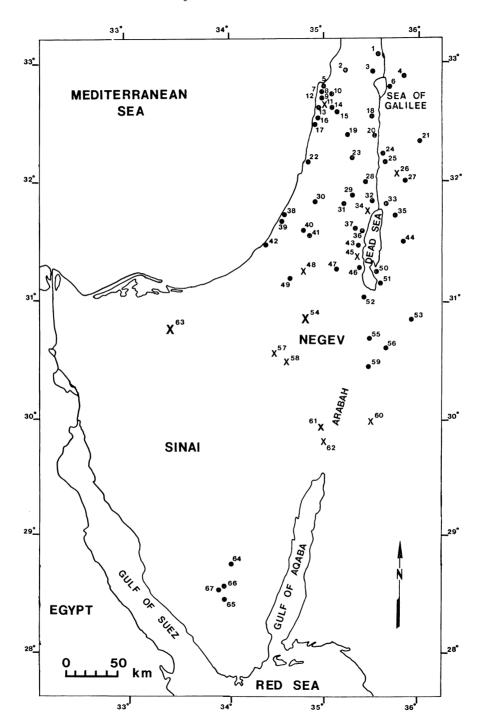
1984

RADIOCARBON DATING IN THE SOUTHERN LEVANT

JAMES M WEINSTEIN

Department of Classics, Cornell University, Ithaca, New York 14853

INTRODUCTION


Radiocarbon dating provides the principal chronometric data for the Middle and Upper Palaeolithic, Epipalaeolithic, and Chalcolithic periods in the southern Levant. It is a secondary source of dating evidence for the Early Bronze age, when archaeological correlations with Syria and especially Egypt become available. For the Middle and Late Bronze age, Iron age, Persian, Hellenistic, Roman, and Byzantine periods, ¹⁴C dating has only limited value because the technique is less precise than the normally available archaeologic and historic materials.

In recent years, there has been a proliferation of publications containing ¹⁴C date lists for the southern Levant. Almost invariably, these lists have focused on the Neolithic and earlier materials (eg, Henry & Servello, 1974; Bar-Yosef, 1981a, p 405; 1981b, p 566-567; Henry, 1983, p 104-105). Only one list (Henry & Servello, 1974) offers an evaluation of the individual dates. The Chalcolithic period is devoid of any published date lists, and the Early Bronze age has but a single comprehensive corpus and interpretive study (Callaway & Weinstein, 1977; see also Mellaart, 1979). For the period from ca 2200 BC to the present, there are no compendia of dates and no analytical studies beyond those for a few individual sites.

Because interest in the ¹⁴C data has been focused on the earliest periods, general surveys of the role of ¹⁴C in the archaeology and history of this region and systematic studies of the problems that Palestinian archaeologists encounter in utilizing this technique are lacking. As a basis for such future investigations, this paper will (1) present a corpus of ¹⁴C dates from the southern Levant, and (2) furnish a brief examination of the chronologic and archaeologic import of the data.

TABLE OF RADIOCARBON DATES

The accompanying table contains 474 dates from Israel, Jordan, the West Bank, Golan Heights, Gaza Strip, and Sinai. Three hundred assays (63.3% of the total) have appeared in the date lists of *Science*, *Radiocarbon* (through the final issue for 1984), and "Radiocarbon Measurements: Comprehensive Index, 1950-1965"; 150 (31.6%) derive from other sources, and 24 (5.1%) are unpublished. Absent from the table is a "modern" date furnished by a fake antiquity (Mendenhall, 1971, p 99; *cf* Naveh, 1982, p 53-54).

The dates are arranged by archaeologic period and, within each period, alphabetically by site. If a date could not be assigned to any period because of insufficient information or because the sample was misassociated, it has been relegated to a category entitled "Archaeological Period Unknown." For each entry, the corpus gives the provenience, material, 5568-year half-life BP and BC/AD determinations, the δ¹³C measurement, calibrated date, laboratory number, and references. All of the sites are located on the map in figure 1.

Fig 1. Sites in the southern Levant represented by 14C dates. A solid circle indicates an individual site. An "x" indicates an area with two or more sites.

45. Nahal Mishmar: 1. Evnan Caves 1, 2 2. Hayonim Cave and Terrace 46. Masada 3. Amud Cave 47. Arad 4. Rasm Harbush 48. Beersheba: 5. Geula Cave Bir es-Safadi 6. Ein Gev I Horvat Beter 7. Sea bed near Kibbutz ha-Hotrim 49. Shiamim 8. Sefunim Cave and Terrace 50. Bab edh-Dhra 9. Nahal Oren Terrace 51. Numeira 10. Rakefet Cave 52. Mazad Mazal 11. Carmel caves: 53. Wadi Hasa El-Wad Cave and Terrace Tabun Cave 54. Avdat/Agev area: Boker A 12. Sea of Athlit Boker BE 13. Newe Yam **Boker Tachtit** 14. Tell Qiri D_5 15. Ein el-Jarba D101B 16. Kebara Cave Ein Agev (D31) Caesarea Nahal Divshon 18. Munhata Rosh Ein Mor (D15) 19. Dothan 55. Jebel Khirbet en-Nahas 20. Tell Tsaf 56. Wadi Feinan-Wadi Dana area 21. Tell er-Rumeith 57. Kadesh Barnea: 22. Tel Michal Kadesh Barnea 3 23. Shechem Kadesh Barnea 8 24. Tell es-Sacidiyeh Kadesh Barnea (no number) 25. Deir cAlla 58. Har Harif: 26. Baqcah Valley: Abu Salem Tebel al-Oesir Rosh Horesha Khirbet Úmm ad-Dananir Har Harif G9 27. Tell Siran 59. Beidha 28. Netiv Hagdud 60. Wadi Judayid Basin: 29. Ai Wadi Judayid (J2) 30. Gezer Jebel Queisa (J24) 31. Gibeon 61. Uvda Valley: 32. Jericho Nahal Issaron 33. Teleilat el-Ghassul Site 6 34. Qumran: 62. Timna: Qumran (settlement) Sites 2, 30, 39, 200, 212, F2 Ain Feshka: Cave IQ Wadi Amram 35. Rujm Mekhayyat 63. Gebel Maghara: 36. Wadi Murabba cat Ain Abu Rugum I 37. El-Khiam Lagama IIID, VII, VIII 38. Nizzanim Mushabi I, V, XIV, XVI, XVII, 39. Ashkelon XVIII, 103 40. Tell Areini 64. Wadi Tbeik 41. Lachish 65. Monastery of St Catherine 42. Tell el-cAjjul 66. Abu Madi 43. Nahal Hever 67. Ujrat el-Mehed

44. Dibon

The site and context of a sample follow the most recent archaeologic attribution, which frequently is not the one cited in a date list. On the other hand, the identification of the sample material (Column 2) follows the published or unpublished sources precisely. If a published date contains no notation as to the nature of the sample, but the material could be determined with some certainty, the identification is written within parentheses. Quotation marks in the "Material" column call attention to redated samples. The "Refs and Remarks" column also indicates redated samples as well as the application of different pretreatments to any of these samples.

In the third column, an adjustment has been made in computing the BC date whenever a primary publication has used a year other than AD 1950 as the datum year. In such cases, the author has disregarded the published BC date and retained the BP figure alone for subsequent calculations. This procedure is predicated on an assumption, which admittedly may not be justified in every case, that the published BP figure comes from the ¹⁴C laboratory, while the BC date was computed by the excavator, who evidently used as the datum year either the year in which he made his calculations or the year in which the laboratory processed the sample. The following 19 entries have required adjustments:

I-616: AD 1961 used as datum year by Aharoni (1962, p 190).

I-285; I-353: AD 1961 used as datum year by Bar-Adon (1980, p 199).

I-1819: AD 1963 used as datum year by Bar-Adon (1980, p 199).

I-? (four dates): AD 1964 used as datum year by Aharoni (1967, p 238).

BONN-2356, -2357, -2359, -2360 to -2363: AD 1975 used as datum year by Conrad and Rothenberg (1980, p 179).

GX-1718: AD 1970 used as datum year by Seger (1972, p 31).

MP-?: AD 1957 used as datum year by Reed (1957, p 8, n 8) and Winnett and Reed (1964, p 49).

L-365: AD 1956 used as datum year by Free (1957, p 37).

RT-? (Crusader period date): AD 1973 used as datum year by Kedar and Kaufman (1975, p 37-38).

The fourth column present the "CRD-1 σ " corrections for the conventional ¹⁴C dates with BP values between 7230 and 940 years. The unpublished CRD-1 σ table employs the same data set and statistical methods as the CRD-2 σ table (Klein *et al*, 1982). For the few samples with BP determinations less than 940 years, Stuiver's (1982) high-precision calibration curve has been used.

The laboratory code and sample number appear in Column 5. When a sample number was not available, the laboratory code is followed by a question mark. The last column in the table supplies publication references, information on the provider(s) of unpublished data, miscellaneous archaeologic comments, identification of undersized samples, notes on which samples were re-runs, and notations on any publication errors. References are cited according to a modified social science system: the author's name(s) comes first, then the date of publication and page reference(s). ¹⁴C dates published in *Radiocarbon* are cited as "R," followed

by the year of publication, volume number, and page(s). The citation "RMCI" refers to "Radiocarbon Measurements: Comprehensive Index, 1950-1965."

The abbreviations listed in the *Radiocarbon* Style Guide (1984, v 26, p 157-158) are supplemented in the table as follows:

ab-above min-minimal br-brick n-note bs—below surface ph—phase cent.--century poss—possible, bly ch-chamber rm-room col-column, s sndg-sounding confl—conflagration st-stage dest-destruction str-stratum fl—floor tr-trench

THE RADIOCARBON DATA

Palaeolithic period

Radiocarbon dating has yielded mixed results in dating Palaeolithic remains in the southern Levant. The Lower Palaeolithic and much of the Middle Palaeolithic lie beyond the range of conventional ¹⁴C dating systems, while many Middle and Upper Palaeolithic dates are either aberrant or only minimal values. Fortunately, there are several excellent groups of Upper Palaeolithic assays from southern Israel and northern Sinai.

Uranium series dates obtained from travertines in Zuttiyeh cave on the northwest side of the Sea of Galilee suggest that the Early Levantine Mousterian industry of the Middle Palaeolithic period stretches back to ca 90,000 to 100,000 years BP (Schwarcz et al, 1979; Schwarcz, Goldberg, & Blackwell, 1980). The termination of the Middle Palaeolithic is dated by a combination of ¹⁴C dates from Boker Tachtit in the central Negev highlands and uranium series dates from travertine deposits in nearby Nahal Mor. These indicate that the Middle Palaeolithic ended ca 47,000 to 45,000 years BP (Marks, 1981a, table I).

There are 49 Middle Palaeolithic assays, associated either with caves in northern Israel (42 dates from Amud, Geula, Kebara, and Tabun caves) or open-air sites in the central Negev highlands (7 dates from Rosh Ein Mor and Boker Tachtit). Nearly all of the dates from Amud, Kebara, and Tabun caves are much too young, with those from the Amud and Kebara caves being extraordinarily low. These dates often show internal inconsistencies, eg, between LJ-2084 and -2090 from Tabun, or the inconsistent and stratigraphically inverted results from throughout the Kebara and Amud sequences. The small amount of carbon in the samples that were processed at the Hanover laboratory may have influenced the poor results obtained for the Middle and Upper Palaeolithic samples from Kebara cave (Schick & Stekelis, 1977, p 135*). Other anomalous dates may be due to an unfavorable environment for ¹⁴C samples in the deposits of these caves, eg, recent vegetal growth, groundwater as well as alternating layers of humus and calcium carbonate at Amud (cf Hamada, 1970), bat guano

in El-Wad and Kebara caves, and the roof collapse and subsequent ingress of water at Tabun cave. Three ¹⁴C assays from Tabun cave (GrN-7408 to -7410) provide an approximate date of ca 50,000 years BP for a late stage of the Middle Palaeolithic period. Finally, GrN-4121 (40,050 ± 1700 BC) from a Late Levantine Mousterian context at Geula cave looks somewhat too recent, based on the Boker Tachtit dates noted above.

In southern Israel, the 3 inconsistent dates from the Early Levantine Mousterian site of Rosh Ein Mor dates are only minimal values and, moreover, are much too recent based on the ²³⁰Th/²³⁴U dates from Nahal Aqev (Schwarcz *et al*, 1979; Marks, 1981a, p 288). On the other hand, 3 of the 4 Late Levantine Mousterian dates from Level 1 at Boker Tachtit and the uranium series dates from Nahal Mor are in good agreement (as noted above). Thus, the assays from Boker Tachtit and the 3 Tabun Cave dates are the only usable groups of Middle Palaeolithic dates in the southern Levant.

The Upper Palaeolithic period is represented by 29 dates. Although the sites of this period are now generally classified according to 1 of 2 industrial traditions, the Levantine Aurignacian or the Ahmarian (Belfer-Cohen & Bar-Yosef, 1981), the number of acceptable Upper Palaeolithic determinations is so small that it is wise to discuss them without regard for the industries they reflect.

The 7 ¹⁴C dates from northern Israel are all aberrant. It has already been noted that the Kebara cave assays are inconsistent and much too young. The Hayonim and Sefunim cave dates are also too recent for the Upper Palaeolithic period, but here, the anomalous results may be due to misassociation of the samples (Belfer-Cohen & Bar-Yosef, 1981, p 38).

The earliest Upper Palaeolithic assemblage in the south is represented by Level 4 at Boker Tachtit. It yielded a single date (SMU-579) that is too recent, probably because of contamination by humates (Marks, 1981b, p 345). The 3 dates from Area A at Boker include 2 with minimal values (SMU-187, -260), and 1 at $35{,}970 \pm 2810$ BC (SMU-578). Levels I-III from the stratigraphically younger Area BE at Boker yielded a series of 7 dates, which (except for the outlier SMU-565) are nicely bracketed between ca 25,000 and 23,000 вс. In northern Sinai, Lagama VIII and VII have 3 dates between ca 32,000 to 29,000 BC, while Lagama IIID has a single date at ca 28,000 BC. Contemporary with the Lagama VIII and VII dates is Pta-2819 from an unpublished site at Kadesh Barnea in northeastern Sinai. Four of the 5 dates from the late Upper Palaeolithic site of Ein Agev (D31) fit into the 16th millennium BC; only SMU-5 at $18,030 \pm 1200$ BC is evidently too early. Based on the overlapping of these 4 Ein Aqev determinations with Kebaran dates from Nahal Oren Terrace (Level IX) and Rakefet cave, the end of the Upper Palaeolithic period in the Negev may be contemporary with the early Epipalaeolithic period in the north (Marks, 1975, p 361).

Epipalaeolithic period

The principal industrial traditions of the Epipalaeolithic period are, in chronologic order, Kebaran, Geometric Kebaran A, and Natufian (Bar-

Yosef, 1975; 1981a; Henry, 1983). At Nahal Oren Terrace, these industries occur in stratigraphic succession (Noy, Legge, & Higgs, 1973).

The five Kebaran 14 C dates derive from three sites in northern Israel. These determinations range from $16,960 \pm 330$ BC (I-6865) to $13,750 \pm 415$ BC (GrN-5576). The small number and limited geographic distribution of the samples and the wide range of the dates give these assays an uncertain significance.

Geometric Kebaran A sites are more widely distributed than the Kebaran. However, the 13 assays for this industry all come from sites in the central and western Negev and northern Sinai. The 10 dates from Mushabi XIV (Level 2), XVI, XVII, and XVIII and Kadesh Barnea 8 fall within the 13th and 12th millennia BC. The 3 remaining samples, from Site D5, were small and the measurements inconsistent. Based on the other Geometric Kebaran A assays, SMU-7 is too early at 16,890 \pm 680 BC. Tx-1121 may or may not be aberrant at 13,870 \pm 1730 BC, but the standard deviation is too large to inspire confidence in the midpoint.

A recently identified Epipalaeolithic industry in the Negev and northern Sinai is the Mushabian. Although the Mushabian has a lithic inventory distinct from that of the Geometric Kebaran A, the 9 ¹⁴C dates belonging to the former complex show that it has significant temporal overlap with the latter. Indeed, the midpoints of 7 Geometric Kebaran A and 7 Mushabian dates fall within the 12th millennium, with the latter entity possibly continuing on into the early 11th millennium Bc. Another southern industry is the Negev Variant of the Kebaran, which on typological grounds appears to overlap both the Geometric Kebaran A and the succeeding Early Natufian. Unfortunately, there are no ¹⁴C dates for the Negev Variant of the Kebaran.

The best known Epipalaeolithic industry is the Natufian, which develops out of the Geometric Kebaran A and appears widely over the southern Levant, especially in the Mediterranean hill zone. Nine of the 15 Early Natufian dates cluster within the 10th millennium BC. GL-69, -72, and possibly -70, which derive from the same stage and phase at Jericho as P-376 and BM-1407, are too early. These three samples were measured in 1958, and their 9th and early 8th millennia results may be due to inadequate laboratory pretreatment (Waterbolk, 1971, fig 3, legend). The three Wadi Judayid (J2) dates with midpoints falling in the 11th millennium BC, may be correct, but their uncertainties (± 800, ± 1000, and ± 659 years) are uncomfortably large.

The 5 Late Natufian dates are scattered. The oldest determination, I-5496 from Rosh Horesha, is clearly an outlier at 11,140 \pm 200 Bc. The two remaining dates from this site fall in the early-mid 9th millennium, while the Nahal Oren and El-Wad B₁ dates are late 9th to early 8th millennium. Overall, the Natufian appears to date ca 10,000 to 8500/8000 Bc, but the end of this industry will remain uncertainly dated until more assays become available.

Two typologically late Epipalaeolithic industries are the Harifian in the Negev and northern Sinai, and the Khiamian, which has been identified at several widely scattered sites in Sinai and elsewhere in the southern Levant. The absolute chronology of the Harifian is largely dependent on three remarkably homogeneous ¹⁴C dates from a single site in the central Negev, Abu Salem. These assays (I-5498 to -5500) suggest that there may be a slight overlapping of the Harifian and the beginning of the Early Neolithic I period in the late 9th millennium BC, a conclusion not surprising considering the occurrence at Harifian sites of both Epipalaeolithic and Early Neolithic elements (Scott, 1977). As for the Khiamian, it has a single radiometric date (Pta-2699) from Abu Madi, an unpublished site in southern Sinai. The result is similar to the Harifian and earliest Early Neolithic I dates and corresponds nicely with the transitional late Epipalaeolithic-Early Neolithic character of the Khiamian (Bar-Yosef 1981a, p 402; 1981b, p 561-562).

Neolithic period

The Neolithic period is divided into four phases. Many archaeologists follow Kenyon (1979) in referring to these stages as Pre-Pottery Neolithic (PPN) A and B and Pottery Neolithic (PN) A and B. Moore (1982) has recently proposed Neolithic 1, 2, 3, and 4 for these divisions, while the author prefers Early Neolithic I and II and Late Neolithic I and II. Calibration of ¹⁴C dates first becomes possible with the Late Neolithic period.

All but 2 of the 22 EN I dates (23 if the "Proto-Neolithic" assay is included) come from Jericho. Most of these dates came out in five series: 1 from the Geochronological Laboratory, London (measured in 1956), 3 from the British Museum, and 1 from Pennsylvania. The GL series is too young, probably because of inadequate sample pretreatment, and BM-105, -110, and -250 may be too old (Burleigh, 1984, p 760, fig 352, legend). The remaining Jericho dates range from ca 7800 to 7200 BC. One of the 2 Netiv Hagdud dates (RT-502A) comes at the upper end of this range, while the second assay (RT-502B) has a late 9th millennium measurement.

Early Neolithic II is represented by no less than 56 dates, 3 of which (Lv-358, M-1792, and Pta-3486) are clearly too young, and 1 (Pta-2700) is too old. The 17 Beidha assays, which run from ca 7100 to 6600 BC, present some internal inconsistencies. For example, GrN-5062 and P-1382 from late Level II are considerably earlier than K-1085, which comes from the same charcoal sample. In fact, these two dates are contemporary with K-1086 and -1410, which were collected from the stratigraphically later Level VI. Also, the four dates obtained from the carbonized trunk of a pistacia tree in Level IV cover the entire chronologic range of the site (though one of these samples, K-1083, may have been mislabeled). The 21 Jericho dates (except for 3 of the GL entries) cover roughly a 600-year period, from ca 7200 to 6600 BC.

Although it was long thought that the Early Neolithic period ended with a general abandonment of the settlements in the southern Levant, perhaps as the result of climatic dessication (Blake, 1969), new ¹⁴C dates emanating from the southern Negev, the Arabah valley, and south Sinai suggest a somewhat different picture. Ten of the 11 dates from Mazad Mazal, Nahal Issaron, and Ujrat el-Mehed fall in the 2nd half of the 7th

millennium BC. If these determinations accurately reflect the age of these sites, then EN II had a life-span considerably longer than that of EN I, and the EN II period at Beidha and Jericho came to a close 400 to 500 years earlier than it did in some of the small desertic sites in the south.

There was evidently a gap in occupation at major Palestinian sites between the Early and Late Neolithic periods, but the extent of this discontinuity cannot be estimated with any confidence because of a paucity of LN I dates. The calibrated values of two isolated LN I dates (Hv-8509, Pta-2999) are in the 2nd and 3rd quarters of the 6th millennium BC. There is also a Late Neolithic date from Kadesh Barnea 3 (SMU-662), which, if it could be calibrated, would fall somewhere in the late 7th millennium BC. Such a figure seems much too early for a Late Neolithic site. Although it is not possible to correct the late EN II dates to get a true estimate of the time differential between EN II and LN I, one might hazard a guess that the break lasted for 500-700 years. Needless to say, further excavations and additional ¹⁴C dates may show this "gap" to be much shorter than it now appears or to be of unequal duration in different parts of the southern Levant.

The three LN II dates from Newe Yam and Ein el-Jarba, and the single Late Neolithic/Early Chalcolithic determination from Tell Tsaf, have a wide scatter. The amount of collagen in GX-786 from Ein el-Jarba was small, so the result for this sample was understandably anomalous. The 5 Teleilat el-Ghassul samples listed under "Late Neolithic/Early Chalcolithic" come from levels considered early Chalcolithic by the excavator. However, considering the close links between the pottery and flaked stone tools found in these levels and in Late Neolithic contexts elsewhere in the Levant (Hennessy, 1982), it would not be surprising to see these dates, which cover the period from ca 5600 to 4900 BC, eventually classified as LN II assays.

Chalcolithic period

A dearth of well-stratified and fully published sites, difficulties in correlating the archaeologic assemblages between different areas in the southern Levant, an absence of closely datable foreign correlations, and the lack of a distinct stratigraphic or typologic boundary between Late Neolithic and early Chalcolithic has made Chalcolithic chronology a particularly vexing subject. Of 18 Chalcolithic ¹⁴C dates, 3 (C-919, P-2572, and BM-1116) are clearly anomalous (the latter perhaps due to misassociation of the sample), and while many of the rest show no obvious deficiencies, cumulatively, they leave a disturbing gap between the end of the Chalcolithic period and beginning of the Early Bronze age.

There are 7 late Chalcolithic dates from the northern Negev. C-919 (a solid-carbon date) from Horvat Beter is much too old and the 3 Bir es-Safadi dates (M-864A to C) have uncomfortably large uncertainties, as does RT-554B from a small sample found at Shiqmim. The 2 remaining dates, W-245, from Horvat Beter, and RT-554A, from Shiqmim, have no apparent technical problems, but their calibrated results, like those from

Bir es-Safadi, leave a gap of several hundred years between the Chalcolithic and the beginning of the Early Bronze age.

Six late Chalcolithic dates also come from caves in the Judean desert. The 4 from Cave 1 at Nahal Mishmar are associated with that grotto's famous copper treasure. Except for BM-140, the assays cluster in the 2nd quarter of the 4th millennium BC, which is somewhat earlier than the date given the treasure on archaeologic grounds (Bar-Adon, 1980, p 199). I-1819, which comes from a piece of cloth found in a burial in nearby Cave 2, is slightly younger, but another short-lived sample, I-616 from the Cave of Horror at Nahal Hever, gave a result in the late 5th millennium.

RT-390A comes from a piece of wood found in a classic "Ghassulian" (ie, late Chalcolithic) level at Teleilat el-Ghassul. Since the sample was part of a larger piece of wood left in storage since the original 1928-1939 excavations at this site, too much significance should probably not be attached to the date (4445-4320 BC). SMU-804, a mid-5th millennium BC assay from the lower of two Chalcolithic layers at Jebel Queisa (J24), is reported to lie close to the mean of 21 dates from sites in Sinai associated with the Timnian industry of the late Chalcolithic period (Henry, 1982, p 443). RT-525 from late Chalcolithic Rasm Harbush in the Golan gave a slightly later date (4380-3880 BC).

Altogether, these dates are a mixed lot. They, together with the Late Neolithic/Early Chalcolithic dates, suggest that the Chalcolithic period is fairly long, beginning no later than perhaps the mid-5th millennium. However, many of the assays are simply too early for the late Chalcolithic era. That the period ends in about the 34th century BC can be deduced from the ¹⁴C dates available from the following Early Bronze age IA. Little will be gained by further debate on the present assays: what is really needed are several series of dates from well-stratified Chalcolithic sites.

Early Bronze age

The Early Bronze age has four major divisions, designated Early Bronze (EB) I (with Phases A, B, and C), II (A and B), III (A and B), and IV (A, B, and C). (In this paper, the designations EB IVA, B, and C and Middle Bronze I, II, and III follow Dever, 1973, fig 1 and p 60, n 56.) There are 96 Early Bronze age dates, the largest of any period in Palestinian archaeology. Most come from 1 of 6 sites: Ai, Arad, Tell Areini, Bab edh-Dhra, Jericho, or Numeira.

The EB IA and IB periods are roughly synchronous with the late Predynastic period in Egypt and, as such, can be dated ca 3400 to 3200/3100 BC. Four of the 5 EB IA dates from Tomb A 94 at Jericho overlap and support this chronologic scheme. GL-24, which was measured in 1953, is an outlier. The mini-series SI-3310A, -3310B, and -3311 from Bab edh-Dhra is incongruous. The first and second samples came from a transitional EB IA/B tomb and produced an acceptable date (SI-3310A) of 3545-3345 BC and a date that is ca 2000 years too early (SI-3310B). The third sample came from an EB IA tomb and gave a "modern" reading.

The EB IC period is contemporary with the very end of the Predynastic period in Egypt and the first several reigns of Dynasty I, while EB II is contemporaneous with the remainder of Dynasty I, II, and part if not all of Dynasty III. Based on this correlation, EB IC dates ca 3200/3150 to 3000 BC, and EB II ca 3000 to 2750/2700 BC.

The two groups of EB IC and EB II dates from Arad are problematic. The Isotopes date from Stratum I is anomalous, perhaps because of contamination by surface vegetation, while the 3 other carbonized wood samples yielded ¹⁴C ages that are virtually identical, despite the fact that they derive from 3 different strata (IV, III, and II). The problems are quite different with the Pennsylvania assays. Six of the 7 Pennsylvania dates come from short-lived samples. Two samples (P-2054 and -2055) were redated because their results were too early; the new determinations (P-2054A and -2109) were considerably lower. Another curious phenomenon is that the calibrated results for the 4 acceptable Stratum II dates (P-1742, -2054A, -2109, and -2110) cover a range of 530 years (3065 to 2535 Bc), despite the fact that the samples belong near the end of the stratum.

Tell Areini has yielded 8 ¹⁴C dates, including 7 from a British Museum series. Interestingly, the BP measurements for the 4 Stratum IV samples (BM-388, -389, 391, and W-916) average ca 200 years earlier than the 4 Arad Stratum II BP values. Since both groups derive from short-lived samples, and since Stratum IV at Tell Areini probably belongs early in EB II, while Stratum II apparently relates to the end of this period, the ¹⁴C dates suggest a fairly long EB II period in Palestine. An extended EB II period has also been postulated by Dever (1982) on the basis of the archaeologic evidence from Arad.

The 23 EB IC, EB II, and EB III dates from Ai are a curious lot. Initially, 14 samples, both short-lived and long-lived, were sent to the Texas and Gakushuin laboratories. One of the resulting dates (GaK-2380) was acceptable; the other 13 (Tx-1026 to -1035, GaK-2379, -2381, and -2382) were too early by anywhere from 300 to 700 years. Subsequently, 9 more samples, all but 2 utilizing additional quantities of the same sample material taken out of the original collection containers, were run at Pennsylvania and Texas. This time the dates (P-2298 to -2304, Tx-2371 to -2372) agreed consistently with what was generally expected on archaeologic and historic grounds (Callaway & Weinstein, 1977, p 5-10). Since the same erroneous results would have shown up in the second batch of dates if the sample material used for both dating runs had originally been exposed to on-site contamination or sampling error, an explanation for the initial group of deviant dates is presumably to be sought in the handling or processing of the samples.

The longest phase of the Early Bronze age is the EB III period, which, on the basis of Egyptian and Syrian connections, can be dated from ca 2750/2700 to perhaps the late 24th century Bc. Most of the assays relating to this period come from Bab edh-Dhra, Jericho, and Numeira.

The 2 Jericho series (BM-548 to -554, BM-1778 to -1781, -1783) corroborate the archaeologic evidence that EB III is the longest period of the

Early Bronze age. The first series ranges from 2925 to 2305 BC, while the second series extends from 2920 to 2310 BC. The one notable inconsistency is between BM-552 (2885-2635 BC) and BM-1780 (2430-2305 BC), which come from the same stage and phase, but this discrepancy may simply reflect the dating of wood of different ages.

The Bab edh-Dhra and Numeira dates present some interesting problems. For example, the entire series, SI-4134 to -4138, is anomalous. SI-4134 and -4135 from Bab edh-Dhra are more than 1000 years off. SI-4136 and -4138, which come from late EB III destruction debris at Numeira (Rast, 1981, p 37, 41), are several hundred years too early to pertain to the end of EB III, though they could certainly reflect the dating of early growth rings of older wood. As for SI-4137, the date, which is 500 to 600 years too old, comes from grapes which were collected in a water flotation device. Whether contaminants in the water could have affected the result so significantly must be left to others more qualified than the author to judge.

Six ¹⁴C dates (M-2036 to -2037, SI-2497, -2499, -2501, and -2874) come from short-lived and long-lived samples deriving from several of the large charnel houses at Bab edh-Dhra. These assays cover a wide range, but there is nothing intrinsically wrong with them. Charnel houses A 8 and A 51 were first used in EB II and continued on through EB III (R T Schaub, pers commun), while A 55 began in EB II and was not finally abandoned until early EB IV (Rast & Schaub, 1978, p 24). Since the point in time when each of the samples got into the charnel houses cannot be determined, the chronologic range of all of the material in each tomb must be considered. Thus, 2 of the A 55 dates, SI-2501, at 3365-2925 BC, and SI-2497, at 2305-1905 BC, are equally likely to be correct. This situation illustrates an important problem in Near Eastern ¹⁴C dating. Many contexts (especially constructional fills, pits, and multiple-burial tombs) contain jumbled materials of several different periods. In such situations it is difficult if not impossible to relate any organic substances not found in a datable container within the context to a specific archaeologic period. As a result, ¹⁴C dates from these contexts often have little or no chronologic value, even though such sources normally yield much of the organic material (especially of the short-lived variety) found on Near Eastern sites.

The EB IV period lasts from ca 2350/2300 to 2000/1900 BC. Olive pits from an EB IVA context at Bab edh-Dhra yielded an excellent date (P-2573: 2335-2135 BC), while SI-2869 from the same period at this site is ca 1600 years too early. The pit in which the latter sample was found was partially cut out of the marl-limestone bedrock, but whether water running into the pit or some other contaminant may have influenced the date is a moot question. As for the EB IVB-C assays, the 2 from unpublished sites in the northern Sinai (RT-447B and -447A) have uncertainties that are too large to give the dates real chronologic value, while the 2 assays from EB IVC contexts at Jericho are in good accord with an archaeologic dating of this period to about the 21st or 20th century BC.

Middle and Late Bronze age

There are relatively few Middle Bronze age (ca 2000/1900 to 1550)

BC) and Late Bronze age (ca 1550 to 1200 BC) ¹⁴C dates. As explained above, after ca 2000 BC, historic and archaeologic data generally provide more precise dating evidence for most cultural remains and stratigraphic phases then can be obtained through ¹⁴C dating.

The Middle Bronze (MB) I period (ca 1900 to 1750 BC) has no ¹⁴C dates. Seven of the 8 MB II ¹⁴C dates (ca 1750 to 1650 BC) come from tombs at Jericho. The samples were dated in the 1950's, and except for GL-6, the assays are quite satisfactory considering when they were produced. The eighth date, P-842 from Gibeon, is too young.

Late MB III (ca 1550 BC) contexts at Jericho, Lachish, and Shechem have each provided a single ¹⁴C date. The Jericho assay (BM-1790) is too recent. The Lachish (Hel-809) and Shechem (GX-1718) samples derive from destruction debris associated with the end of the Middle Bronze age. The dates, though acceptable from a ¹⁴C standpoint if the samples are from re-used wood or from the inner rings of older trees, are too early, at 1945-1675 BC and 2000-1700 BC, respectively, to have much archaeologic value. Unfortunately, although destruction debris in Palestinian Bronze and Iron age strata yields more wood and charcoal samples than any other contexts, the ¹⁴C measurements from these types of samples rarely produce results of any significance for dating the destruction.

Only 6 ¹⁴C dates can be assigned to the Late Bronze (LB) age alone: 2 from burial cave B3 at Jebel al-Qesir and 1 from the nearby settlement at Khirbet Umm ad-Dananir in Jordan's Baqeah valley, 2 from Lachish, and I from Deir Alla. The first 2 dates (P-3209 and -3210) are too early for the LB II (ca 1400 to 1200 BC) tomb in which they were discovered, but not nearly as early as the date of 2120-1865 BC (P-3219) from the settlement. The Lachish dates evidently come from cedar-wood architectural elements in a LB IIB (13th century) sanctuary, and though 1 of the 2 assays is more than 400 years too early, this is not unexpected in view of the nature of the sample. Cedrus libani, which was used extensively in the Levant during the Bronze age and Iron age for its excellent building properties, is extremely long-lived, with a potential life span of perhaps a millennium or more (Bryant Bannister, pers commun). Many supposedly anomalous dates derived from charcoal and wood of unidentified species are probably the result of the sample material being cedar or other long-lived wood. Unfortunately, few wood samples submitted for ¹⁴C dating have been analyzed botanically. Moreover, the author has been able to find only one instance (BM-1222 from the Monastery of St Catherine) where the specific location in a section of a beam or trunk sampled for ¹⁴C dating has been noted.

Iron age

Numerouts dates derive from the copper-mining installations at Timna on the western side of the southern Arabah. Nineteen are associated with Egyptian mining activity at Sites 2, 30, and 212 in the 13th and first half of the 12th centuries BC, *ie*, LB IIB and Iron age IA. BM-1368 from Site F2, entered in the corpus under "Chalcolithic Period (?)," also appears to belong to this time. The Hamburg series shows a peculiar

phenomenon. HAM-207 to -212 (except HAM-211) are consistent with archaeologic expectations, while HAM-213 to -215 are ca 1000-1200 years too early, and HAM-216 is perhaps several hundred years too old. Possibly some of the Site 212 samples were mislabeled, and they actually come from one of the EB II shaft-and-gallery systems at this site; if not, then a processing error must be considered as a possible explanation for these extraordinarily early dates. Incidentally, 3 ¹⁴C dates (W-4051, -4054, and -4456) come from slag heaps found on the eastern side of the Arabah. These have had to be listed under "Archaeological Period Unknown" because the slag cannot be dated independently.

The Iron age proper (ca 1200 to 586 BC) consists of the Iron IA (ca 1200 to 1150 BC), IB (ca 1150 to 1000 BC), Iron IIA (ca 1000 to 900 BC), IIB (900 to 800 BC), and IIC (800 to 586 BC) periods. In terms of Biblical history, Iron age I is the time of the purported Israelite conquest, the Philistines, and the Judges, while Iron IIA witnesses the United Monarchy of David and Solomon, and Iron IIB-C is the time of the Divided Monarchy, which terminates with the Babylonian destruction of Jerusalem in 586 BC.

The Iron age has yielded more than 3 dozen ¹⁴C dates, mostly from wood and charcoal samples, but few are of archaeologic or historic interest since they come from contexts already more closely dated than ¹⁴C analysis can achieve. For example, no less than 12 assays are associated with Stratum 5 at Tell es-Sacidiyeh. According to the ceramic evidence, this stratum belongs in the 8th century BC, but while 9 of the 12 assays overlap this century, the remaining 3 are younger. Similarly, only 1 of the 3 Lachish dates is consonant with the archaeologic evidence, and even this determination (Hel-1027) has too wide a range to be chronologically useful. The other 2 dates, which include 1 (Hel-1026) from the mid- to late 8th century BC level destroyed by the Assyrians in 701 BC, are too early for their contexts, but this is not unexpected, since both samples were wood (Hel-1025 being identified specifically as cedar).

The Tell er-Rumeith dates include several anomalous determinations, all on the young side. On ceramic grounds (Lapp, 1963; 1968) Stratum VIII at this site may be dated to the Solomonic age, so M-2031 is at least a century too young. The succeeding Stratum VII was destroyed at the beginning of the 9th century, so M-2029 and -2030 are too recent. The two Stratum VI assays are acceptable for a late 9th century archaeologic date, but M-2035 is much too young at 400 BC-AD 15 for Stratum V, the destruction of which has been related to the Assyrian invasion of 733 BC under Tiglath-pileser III.

Grain found inside a bronze bottle at Tell Siran in Amman furnished a ¹⁴C date (P-2207: 440-395 BC) that is more recent than the date of 600 BC attributed to the Ammonite inscription on the bottle itself. Since the vessel was found in a context that also contained post-Iron age remains, the grain was possibly put in the bottle later on during the Persian period. An alternative explanation is that moisture and corrosion products inside the bottle contaminated the sample material (Thompson, 1983; *cf* Helback, 1974).

Persian period to the Modern era

Less than 50 dates relate to the long time span from 586 BC to the present day, and few of these have chronologic value either for archaeologists or ¹⁴C specialists. For example, the Late Hellenistic/Early Roman and Roman period dates were produced mostly during the 1950's and early 1960's. The samples originated from important excavations on the west side of the Dead Sea, such as the settlement at Qumran, Qumran Cave I, the Cave of Horror at Nahal Hever, and the caves in the Wadi Murabba ^cat. These assays vary widely in their accuracy and reliability, and are generally considered curiosities today rather than sources of useful chronologic information.

Ten dates are associated with buildings of the Persian (525-332 BC) and Hellenistic (332-37 BC) periods on the acropolis at Tell es-Sacidiyeh. Four of the dates are from grain and charcoal samples found beneath the floor of a large Persian period administrative building. P-1445 is an outlier; the other 3 dates are acceptable. A single date from within the building itself (P-1446: 405-180 BC) has too wide a range to be of much use. A Hellenistic building, probably of the 2nd century BC, yielded 5 dates, of which 4 derive from wood beams. It may be entirely fortuitous that the lower limits for 3 of the 5 dates are 180, 170, and 165 BC. The early result for P-1098 (410-370 BC) probably signifies nothing more than the dating of inner rings from an older tree.

A unique find made in 1980 off the coast of northern Israel is the bronze battering ram from a ship. The archaeologic date of this piece of naval architecture is uncertain and could in theory be almost anywhere within the period of the 4th to 1st centuries BC. Wood evidently taken from the covering of the ram gave a corrected reading of 625-370 BC, which may lend support to an earlier archaeologic date.

Two samples (Hv-2675, Hv-?) of unspecified material from hearths found at the top of the Natufian Stratum B at Hayonim cave yielded considerably later dates (AD 610-780, AD 35-230). These determinations show that the hearths are not connected with Stratum B, but should be connected with Late Roman-Early Byzantine Stratum A, above (Belfer-Cohen & Bar-Yosef, 1981, p 19-20).

St Catherine's Monastery in south Sinai was founded ca AD 530 by the Byzantine ruler, Justinian I. Within the monastery is the Church of the Transfiguration, from which 13 dates, derived from various architectural elements, have been published. The majority belong with the original construction of the church; the few that do not are evidently either aberrant (M-1677, as shown by the result for BM-1222) or possibly the result of restoration work carried out in the Church in more recent times (M-1812 and -1814).

Finally, there are 2 dates from organic inclusions in the mortar of city walls. The first (RT-?) relates to a known-age structure, the impressive Crusader wall at Caesarea, which has been dated on architectural grounds to the 13th century, possibly the 4-year period immediately following the Seventh Crusade (AD 1248-1250), when Louis IX of France was actively engaged in fortifying the Christian cities of Syria-Palestine. The assay,

AD 890-1235, indicates the usefulness of ¹⁴C for dating walls bonded with mortar, but is not sufficiently accurate to place the Caesarea wall more precisely within the Crusader period. The foundations of the city wall at Ashkelon have been attributed to Late Roman or Byzantine times, the upper section to the Crusader period. A sample taken from 50 to 120cm above ground level yielded a date of AD 245-465 (GrN-7987). This suggests that at least part of the upper section of the wall may be earlier than previously supposed.

CONCLUSION

It seems appropriate to conclude this paper with a list of the principal problems and needs of ¹⁴C dating as it applies to the southern Levant. The items noted below are those that the author, as an archaeologist, feels are most critical at this point. It is not unlikely that ¹⁴C specialists will wish to delete some entries and substitute others.

- 1. More care is needed regarding the identification of natural contaminants on archaeologic sites and their effects on ¹⁴C samples. This is especially necessary if samples collected from Palaeolithic caves are ever to yield useful chronologic results.
- 2. Additional series of dates are needed for most of the earliest periods, notably the Middle and Upper Palaeolithic, Epipalaeolithic (especially the Kebaran industry), Late Neolithic, and Chalcolithic. Accelerator dating systems would be especially appropriate for the Palaeolithic samples.

 3. Archaeologists should publish more information in *Radiocarbon* on the stratigraphic position and archaeologic relationships of ¹⁴C samples. Close to 150 dates from the southern Levant have appeared only in *Radiocarbon*, and the absence of detailed archaeologic data for many of these samples seriously limits their use for chronologic purposes.
- 4. More concern must be given for eliminating the systematic misdating of entire series of samples. Whether these errors arise through on-site contamination, mishandling and improper storage, or laboratory equipment failure, the fact is that large numbers of dates (from the Amud, Kebara, and Tabun caves, Ai, Bab edh-Dhra and Numeira, Timna, and Tell er-Rumeith) have genuine problems. Difficulties with the Palaeolithic assays may well be attributable to special conditions existing within the caves, and archaeologic misattribution or mislabeling may be responsible for problems with a few other dates, but such explanations will not suffice for the majority of the anomalous dates.
- 5. Botanical analysis of all wood and charcoal samples is essential, as is identification by the archaeologist of the precise location of the sample in the section of a beam or tree trunk.
- 6. ¹⁴C samples should not be collected from Middle Bronze age or later contexts unless the archaeologic dating evidence is inadequate (eg, in the case of a furnace or slag heap unaccompanied by any pottery or inscriptions).
- 7. Archaeologists should limit their collection of samples to deposits possessing chronologically homogeneous remains; by-and-large, organic ma-

terials from pits, levelling and glacis fills, multi-period tombs, and even many destruction deposits should be ignored.

Radiocarbon dating has made major contributions to the archaeology of the southern Levant in dating isolated contexts, strata, whole sites, and even entire periods. With more help from scientists in the areas of natural and artificial contaminants and laboratory processing problems, and with more care on the part of archaeologists in collecting and submitting better samples and interpreting the resulting dates, this technique will become an even more valuable chronometric tool in the archaeology of the southern Levant.

ACKNOWLEDGMENTS

The author is indebted to many people for the writing of this paper. John Basil Hennessy, University of Sydney, Walter E Rast, Valpariso University, and R Thomas Schaub, Indiana University of Pennsylvania generously contributed unpublished 14C dates. Patrick McGovern, MASCA, University Museum, University of Pennsylvania, supplied advance information on the 14C dates from the Baqeah valley, Jordan, which have now been published in Radiocarbon, v 26, no. 2. Bryant Bannister, Laboratory for Tree-Ring Research, University of Arizona, Amnon Ben-Tor, Institute of Archaeology, The Hebrew University of Jerusalem, Barbara Lawn, Department of Physics, University of Pennsylvania, Andrew Moore, Department of Anthropology, Yale University, James A Sauer, University Museum, University of Pennsylvania, and Joe D Seger, Cobb Institute of Archaeology, Mississippi State University kindly answered my questions on various archaeologic and laboratory matters. Richard Burleigh, Research Laboratory, The British Museum, has to be thanked for furnishing a preprint of his paper on the Jericho 14C dates that has just appeared in the final volume of the Jericho publication series. Special thanks are due Jeffrey Klein of the Department of Physics, University of Pennsylvania for giving the author an advance copy of the CRD- 1σ calibration table. Finally, Renee Kra, Managing Editor of this journal, must be thanked for allowing the author to check the various laboratory date lists scheduled to appear in Radiocarbon, v 26, and for her assistance and patience in the production of this article.

Provenience	Material	14 _C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
		Middle Palaeolithic Period	po		
Amud Cave: Bed B4, basal	Organic material in black soil	10,600 ± 400 (8650)		TK-12	R (1969) 11: 511; Chinzei (1970): 46-48
Amud Cave: Bed B2, middle	Bone (carbonate)	10,500 ± 140 (8550)		TK-33a	R (1969) 11: 512; Chinzel (1970): 46-48; same sample as TK-33b & poss N-854 & -852 (see below)
Amud Cave: Bed B2, middle	" (20% H ₂ SO ₄ - leached portion)	4630 ± 470 (2680)	3900-2800 BC	TK-33b	R (1971) 13: 95; <u>cf</u> TK-33a
Amud Cave: Bed B2, middle	" (?) (collagen)	14,400 ± 350 (12,450)		N-854	Chinzei (1970): 46-47; R (1977) 19: 82; same sample as N-852; same sample no. as TK-33a
Amud Cave: Bed B2, middle	" (?) (carbonate)	13,100 ± 230 (11,150)		N-852	Chinzei (1970): 46-47; R (1977) 19: 82; cf N-854; same sample no. as TK-33a
Amud Cave: Bed Bl, upper	Bone (carbonate)	5710 ± 80 (3760)	4590-4430 BC	TK-86a	Chinzei (1970): 46-48; R (1971) 13: 101
Amud Cave: Bed B2, middle	Bone (carbonate)	7030 ± 120 (5080)	6125-5555 BC	TK-86a'	Chinzei (1970): 46-47; R (1971) 13: 101-102
Amud Cave: Bed Bl, lower	Bone (collagen)	9010 ± 160 (7060)		N-763	Chinzel (1970): 46-48; R (1977) 19: 81; same sample as N-786 and -785
Amud Cave: Bed Bl, lower	" (collagen)	10,700 ± 190 (8750)		N-786	Chinzel (1970): 46-48; R (1977) 19: 81; cf N-763, diff pretreatment
Amud Cave: Bed Bl, lower	" (carbonate)	11,700 ± 200 (9750)		N-785	Chinzei (1970): 46-48; R (1977) 19: 81-82; <u>cf</u> N-763

Amud Cave: Bed Bl, lower	Bone (collagen)	7340 ± 150 (5390)		N-765	Chinzel (1970): 46-48; R (1977) 19: 81
Amud Cave: Bed B2, upper	Bone (collagen)	11,500 ± 250 (9550)	1	N-764	Chinzei (1970): 46-47; R (1977) 19: 82
Amud Cave: Bed B2, upper	Bone (collagen)	14,700 ± 310 (12,750)	1	N-766	Chinzei (1970): 46-47; R (1977) 19: 82
Amud Cave: Bed B2, middle	Bone (collagen)	15,700 ± 370 (13,750)	1	N-767	Chinzel (1970): 46-47; R (1977) 19: 82
Amud Cave: Bed B4, basal	Bone (collagen)	18,300 ± 400 (16,350)	1	N-768	Chinzei (1970): 46-47; R (1977) 19: 82
Boker Tachtit: Level 1, firepit	Charcoal	>45,490 (>43,540)		SMU-184	Marks (1977a): table 1-1; (1977b): 64; SMU-184, -259, -580, & GX-3642 from same firepit
Boker Tachtit: Level 1, firepit	Charcoal	44,930 ± 2420 (42,980)	1	SMU-259	Marks (1977a): table 1-1; (1977b): 64
Boker Tachtit: Level 1, firepit	Charcoal	47,280 ± 9050 (45,330)		SMU-580	Marks (1981b): table 1; Hietala & Marks (1981): 306 (cited as SMU-5081)
Boker Tachtit: Level 1, firepit	Charcoal	>35,000 (>33,050)	1	GX-3642	Marks (1977a): table 1-1; (1977b): 64; small sample
Geula Cave: Layer Bl	Bone ash	42,000 ± 1700 (40,050)		GrN-4121	R (1967) 9: 119-120; Wreschner (1967): 84, 86; context of sample follows Wreschner
Kebara Cave: Upper Levalloiso- Mousterian level	Charcoal	>30,000 (>28,050)	1	L-336D	Broecker & Kulp (1957): 1330; small sample

Provenience	Material	14 C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Kebara Cave: 2.5m bs	Charred wood or bone ("bone" fraction)	41,000 ± 1000 (39,050)	1	GrN-2561	R (1963) 5: 174; same sample as GrN-2551
Kebara Cave: 2.5m bs	" ("rest" fraction)	35,300 ± 500 (33,350)	!	GrN-2551	R (1963) 5: 174; cf GrN-2561
Kebara Cave: 4.5m bs	Charred wood	9725 <mark>+ 1105</mark> (7775) - 925		Hv-2666	Schick & Stekelis (1977): table 7
Kebara Cave: 4.85m bs	Ashes	8975 ± 1170 (7025)		Hv-2667	Schick & Stekelis (1977): table 7
Kebara Cave: 5.2m bs	Ashes	17,320 + 985 (15,370)		Hv-2668	Schick & Stekelis (1977): table 7
Kebara Cave: 5.29m bs	Ashes	20,945 + 3430 (18,995)	!	Hv-2669	Schick & Stekelis (1977): table 7
Kebara Cave: 5.7m bs	Ashes	10,555 ± 1665 (8605)		Hv-2670	Schick & Stekelis (1977): table 7
Kebara Cave: 6.08m bs	Ashes	12,495 + 1365 (10,545)		Hv-2671	Schick & Stekelis (1977): table 7
Kebara Cave: 6.44m bs	Ashes	11,615 + 795 (9665)		Hv-2672	Schick & Stekelis (1977): table 7
Rosh Ein Mor (D15): Test pit, 20-90cm bs	Ostrich egg shell	>37,000 (>35,050)		Tx-1119	R (1972) 14: 484; Crew (1976): 77
Rosh Ein Mor (D15): 20-30cm bs	Ostrich egg shell	>44,000 (>42,050)	!	Pta-543	Crew (1976): 77
Rosh Ein Mor (D15): 45-55cm bs	Ostrich egg shell	>50,000 (>48,050)	1	Pta-546	Crew (1976): 77

R (1963) 5: 172	R (1963) 5: 172	R (1963) 5: 172-173	Jelinek (1982): 1375 n2	Jelinek (1982): 1375 n2	Jelinek (1982): 1375 n2	R (1972) 14: 371	R (1972) 14: 371	R (1972) 14: 371	R (1972) 14: 371	R (1972) 14: 371	R (1972) 14: 371	к (1972) 14: 372
GrN-2534	GrN-2729	GrN-2170	GrN-7408	GrN-7409	GrN-7410	LJ-2059	LJ-2061	LJ-2068	LJ-2070	LJ-2075	LJ-2078	LJ-2082
					!							
39,700 ± 800 (37,750)	40,900 ± 1000 (38,950)	35,400 ± 900 (33,450)	>47,900 (>45,950)	51,000 + 4800 (49,050)	45,800 + 2100 (43,850)	23,000 ± 2500 (21,050)	30,500 ± 2500 (28,550)	31,400 ± 3500 (29,450)	>30,000 (>28,050)	31,500 ± 3200 (29,550)	28,200 ± 3000 (26,250)	35,300 ± 2800 (33,350)
Charcoal (probably charred bone)	Charcoal (probably charred bone)	Same as two previous samples?	<i>د</i> .	۰۰	٠.	Very black soil	Very black soil	Very black soil	Very black soil	Very black soil	Very black soil	Very black soil
Layer	Layer	Layer	Unit I	Unit I	Unit I	Bed	Bed	Bed	Bed	Bed	Bed	Bed
Tabun Cave: Layer B	Tabun Cave: Layer C	Tabun Cave: Layer D	Tabun Cave: Unit	Tabun Cave: Unit	Tabun Cave: Unit	Tabun Cave: Bed 30	Tabun Cave: Bed 15	Tabun Cave: Bed 15, top	Tabun Cave: Bed 7, basal	Tabun Cave: Bed 7, basal	Tabun Cave: Bed 18, basal	Tabun Cave: Bed 18
Tabu B	Tabu C	Tabı D	Tabı	Tabı	Tabı	Tabı 30	Tabı 15	Tabi 15,	Tabi 7, 1	Tabi 7, 1	Tabi 18,	Tabı 18

Provenience	Material	14 _C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Tabun Cave: Bed 42	Very black soil	38,800 ± 2400 (36,850)		LJ-2084	R (1972) 14: 372
Tabun Cave: Bed 21	Very black soil	24,900 ± 3000 (22,950)	!	LJ-2087	R (1972) 14: 372
Tabun Cave: Bed 42	Very black soil	28,500 ± 2400 (26,550)		LJ-2090	R (1972) 14: 372
		Upper Palaeolithic Period	P.		
Boker A: Level l	Charcoal	>33,400 (>31,450)		SMU-187	Marks (1977a): table 1-1; (1977b): 75; min sample
Boker A: Level l	Charcoal	> 33,420 (> 31,470)		SMU-260	Marks (1977a): table 1-1; (1977b): 75; min sample
Boker A: Level l	(Charcoal)	37,920 ± 2810 (35,970)		SMU-578	Marks (1981b): table
Boker BE: Level I	(Charcoal)	25,610 ± 640 (23,660)		SMU-186	Marks (1977a): table 1-1; (1981b): table 1
Boker BE: Level I	(Charcoal)	25,250 ± 345 (23,300)	ł	SMU-566	Marks (1981b); table
Boker BE: Level II	(Charcoal)	24,630 ± 390 (22,680)	!	SMU-565	Marks (1981b): table
Boker BE: Level II	(Charcoal)	26,950 ± 520 (25,000)	1	SMU-227	Marks (1977a): table 1-1; (1981b): table 1
Boker BE: Level III	(Charcoal)	26,030 ± 600 (24,080)		SMU-228	Marks (1977a): table 1-1; (1981b): table 1
Boker BE: Level III	(Charcoal)	26,660 ± 500 (24,710)	1	SMU-229	Marks (1977a): table 1-1; (1981b): table 1
Boker BE: Level III	(Charcoal)	27,510 ± 1300 (25,560)		SMU-188	Marks (1977a): table 1-1; (1981b): table 1

Marks (1981b): table 1; "humates could not be extracted"	R (1973) 15: 295; Marks (1976a): table 9-1	R (1973) 15: 295; Marks (1976a): table 9-1 (17,520 ± 790 BP cited here)	R (1974) 16: 378-379; Marks (1976a): table 9-1	R (1974) 16: 379; Marks (1976a): table 9-1	R (1974) 16: 379 (18,080 BC cited here); Marks (1976a): table 9-1	<pre>bar-Yosef & Goren (1973): 51</pre>	R (1971) 13: 418-419	Schick & Stekelis (1977): table 7			
SMU-579	1-5494	1-5495	9-лжs	SMU-8	SMU-5	Hv-2676	RT-227	Hv-2662	Hv-2663	Hv-2664	Hv-2665
l		1	-		l		1				5790-5060 BC
35,055 ± 4100 (33,105)	16,900 ± 250 (14,950)	17,510 ± 290 (15,560)	17,890 ± 600 (15,940)	17,390 ± 560 (15,440)	19,980 ± 1200 (18,030)	16,240 ± 440 (14,290)	18,500 ± 300 (16,550) $\delta^{13}C = -29.0^{\circ}/_{\circ}$	9860 ± 530 (7910)	11,565 + 850 (9615)	7155 <mark>+ 860</mark> (5205)	6490 ± 325 (4540)
Charcoal	Charcoal	Charcoal	Charcoal	Charcoal	Charcoal	Charred bone	Ash	Charred wood	Charred wood	Charred wood	Charred wood
Boker Tachtit: Level 4	Ein Aqev (D31): Test pit, ca Levels 8-9, hearth	Ein Agev (D31): Test pit, ca Levels 9-10, hearth	Ein Aqev (D31): Levels 8 & 9	Ein Aqev (D31): Level 11	Ein Agev (D31): Level 12	Hayonim Cave: Level D, hearth	Kebara Cave: Layer 26	Kebara Cave: 4.85m bs	Kebara Cave: 4.7m bs	Kebara Cave: 4.75m bs	Kebara Cave: 4.62m bs

Provenience	Material	$^{14}_{\text{C}}$ date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Lagama IIID; Surface	Ostrich egg shell	30,050 ± 1240 (28,100)		SMU-118	R (1975) 17: 361-362; Gisis & Gilead (1977): 87; Bar-Yosef & Phillips (1977): tables 66-67
Lagama VIII: Surface	Ostrich egg shell	32,980 ± 2140 (31,030)	1	SMU-119	R (1975) 17: 362; Bar-Yosef & Phillips (1977): tables 66-67
Lagama VII: Vicinty of hearths	Charcoal impregnated with silt	34,170 ± 3670 (32,220)	1	SMU-172	R (1975) 17: 362; Bar-Yosef & Belfer (1977): 54; Bar-Yosef & Phillips (1977): 263, tables 66-67; small sample; same sample as SWU-185
Lagama VII: Vicinity of hearths		31,210 ± 2780 (29,260)		SMU-185	R (1975) 17: 362; Bar-Yosef & Belfer (1977): 54; Bar-Yosef & Phillips (1977): 263, tables 66-67; small sample; cf
Lagama VII: Same provenience as SMU-172 & -185 (?)	Charcoal	>19,900 (>17,950)		RT-413A	Bar-Yosef & Belfer (1977): 54; Bar-Yosef & Phillips (1977): table 67; small sample
Kadesh Barnea: Hearth below Upper Palaeolithic site	۵۰	"33,800-33,940 B.P."		Pta-2819	Belfer-Cohen & Goldberg (1982): 189
Sefunim Cave: Level 9	٠٠	12,250 ± 65 (10,300)	1	Hv-4074	Ronen (1973): 62
		Epipalaeolithic Period: Kebaran	Kebaran		
Ein Gev I: Near burial	Charred bone	15,700 ± 415 (13,750) δ^{13} C = -22.2°/°		GrN-5576	R (1972) 14: 49

Noy, Legge, & Higgs (1977); 77	Noy, Legge, & Higgs (1973): 77	Noy, Legge, & Higgs (1973): 77	Noy, Legge, & Higgs (1973): 96		R (1972) 14: 484	R (1966) 8: 398; Vita- Finzi (1966): 388; Copeland & Vita-Finzi (1978): 12		R (1973) 15: 296; Marks (1976b): 296, table 10-1; min sample	R (1974) 16: 379; Marks (1976b): 296, table 10-1; min sample	R (1972) 14: 484; Marks (1976b): 296, table 10-1; min sample	Haas (1977): table 66
UCLA-1776C	UCLA-1776B	UCLA-1776A	I-6865		Tx-1122	Q-729	m A	I-5497	SMU-7	Tx-1121	SMU-226
	1			Kebaran (?)	5080-4725 BC	2665-2295 BC	Geometric Kebara		l		
18,250 ± 320 (16,300)	16,880 ± 340 (14,930)	15,800 ± 300 (13,850)	18,910 ± 330 (16,960)	Epipalaeolithic Period: Kebaran (?)	5960 ± 100 (4010)	3950 ± 150 (2000)	Epipalaeolithic Period: Geometric Kebaran A	13,170 ± 230 (11,220)	18,840 ± 680 (16,890)	15,820 ± 1730 (13,870)	14,330 ± 120 (12,380)
Burned bone	Burned bone	Burned bone	Burned bone		Charcoal	Charcoal		Charcoal	Charcoal	Charcoal	Charcoal
Nahal Oren Terrace: Layer IX	Nahal Oren Terrace: Layer VIII	Nahal Oren Terrace: Layer VIII (from slightly ab UCLA- 1776B)	Rakefet Cave: Kebaran level		Har Harif G9: Hearth	Wadi Hasa: Terrace III, lm bs		D5: Rodent hole, Unit 8	D5: Rodent hole, Unit 8	D5: Firepits, Units 4 & 5	Mushabi XIV: Level 2

Proventence	Material	14 _C date BP (BC)	CRD-lo date	Lab no.	Refs and Remarks
Mushabi XIV: Level 2	Charcoal	13,750 ± 285 (11,800)		QC-201	Bar-Yosef & Phillips (1977): table 67
Mushabi XIV: Level 2	Charcoal	13,830 ± 490 (11,880)	1	RT-447D	Bar-Yosef & Phillips (1977): table 67
Mushabi XIV: Level 2	Charcoal	13,690 ± 150 (11,740)		MC-992	Bar-Yosef & Phillips (1977): table 67
Mushabi XIV: Level 2	Charcoal	14,500 ± 100 (12,550)	1	RT-473B	Bar-Yosef & Phillips (1977): table 67
Mushabi XVI	Charcoal	13,060 ± 220 (11,110)	1	RT-447C	Bar-Yosef & Phillips (1977): table 67
Mushabi XVII	Charcoal	$14,170 \pm 480 (12,220)$		SMU-661	Bar-Yosef (1981a): 405
Mushabi XVIII	Charcoal	13,930 ± 110 (11,980)		SMU-217	Haas (1977): table 66; Bar-Yosef & Goring-Morris (1977): 140
Kadesh Barnea 8: Level D/E	Charcoal	13,930 ± 120 (11,980)		Pta-2158	Bar-Yosef (1981a): 405
Kadesh Barnea 8: Level G	Charcoal	14,130 ± 160 (12,180)		Pta-2159	Bar-Yosef (1981a): 405
		Epipalaeolithic Period: Mushabian	Mushabian		
D101B: Level 8	Charcoal	13,530 ± 144 (11,580)	!	SMU-268	Marks (1977): 9; Kaufman (1983): 333
Mushabi I: Surface	Ostrich egg shell	13,310 ± 100 (11,460)		SMU-117	R (1975) 17: 362; Haas (1977): table 66; Phillips & Mintz (1977): 153
Mushabi V: Hearth	Charcoal	12,990 ± 110 (11,040)		SMU-171	R (1975) 17: 362; Phillips & Mintz (1977): 164; Haas (1977): table 66
Mushabi V	Charcoal	12,700 ± 90 (10,750)		Pta-2157	Bar-Yosef (1981a): 405

Mushabi XIV: Level 1	Charcoal	13,800 ± 150 (11,850)	1	RT-473A	Bar-Yosef & Phillips (1977): table 67; Bar- Yosef (1981a): 405
Mushabi XIV: Level 1	Charcoal	12,900 ± 235 (10,950)		QC-202	Bar-Yosef & Phillips (1977): table 67
Mushabi XIV: Level 1, hearth	Charcoal (Juniperus phoenicea)	13,260 ± 200 (11,310)	1	MC-993	Phillips & Mintz (1977): 170; Bar-Yosef & Phillips (1977): table 67
Mushabi XIV: Level 1, hearth	Charcoal (Juniperus phoenicea)	13,900 ± 400 (11,950)		RT-417	Phillips & Mintz (1977): 170; Bar-Yosef & Phillips (1977): table 67, pl 9, no. 4-6
Mushabi XIV: Level 1, hearth	Charcoal (Juniperus phoenicea)	13,800 ± 130 (11,850)		SMU-225	Haas (1977): table 66; Phillips & Mintz (1977): 170
		Epipalaeolithic Period: Early Natufian	Early Natufian		
E1-Wad Cave: Layer ${ m B}_2$	Bone	11,920 ± 660 (9970)	1	UCLA-?	Bar-Yosef (1981a): 405
El-Wad Terrace: Layer \mathbf{B}_2	Bone	11,475 ± 600 (9525)		UCLA-?	Bar-Yosef (1981a): 405
Eynan: Level III, soil of House 51	Charcoal	11,310 ± 880 (9360)	!	Ly-1662	R (1979) 21: 442
Eynan: Level III, soil of House 51	Charcoal	11,740 ± 570 (9790)	-	Ly-1661	R (1979) 21: 443
Eynan: Level IV sol b, soil of House 131	Charcoal	11,590 ± 540 (9640)		Ly-1660	R (1979) 21: 443
Hayonim Terrace: Layer D	Charcoa1	11,920 ± 90 (9970)	!	SMU-231	Henry & Leroi-Gourhan (1976): 394

Provenience	Material	14 C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Jericho: Site E I, II, V, St/ph I.11	Charcoal	9850 ± 240 (7900)	!	GI-69	Kenyon (1959): 8 & n4; Burleigh (1981): 502-503
<pre>Jericho: Site E I, II, V, St/ph I.ii</pre>	Charcoal	10,800 ± 180 (8850)		GL-70	Burleigh (1981): 503
Jericho: Site E I, II, V, St/ph I.ii	Charcoal	9800 ± 240 (7850)		GL-72	Kenyon (1959): 8 & n4; Burleigh (1981): 503
Jericho: Site E I, V, St/ph I.ii	Charcoal, ash	11,166 ± 107 (9216)	1	P-376	R (1963) 5: 84
<pre>Jericho: Site E I, II, V, St/ph I.ii</pre>	Charcoal	11,090 \pm 90 (9140) $613c = -25.2^{\circ}/_{\circ\circ}$!	BM-1407	Burleigh (1981): 502- 503; R (1982) 24: 166
Kebara Cave: Layer B	Bone	11,150 ± 400 (9200)	ļ	UCLA-?	Bar-Yosef (1981a): 405
Wadi Judayid (J2): Layer C	Charcoal	12,090 ± 800 (10,140)	-	SMU-805	Henry (1982): 437; Henry <u>et al</u> (1983): 12
Wadi Judayid (J2): Layer C	Charcoal	12,750 ± 1000 (10,800)		SMU-806	Henry (1982): 437; Henry et al (1983): 12
Wadi Judayid (J2): Layer C	Charcoal	12,784 ± 659 (10,834)	-	SMU-803	Henry (1982); 437; Henry et a_1 (1983): 12
		Epipalaeolithic Period: Late Natufian	ate Natufian		
El-Wad: Layer \mathtt{B}_1	Bone	9795 ± 600 (7845)		UCLA-?	Bar-Yosef (1981a): 405
Nahal Oren Terrace: Layer V	Animal bone (collagen)	10,046 ± 318 (8096)	!	BM-764	R (1977) 19: 152
Rosh Horesha: Midden: 25-40cm	Charcoal	13,090 ± 200 (11,140)		1-5496	R (1973) 15: 295; Marks & Larson (1977): 196
Rosh Horesha: Feature 13: 45cm	Charcoal	10,490 ± 430 (8540)		SMU-9	R (1974) 16: 379; Marks & Larson (1977): 196

R (1974) 16: 379; Marks & Larson (1977): 196		R (1973) 15: 296; Marks & Scott (1976): 47; Scott (1977): 281; 1-5498 to -5500 from same midden	R (1973) 15: 296; Marks & Scott (1976): 47; Scott (1977): 281	R (1973) 15: 296; Marks & Scott (1976): 47 (cited as I-5499); Scott (1977): 281		Bar-Yosef (1981b): 566		Ronen (1973): 62; Hv-2597 & -3368 from same hearth	Ronen (1973): 62		R (1963) 5: 107; Burleigh (1981): 502- 503
SMU-10		1-5498	1-5499	1-5500		Pta-2699	ly Neolithic	Hv-2597	Hv-3368	thic"	BM-106
	1: Harifian			1	1: Khiamian		1: Natufian/Ear			1: "Proto-Neoli	
10,880 ± 280 (8930)	Epipalaeolithic Period: Harifian	9970 ± 150 (8020)	10,230 ± 150 (8280)	10,230 ± 150 (8280)	Epipalaeolithic Period: Khiamian	10,110 ± 100 (8160)	Epipalaeolithic Period: Natufian/Early Neolithic	7730 ± 115 (5780)	9395 ± 130 (7445)	Early Neolithic Period: "Proto-Neolithic"	10,300 ± 200 (8350)
Charcoal		Charcoal	Charcoal	Charcoal		Charcoal		Ash	Ash		Charcoal
Rosh Horesha: Features 15 & 16: 35-45cm		Abu Salem: Midden: 15-25cm	Abu Salem: Midden: 25-30cm	Abu Salem: Midden: 45-55cm		Abu Madi		Sefunim Terrace: Layer V, hearth	Sefunim Terrace: Layer V, hearth		Jericho: Site D I, St/ph VI A.x-xi

Provenience	Material	14 _C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
		Early Neolithic I Period	77		
Jericho: Site F I, St/ph IV.111b	Charcoal	10,250 ± 200 (8300)		BM-105	R (1963) 5: 107; Burleigh (1981): 502, 504
<pre>Jericho: Site D II, St/ph IX.xxii- xxiii</pre>	Charcoal	10,180 ± 200 (8230)		BM-110	R (1963) 5: 107; Burleigh (1981): 502- 503
Jericho: Site D I, St/ph IV A.iva	Charcoal	10,300 ± 500 (8350)		BM-250	R (1969) 11: 290; Burleigh (1981): 502- 503
Jericho: Site D II, St/ph VI.via	Charcoal	9390 ± 150 (7440)		BM-251	R (1969) 11: 290; Burleigh (1981): 502- 503
Jericho: Site D I, St/ph VIII A.xvia	Charcoal	9320 ± 150 (7370)	1	BM-252	R (1969) 11: 290; Burleigh (1981): 502- 503
Jericho: Site F I, St/ph VIII A.xvib	Charcoal	$9230 \pm 80 (7280)$ $\delta^{13}C = -25.4^{\circ}/_{\circ \circ}$		ВМ-1321	Burleigh (1981): 502, 504; R (1982) 24: 165
Jericho: Site F I, St/ph IV A.111b	Charcoal	$9380 \pm 85 (7430)$ $\delta^{13}C = -24.0^{\circ}/_{\circ \circ}$	1	BM-1322	Burleigh (1981): 502, 504; R (1982) 24: 166
Jericho: Site D I, St/ph VI A.x-xi	Charcoal	$613C = -25.1^{\circ}$	1	BM-1323	Burleigh (1981): 502- 503; R (1982) 24: 166
<pre>Jericho: Site E I, II, V, St/ph VI. xxvii</pre>	Charcoal	9430 ± 85 (7480) 8 ¹³ C = -24.9°/°°		BM-1324	Burleigh (1981): 502- 503; R (1982) 24: 166
Jericho: Site F I, St/ph VIII A.xvib	Charcoal	9230 ± 220 (7280) $\delta^{13}C = -24.6^{\circ}/_{\circ \circ}$!	BM-1326	Burleigh (1981): 502, 504; R (1982) 24: 166
Jericho: Site F I, St/ph IV A.111b	Charcoal	$9560 \pm 65 (7610)$ $8^{13}C = -25.4^{\circ}$		BM-1327	Burleigh (1981): 502, 504; R (1982) 24: 166

R (1982) 24: 280; Burleigh (1984): 762-763	R (1982) 24: 280; Burleigh (1984): 762-763	RMCI (1967): 31; Burleigh (1981): 502, 504; cf GL-40, -43, -46	RMCI (1967): 31; Burleigh (1981): 502, 504; cf GL-39, diff pretreatment	RMCI (1967): 31; Burleigh (1981): 502, 504; cf CL-39, diff pretreatment	RMCI (1967): 31; Burleigh (1981): 502, 504; cf GL-39	R (1963) 5: 84; Burleigh (1981): 503	R (1963) 5: 84; Burleigh (1981): 503- 504	R (1963) 5: 84; Burleigh (1981): 503	Bar-Yosef, Gopher, & Goring-Morris (1980): 201; Bar-Yosef (1981b):
BM-1787	BM-1789	GL-39	GL-40	GL-43	GL-46	P-377	P-378	P-379	RT-502A
!		!							-
$9280 \pm 100 (7330)$ $\delta^{13}C = -26.0^{\circ}/_{\circ}$	$9200 \pm 70 \ (7250)$ $\delta^{13}C = -27.1^{\circ}/_{\circ}$	8770 ± 150 (6820)	8690 ± 150 (6740)	8895 ± 150 (6945)	7300 ± 200 (5350)	9582 ± 89 (7632)	9775 ± 110 (7825)	9655 ± 84 (7705)	9790 ± 380 (7840)
Charcoal	Charcoal	Charcoal	=	=	Humic extract	Charcoal, ash, and/or gravel	Charcoal	Charcoal	Charcoal
Jericho: Site F, St/ph VIII A.xv	Jericho: Site F, St/ph IX.xx-xxia	Jericho: Site F I, St/ph VIII B.xviia	Jericho: Site F I, St/ph VIII B.xviia	Jericho: Site F I, St/ph VIII B.xviia	Jericho: Site F I, St/ph VIII B.xviia	Jericho: Site E I, II, V, St/ph IV. vili	Jericho: Site F I, St/ph IV A.111b	Jericho: Site D I, St/ph VI A.x-xi	Netiv Hagdud: 80cm bs

Provenience	Material	14°C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Netiv Hagdud: Pipe-line tr near edge of site	Charcoal (tamarisk)	10,180 ± 300 (8230)	1	RT-502C	Bar-Yosef, Gopher, & Goring-Morris (1980): 201; Bar-Yosef (1981b): 566
		Early Neolithic II Period	וק		
Beidha: Level VI, debris	Charcoal (Quercus sp)	8940 ± 160 (6990)		K-1086	R (1968) 10: 323
Beidha: Level VI	Carbonized nuts (Pistacia atlantica)	8710 ± 130 (6760)		K-1082	R (1968) 10: 324; same sample as P-1379 & GrN-5063
Beidha: Level VI	z	8546 ± 100 (6596)	1	P-1379	R (1969) 11: 152; cf K-1082
Beidha: Level VI	=	$8640 \pm 50 (6690)$ $\delta^{13}C = -23.5^{\circ}/_{\circ}$		GrN-5063	R (1972) 14: 50 (cited as 860 ± 50 BP); cf K-1082
Beidha: Level IV, posthole	Carbonized tree trunk (<u>Pistacia</u> sp)	8810 ± 50 (6860) 613c = -22.5°/	!	GrN-5136	R (1972) 14: 50; same sample as BM-111, P-1380, & poss K-1083
Beidha: Level IV, posthole	=	8790 ± 200 (6840)	1	BM-111	R (1968) 10: 4-5; cf GrN-5136
Beidha: Level IV, posthole	=	9128 ± 103 (7178)		P-1380	R (1969) 11: 152; cf GrN-5136
Beidha: Level V (?), posthole (see "refs and remarks" column)	(4)	8640 ± 160 (6690)		K-1083	R (1968) 10: 324; should be same sample as GrN-5136, but provenience said to be Level V
Beidha: Level IV, roof debris	Charcoal (Juniperus sp)	8730 ± 160 (6780)		K-1084	R (1968) 10: 324

GrN-5062 R (1972) 14: 50; same sample as K-1085 & P-1382	K-1085 R (1968) 10: 324; cf GrN-5062	P-1382 R (1969) 11: 152;	P-1378 R (1969) 11: 152 (8175 BP cited here; correct date confirmed by B Lawn, pers commun)	P-1381 R (1969) 11: 152	K-1410 Bar-Yosef (1981b): 566	K-1411 Bar-Yosef (1981b): 566	K-1412 Bar-Yosef (1981b): 566	Lv-358 R (1970) 12: 158	BM-115 R (1963) 5: 107; Burleigh (1981): 502, 504	BM-253 R (1969) 11: 291; Burleigh (1981): 502, 504	BM-1320 Burleigh (1981): 502, 504; R (1982) 24: 165	BM-1769 R (1982) 24: 279;
GrN	K-1	P-1	P-1	P-1	K-1	K-1	K-1		BM-	ВМ-	BM	BM-
	}		1	i ! !	1	1	;	1540-1010 BC				1
9030 ± 50 (7080) &13c = -20.7°/	8550 ± 160 (6600)	8892 ± 115 (6942)	8715 ± 100 (6765)	8765 ± 102 (6815)	8850 ± 150 (6900)	8770 ± 150 (6820)	$8720 \pm 150 (6770)$	2990 ± 250 (1040)	9170 ± 200 (7220)	8710 ± 150 (6760)	$8540 \pm 65 (6590)$ $6^{13}C = -20.4^{\circ}/_{\circ}$	8700 ± 110 (6750)
Charcoal (Juniperus $\frac{cf}{phoenicia}$	=	Ξ	Charred wood	Charcoal	Charcoal	Charcoal	Charcoal	Bones	Charcoal	Charcoal	Charcoal	Charcoal
Beidha: Late Level II, pit	Beidha: Late Level II, pit	Beidha: Late Level II, pit	Beidha: Level VI, posthole	Beidha: Level VI, fill	Beidha: Level VI	Beidha: Level VI	Beidha: Level VI	El-Khiam: Level Ib, Area IIb	Jericho: Site E I, II, V, St/ph XII. xlviia	Jericho: Site E I, II, V, St/ph XIII. 1	Jericho: Site M I, St/ph XI.lv	Jericho: Site M,

Proventence	Material	14 C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Jericho: Site M, St/ph XI.lxa	Charcoal	$8680 \pm 70 (6730)$ $8^{13}C = -25.8^{\circ}/_{\circ}$		BM-1770	R (1982) 24: 279; Burleigh (1984): 762-763
Jericho: Site M, St/ph XIII.lxxa	Charcoal	$8660 \pm 260 (6710)$ $813C = -23.6^{\circ}/_{\circ \circ}$	1	BM-1771	R (1982) 24: 279; Burleigh (1984): 762-763
Jericho: Site M, St/ph XIII.lxxiv- XIV.lxxv	Charcoal	8810 ± 100 (6860) $\delta^{13}_{C} = -25.2^{\circ}/_{\circ\circ}$!	ВМ-1772	R (1982) 24: 279; Burleigh (1984): 762-763
Jericho: Site M, St/ph XIV.lxxvi	Charcoal	$8730 \pm 80 (6780)$ $813C = -26.4^{\circ}/_{\circ\circ}$	1	BM-1773	R (1982) 24: 279; Burleigh (1984): 762-763
<pre>Jericho: Site D I, St/ph XIV.xxxvii</pre>	Charcoal	$8660 \pm 130 (6710)$ $\delta^{13}C = -25.5^{\circ}/_{\circ \circ}$	1	BM-1793	R (1982) 24: 280; Burleigh (1984): 762-763
<pre>Jericho: Site E I, II, V, St/ph XIII. 11v</pre>	Charcoal	8200 ± 200 (6250)		GL-28	Zeuner (1956): 197; Burleigh (1981): 502, 504
<pre>Jericho: Site E I, II, V, St/ph XIII. 11</pre>	Charcoal	8390 ± 200 (6440)	1	GL-36	RMCI (1967): 31; Burleigh (1981): 502, 504
Jericho: Site F I, St/ph XVII.xxx	Charcoal (tamarisk)	7800 ± 160 (5850)	1	GL-38	Zeuner (1956) 197; RMCI (1967) 31; Burleigh (1981): 502, 504; same sample as GL-41, -42, Gro-942, GrN-942, Gro-963, & GrN-963
Jericho: Site F I, St/ph XVII.xxx	=	8670 ± 150 (6720)	1	GL-41	RMCI (1967): 31; Burleigh (1981): 502, 504; cf GL-38, diff pretreatment
Jericho: Site F I, St/ph XVII.xxx	Ξ	8700 ± 200 (6750)		GL-42	RMCI (1967): 31; Burleigh (1981): 502, 504; cf GL-38, diff

Jericho: Site St/ph XVII.xxx	Jericho: Site F I, St/ph XVII.xxx	E .	8900 ± 70 (6950)		Gro-942	de Vries & Waterbolk (1958): 1555; Burleigh (1981): 503; cf GL-38, -41, -42
Jericho: Site St/ph XVII.xxx	Jericho: Site F I, St/ph XVII.xxx	=	9140 ± 70 (7190)	1	GrN-942	RMCI (1967): 35; Burleigh (1981): 503- 504; corrected date for Gro-942
Jericho: Site St/ph XVII.xxx	Jericho: Site F I, St/ph XVII.xxx	E	8785 ± 100 (6835)	1	Gro-963	de Vries & Waterbolk (1958): 1555; Burleigh (1981): 503-504; cf GL-38, -41, -42
Jericho: Site St/ph XVII.xxx	Jericho: Site F I, St/ph XVII.xxx	=	9025 ± 100 (7075)	1	GrN-963	RMCI (1967): 35; Burleigh (1981): 503- 504; corrected date for Gro-963
Jericho: Si St/ph XV A. xxxviiia	Jericho: Site D I, St/ph XV A. xxxviiia	Charcoal, ash	8610 ± 75 (6660)		P-380	R (1963) 5: 84; Burleigh (1981): 503- 504
Jericho: Site E II, V, St/ph X. xliii	Jericho: Site E I, II, V, St/ph X. xliii	Charcoal, ash	8658 ± 101 (6708)	1	P-381	R (1963) 5: 84; Burleigh (1981): 503-504
Jericho: II, V, S xlviia	Jericho: Site E I, II, V, St/ph XII. xlviia	Charcoal, ash	8956 ± 103 (7006)		P-382	R (1963) 5: 84; Burleigh (1981): 503-504
Mazad Mazal	ızal	Charcoal	8480 ± 70 (6530)	!	B-2737	Bar-Yosef (1981b): 566
Mazad Mazal	zal	Charcoal	8070 ± 75 (6120)	1	KN-2443	Bar-Yosef (1981b): 566
Mazal Mazal	zal	Charcoal	8240 ± 95 (6290)	1	Hv-9106	Bar-Yosef (1981b): 566
Mazad Mazal	zal	Charcoal	8350 ± 75 (6400)	!	KN-2444	Bar-Yosef (1981b): 566
Mazad Mazal	zal	Charcoal	8330 ± 75 (6380)	!	Hv-9107	Bar-Yosef (1981b): 566

Provenience	Material	$^{14}_{\rm C}$ date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Mazad Mazal	Charcoal	8440 ± 80 (6490)	!	Hv-9108	Bar-Yosef (1981b): 566
Munhata: Level IVA, fireplace 644	Soil	7370 ± 400 (5420)		M-1792	R (1970) 12: 178
Munhata: Level IVB or V	Soil	9160 ± 500 (7210)	1	M-1793	R (1970) 12: 179
Nahal Divshon: Level 5/6, firepit	Charcoal	8170 ± 180 (6220)		Tx-1123	R (1972) 14; 484; Servello (1976): 250- 251 (cited as Tx-1125); Tx-1123, I-5501, & SMU-3 from same firepit
Nahal Divshon: Level 6, firepit	Charcoal	8620 ± 140 (6670)	!	1-5501	R (1973) 15: 296; Servello (1976): 350-351
Nahal Divshon: Level 6, firepit	Charcoal	8900 ± 180 (6950)	!	SMU-3	R (1974) 16: 379; Servello (1976): 350-351
Nahal Issaron: Layer C	Charcoal	8430 ± 80 (6480)	-	Pta-3000	Goring-Morris & Gopher (1983): 159-160, n12
Nahal Issaron: Layer C	Charcoal	8050 ± 80 (6100)		Pta-3376	Goring-Morris & Gopher (1983): 159-160, n12
Nahal Issaron: Layer C	Charcoal	8180 ± 80 (6230)	:	Pta-3377	Goring-Morris & Gopher (1983): 159-160, n12
Nahal Issaron: Layer C	Charcoal	6130 ± 70 (4180)	5235-4955 BC	Pta-3486	Goring-Morris & Gopher (1983): 159-160, n12
Ujrat el-Mehed (Banana I): Loc 2	Charcoal	8220 ± 80 (6270)	<u> </u>	Pta-2703	Bar-Yosef (1981b): 566
Wadi Tbeik: Loc 13, middle levels	Charcoal	10,350 ± 100 (8400)		Pta-2700	<pre>Bar-Yosef (1981b): 566; Tchernov & Bar-Yosef (1982): 19</pre>

		Late Neolithic I Period			
Nizzanim	Bones	6740 ± 90 (4790)	5790-5385 BC	Hv-8509	Yeivin & Olami (1979): 131
Nahal Issaron: Layer B	Charcoal	6460 ± 80 (4510)	5520-5235 BC	Pta-2999	Goring-Morris & Gopher (1983): 159-160, n12
		Late Neolithic II Period			
Newe Yam: Kiln	Charcoal	6310 ± 395 (4360)	5675-4880 BC	Hv-4256	Prausnitz & Wreschner (1971): 121, n*; Wreschner (1977): 271*
Ein el-Jarba: Phase IV	Animal bones (collagen)	4920 ± 240 (2970)	3895-3505 BC	GX-786	Kaplan (1969): 25, 27; Levy (1981): table 4:3; small collagen fraction
Ein el-Jarba: Phase IV, Pit 19	Charcoal	5690 ± 140 (3740)	4730-4415 BC	GX-787	Kaplan (1969): 25, 27; Levy (1981): table 4:3
		Late Neolithic Period			
Kadesh Barnea 3	٥٠	7530 ± 100 (5580)	-	SMU-662	Goring-Morris & Gopher (1983): 160
Uvda Valley: Site C, temple courtyard, Basin 615	Charcoal	6560 ± 90 (4610)	5610-5285 BC	RT-?	Yogev (1983): 120
Uvda Valley: Site C, temple courtyard, Basin 615	Charcoal	6400 ± 200 (4450)	5515-5180 BC	RT-?	Yogev (1983): 120
		Late Neolithic/Early Chalcolithic Period	colithic Period		
Teleilat el- Ghassul: Area A III, 201.9 Pit A	Wood	6550 ± 160 (4600)	5620-5265 BC	SUA-732	Unpub; pers commun, J B Hennessy

Provenience	Material	14 _C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Teleilat el- Ghassul: Area A III, 201.12A	Wood	6370 ± 105 (4420)	5415-5200 BC	SUA-734	Unpub; pers commun, J B Hennessy
Teleilat el- Ghssul: Area A II, p.107.3 & 4	Wood	6430 ± 180 (4480)	5540-5195 BC	SUA-736	Unpub; pers commun, J B Hennessy
Teleilat el- Ghassul: Area E X, p.2.3a	Wood	6300 ± 110 (4350)	5350-5085 BC	SUA-738/1	Unpub: pers commun, J B Hennessy
Teleilat el- Ghassul: Area E X, p.3.38.3c	Wood	6070 ± 130 (4120)	5235-4880 BC	SUA-739	Unpub; pers commun, J B Hennessy
Tell Tsaf: Lower of 2 pre- Ghassulian levels	Burned wood (Euphrates poplar)	6980 ± 180 (5030)	6125-5485 BC	RT-?	Gophna (1979): 56; Gophna & Kislev (1979): 112
		Chalcolithic Period			
Bir es-Safadi: Lower ph, Loc 309, fl	Burned wood (terebinth?)	5420 ± 350 (3470)	4570-3850 BC	M-864A	R (1961) 3: 122; Perrot (1968): col 439
Bir es-Safadi: Middle ph, Loc 318, fireplace	Burned wood (terebinth ?)	5270 ± 300 (3320)	4435-3770 BC	M-864B	R (1961) 3: 122; Perrot (1968): col 439
Bir es-Safadi: Upper ph, Loc 325, silo	Burned wood (terebinth ?)	5120 ± 350 (3170)	4405-3535 BC	M-864C	R (1961) 3: 122; Perrot (1968): col 439
Horvat Beter: Str III	Charcoal	7420 ± 520 (5470)	!	C-919	Libby (1954): 734; (1955): 84; solid- carbon date
Horvat Beter: Str III, Pit 50	Charcoal	5280 ± 150 (3330)	4385-3880 BC	W-245	Rubin & Suess (1956): 448; Dothan (1956)

Jebel Queisa (J24): Layer B, hearth	Charcoal	5720 ± 149 (3770)	4740-4425 BC	SMU-804	Henry (1982): 439; Henry et al (1983): 15
Nahal Hever: Cave of Horror, grave	Charred mat	5460 ± 125 (3510)	4430-4115 BC	1-616	Aharoni (1962): 189-190; Levy (1981): table 4:3
Nahal Mishmar: Cave l, treasure hoard	Reed mat (inner part)	5390 ± 150 (3440)	4425-3920 BC	BM-140	R (1968) 10: 4; Bar-Adon (1980): 199, 216, n2; cf W-1342, I-285
Nahal Mishmar: Cave l, treasure hoard	" (outer edge)	4880 ± 250 (2930)	3885-3490 BC	W-1341	R (1965) 7: 396-397; Bar-Adon (1980): 199, 216, n2; cf BM-140
Nahal Mishmar: Cave 1, treasure hoard	" (outer edge)	4780 ± 100 (2830)	3675-3485 BC	1-285	Bar-Adon (1980): 199, 216, n2; <u>cf</u> BM-140
Nahal Mishmar: Cave 1	Wood	4760 ± 120 (2810)	3670-3475 BC	1-353	Bar-Adon (1980): 86-87: no. 115, 199
Nahal Mishmar: Cave 2, burial	Cloth	4725 ± 230 (2775)	3690-3350 BC	1-1819	Bar-Adon (1980) 6: 199
Rasm Harbush: House	Charred wood	5270 ± 140 (3320)	4380-3880 BC	RT-525	Epstein, (1979): 226; (1981): 116; Levy (1981): table 4:3
Shiqmim: Bldg 1, Fl 1	Charcoal	5250 ± 140 (3300)	4355-3870 BC	RT-554A	Levy (1981): 150, table 4:3
Shiqmim: Bldg 1, Fl 2	Charcoal	5050 ± 490 (3100)	4425-3355 BC	RT-554B	Levy (1981): 150, table 4:3; small sample
Teleilat el- Ghassul: Level III	Charred wood	5500 ± 110 (3550)	4445-4320 BC	RT-390A	Lee (1973): 329-330

Proventence	Material	14 C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Tell Qiri: Loc 834, Level 61.40	Charcoal	3740 ± 230 (1790)	2425-1885 BC	P-2572	R (1978) 20: 226; archaeol date from A Ben-Tor, pers commun; small sample
Timna: Site 39, furnace	Charcoal	1945 ± 309 (AD 5) &13C = -25.0°/.o	390 BC-AD 410	ВМ-1116	R (1979) 21: 349; poss misassoc of sample
		Chalcolithic Period (?)			
Timna: Site F2, Sq 3, Str 3	Charcoal	$3030 \pm 50 (1080)$ $\delta^{13}C = -23.5^{\circ}/_{\circ \circ}$	1400-1235 BC	BM-1368	R (1982) 24: 165; site poss LB IIB-Iron IA
		Early Bronze Age IA			
Bab edh-Dhra: Tomb A 78, SE ch	Powdery wood, ash	"Modern"		SI-3311	<pre>Unpub; pers commun, W E Rast & R T Schaub; "small sample, diluted"</pre>
Jericho: Tomb A 94	Charcoal	5210 ± 110 (3260)	4135-3870 BC	GL-24	Zeuner (1956): 196; Kenyon (1961): 25; same sample as BM-1329
Jericho: Tomb A 94	=	$4500 \pm 60 (2550)$ $\delta 13C = -24.0^{\circ}/_{\circ}$	3370-3050 BC	BM-1329	Burleigh (1981): 502, 504; R (1982) 24: 166; cf GL-24
Jericho: Tomb A 94	Charcoal	$4570 \pm 50 (2620)$ $\delta^{13}C = -23.7^{\circ}/\circ$	3385-3165 BC	BM-1328	Burleigh (1981): 502, 504; R (1982) 24: 166
Jericho: Tomb A 94	Charcoal	4380 ± 50 (2430) δ^{13} C = -26.1°/°.	3175-2920 BC	BM-1774	R (1982) 24: 279; Burleigh (1984): 762-763
Jericho: Tomb A 94	Charcoal	4480 ± 50 (2530) $\delta^{13}_{C} = -26.1^{\circ}/_{\circ\circ}$	3370-3035 BC	BM-1775	R (1982) 24: 279; Burleigh (1984): 762-763
		Transitional Early Bronze Age IA/B	e Age IA/B		
Bab edh-Dhra: Tomb A 100, Ch E	Powdery wood	4630 ± 90 (2680)	3545-3345 BC	SI-3310A	Unpub; pers commun, W E Rast & R T Schaub

Unpub; pers commun, W E Rast & R T Schaub		Dever et al (1974): 18		Unpub; pers commun, W E Rast & R T Schaub		R (1972) 14: 483; Callaway (1972): 115	R (1972) 14: 483 Callaway (1972): 115	R (1977) 19: 210; same sample as Tx-2372, -1032, GaK-2379, & probably -2381	R (1972) 14: 483; Callaway (1972): 115; <u>cf</u> P-2302	Callaway & Weinstein (1977): 8, table 2;	R (1973) 15: 66; Callaway (1972): 115; cf P-2302
SI-3310B		GX-1873		SI-2871		Tx-1027	Tx-1034	P-2302	Tx-1032	Tx-2372	GaK-2379
5480-5220 BC		3945-3640 BC		3890-3760 BC		3875-3645 BC	3955-3795 BC	3150-2895 BC	3880-3650 BC	3170-2885 BC	3890-3660 BC
6415 ± 110 (4465)	Early Bronze Age IB	4995 ± 180 (3045)	Early Bronze Age IB (?)	5000 ± 65 (3050)	Early Bronze Age IC	4920 ± 90 (2970)	5120 ± 70 (3170)	4320 ± 70 (2370)	4940 ± 90 (2990)	4330 ± 80 (2380)	4980 ± 120 (3030)
Powdery wood		Charcoal		Charcoal, soil		Charred wood	Charred seeds	Charred wood (Quercus calliprinos)	:	:	=
Bab edh-Dhra: Tomb A 100, Ch E		Gezer: Cave I.3A		Bab edh-Dhra: Field F.3, Loc 9, pit		Ai: Ph III, Bldg C, wall timber, dest debris	Ai: Ph III, Hearth area	Ai: Ph III, Bldg C, roof debris	Ai: Ph III, Bldg C, roof debris	Ai: Ph III, Bldg C, roof debris	Ai: Ph III, Bldg C, roof debris

Provenience	Material	14°C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Ai: Ph III, Bldg C, roof debris	e	5000 ± 120 (3050)	3900-3665 BC	GaK-2381	R (1973) 15: 66; Callaway (1972): 116, nt, 200; cf P-2302
Ai: Ph III, Tower C, dest debris	Charred wood	4550 ± 60 (2600)	3380-3160 BC	P-2303	R (1977) 19: 210; Callaway & Weinstein (1977): 9, table 2
Ai: Ph III, Tower C, dest debris	Charred wood	4360 ± 60 (2410)	3170-2910 BC	P-2304	R (1977) 19: 210; Callaway & Weinstein (1977): 9, table 2
Ai: Ph III, house, dest debris	Charred lentils	4250 ± 60 (2300)	3015-2865 BC	P-2300	R (1977) 19: 209; Callaway & Weinstein (1977): 8-9, table 2; same sample as Tx-2371 & -1035
Ai: Ph III, house, dest debris	=	4310 ± 130 (2360)	3175-2795 BC	Tx-2371	Callaway & Weinstein (1977): 8-9, table 2;
Ai: Ph III, house, dest debris		4810 ± 90 (2860)	3690-3495 BC	Tx-1035	R (1972) 14: 483; Callaway (1972): 116; cf P-2300
Arad: Str IV	Carbonized wood	4600 ± 220 (2650)	3655-3035 BC	I-?	Aharoni (1964): 159; (1967): 238
Tell Areini: Area N, below city wall	Charcoal	4470 ± 140 (2520)	3380-2930 BC	BM-392	R (1971) 13: 183
Tell Areini: Area N, below city wall	Charred grain	4450 ± 140 (2500)	3375-2915 BC	BM-393	R (1971) 13: 183
		Early Bronze Age II			
Ai: Ph IV, Bldg B, roof debris (EB IIA)	Charred wood	4800 ± 90 (2850)	3685-3490 BC	Tx-1028	R (1972) 14: 483; Callaway (1972): 158

Ai: Ph IV, Bldg B, roof debris (EB IIA)	Charred wood	4840 ± 130 (2890)	3810-3490 BC	GaK-2382	R (1973) 15: 66; Callaway (1972): 158-1!
Ai: Ph V, Bldg B courtyard (EB IIB), dest debris	Charred wood	4740 ± 90 (2790)	3665-3370 BC	Tx-1026	R (1972) 14: 483; Callaway (1972): 200
Ai: Ph V or VI, near Tower A foundation trench, dest debris	Charcoal	4570 ± 120 (2620)	3390-3175 BC	Tx-1029	R (1972) 14: 483; Callaway (1972): 200
Ai: Ph V, house, in store-jar (EB IIB), dest debris	Charred lentils	4200 ± 70 (2250)	2925-2780 BC	P-2299	R (1977) 19: 209; Callaway & Weinstein (1977): 9, table 2; same sample as Tx-1030
Ai: Ph V, house, in store-jar (EB IIB), dest debris	Ε	4700 ± 50 (2750)	3650-3370 BC	Tx-1030	R (1972) 14: 483; Callaway (1972): 200; cf P-2299
Ai: Ph V, house (EB IIB), dest debris	Charred lentils	4270 ± 70 (2320) &13C _W = +1.82°/	3030-2875 BC	P-2301	R (1977) 19: 209; Callaway & Weinstein (1977): 9, table 2
Ai: Ph V, house (EB IIB), dest debris	Charred seeds	4730 ± 90 (2780)	3665-3370 BC	Tx-1031	R (1972) 14: 483; Callaway (1972): 200
Ai: Ph V, house (EB IIB), dest debris	Charcoal	4160 ± 120 (2210)	2920-2640 BC	GaK-2380	R (1973) 15: 66
Arad: Str III	Carbonized wood	4585 ± 220 (2635)	3650-3030 BC	I-?	Aharoni (1964): 159; (1967): 238
Arad: Str III, Loc 4610	Charred wood (Pistacia atlantica	4210 ± 60 (2260)	2935-2785 BC	P-2415	R (1977) 19: 211; Callaway & Weinstein (1977): 9, table 2

Provenience	Material	14 _C date BP (BC)	CRD-lo date	Lab no.	Refs and Remarks
Arad: Str II, Rm 2326, fl	Charred barley	4050 ± 50 (2100)	2675-2535 BC	P-1742	R (1977) 19: 210; Callaway & Weinstein (1977): 9-10, table 2; Amiran et al (1978): 116
Arad: Str II, Loc 4058-4071	Charred barley	$613C_{W} = +0.88^{\circ}/\circ \circ$	3375-3135 BC	P-2054	R (1977) 19: 211; Callaway & Weinstein (1977): 9, table 2; same sample as P-2054A
Arad: Str II, Loc 4058-4071	=	$4230 \pm 60 (2280)$ $\delta^{13}G_W = +4.07^{\circ}/_{\circ \circ}$	2970-2795 BC	P-2054A	R (1977) 19: 211; Callaway & Weinstein (1977): 9-10, table 2; cf P-2054
Arad: Str II, Loc 4155-4158	Charred wheat	4910 ± 60 (2960) $\delta^{13}G_W = +3.54^{\circ}/_{\circ \circ}$	3860-3650 BC	P-2055	R (1977) 19: 210; Callaway & Weinstein (1977): 9, table 2; same sample as P-2109
Arad: Str II, Loc 4155-4158	=	$4070 \pm 50 (2120)$ $\delta^{13}C_{W} = +2.23^{\circ}/_{\circ \circ}$	2805-2545 BC	P-2109	R (1977) 19: 211; Callaway & Weinstein (1977): 9-10, table 2; Cf P-2055; no NaOH pretreatment
Arad: Str II, Loc 4151	Charred barley	4310 ± 60 (2360) 8 ¹³ C _w = +3.15°/	3065-2890 BC	P-2110	R (1977) 19: 211; Callaway & Weinstein (1977): 9-10, table 2
Arad: Str II	Carbonized wood	4585 ± 220 (2635)	3650-3030 BC	i-1	Aharoni (1964): 159; (1967): 238
Arad: Str II, Loc 1240	Charcoal	4335 ± 65 (2385)	3160-2900 BC	GrN-4704	R (1967) 9: 139
Arad: Str I	Carbonized wood	2431 ± 200 (481)	805-380 BC	i-1	Aharoni (1964): 159; (1967): 238

R (1961) 3: 97; standard deviation reported with >10	к (1971) 13: 182	R (1971) 13: 182	R (1971) 13: 183	R (1971) 13: 182	R (1971) 13: 182		Conrad & Rothenberg (1980): 179	Conrad & Rothenberg (1980): 179		Unpub; pers commun, W E Rast & R T Schaub; "small sample, diluted and counted at reduced pressure"
W-916	BM-388	BM-389	вм-391	BM-387	ВМ-390		BONN-2362	BONN-2363		SI-2502
3375-2880 BC	3355-2870 BC	3365-2895 BC	3370-2905 BC	3385-2965 BC	3035-2635 BC		2430-2305 BC	2670-2505 BC	(3)	5690-5305 BC
4410 ± 250 (2460)	4340 ± 130 (2390)	4400 ± 130 (2450)	4430 ± 140 (2480)	4500 ± 130 (2550)	4200 ± 130 (2250)	Early Bronze Age II (?)	3890 ± 70 (1940)	4000 ± 90 (2050)	Early Bronze Age IA/III (?)	6615 ± 145 (4665)
Carbonized wheat	Carbonized wheat	Carbonized wheat	Carbonized olive stones	Carbonized wheat	Charcoal	щ	Charcoal	Charcoal	Ħ	Charcoal, charred wood fragments, bits of burned bone
Tell Areini: Area D, Str IV, Loc 4001	Tell Areini: Area D, Str IV, Loc 4702, confl layer	Tell Areini: Area D, Str IV, Loc 4702, confl layer	Tell Areini: Area D, Str IV, Loc 4533, in jar	Tell Areini: Area D, Str II, Loc 2062, confl layer	Tell Areini: Area D, Str II3, Loc 2301, confl layer		Timna: Site 212, Mine S28	Timna: Site 212, Mine S28		Bab edh-Dhra: Field F3, Loc 13, occ debris

no. Refs and Remarks	<pre>SI-2877 Unpub; pers commun, W E Rast & R T Schaub; "small sample, diluted and counted at reduced pressure"</pre>		SI-2868 Rast & Schaub (1980): 46 (cited as SI-2686), table 3; corrected archaeol data from W E Rast & R T Schaub, pers commun		036 R (1970) 12: 179; Callaway & Weinstein (1977): 10, table 2	037 R (1970) 12: 179; Callaway & Weinstein (1977): 10, table 2	<pre>SI-2503 Rast & Schaub (1980): 46, table 3; corrected archeol date from W E Rast & R T Schaub, pers commun</pre>	SI-2876 Unpub; pers commun, W E Rast & R I Schaub		298 R (1977) 19: 209; Callaway & Weinstein
Lab no.	SI-				C M-2036	C M-2037				C P-2298
CRD-10 date	1		3005-2765 BC		3035-2535 BC	3365-2790 BC	3040-2785 BC	3945-3775 BC		2905-2760 BC
14c date BP (BC)	7235 ± 215 (5285)	Early Bronze Age IB-III	4205 ± 85 (2255)	Early Bronze Age II-III	4160 ± 180 (2210)	4350 ± 180 (2400)	4245 ± 80 (2295)	5080 ± 90 (3130)	Early Bronze Age III	4170 ± 70 (2220)
Material	Wood fragments in soil & ash		Wooden beam		Burned cloth	Burned cloth, wood	Powdery wood, ash	Wood fragments		Charred wood
Provenience	Bab edh-Dhra: Field F3, Loc 13, occ debris		Bab edh-Dhra: Field XIII, Loc 9, dest debris		Bab edh-Dhra: Charnel house A 8, entryway	Bab edh-Dhra: Charnel house A 51, fl	Bab edh-Dhra: Field XII.2, Loc 9	Bab edh-Dhra: Field XII.2, Loc 13		Ai: Ph VIII, house, dest debris

R (1972) 14: 483; Callaway (1972): 305- 306; cf P-2298	Unpub; pers commun, W E Rast & R I Schaub	Unpub; pers commun, W E Rast & R I Schaub	Unpub; pers commun, W E Rast & R I Schaub	Unpub; pers commun, W E Rast & R T Schaub	Unpub; pers commun, W E Rast & R T Schaub	R (1977) 19: 152; Burleigh (1981): 502, 504	R (1977) 19: 152; Burleigh (1981): 502, 504	R (1977) 19: 152; Burleigh (1981): 502, 504	R (1977) 19: 152; Burleigh (1981): 502, 504	R (1977) 19: 152; Burleigh (1981): 502, 504
Tx-1033	SI-2870	SI-2872	SI-2875	SI-4134	SI-4135	BM-548	BM-549	BM-550	BM-551	BM-552
3360-2910 BC	3165-2880 BC	2405-2165 BC	2140-1880 BC	3935-3770 BC	3900-3770 BC	2910-2765 BC	2925-2780 BC	2890-2640 BC	2870-2545 BC	2885-2635 BC
4400 ± 80 (2450)	4320 ± 85 (2370)	3805 ± 60 (1855)	3595 ± 70 (1645)	5070 ± 85 (3120)	5030 ± 75 (3080)	4175 ± 48 (2225)	4204 ± 49 (2254)	4126 ± 50 (2176)	4080 ± 42 (2130)	4115 ± 39 (2165)
=	Charcoal, soil	Charcoal)	Charcoal	Charcoal	Charcoal (dicot, sp unid.)	Charcoal	Charcoal	Charcoal	Charcoal	Charcoal
Ai: Ph VIII, house, dest debris (EB IIIB)	Bab edh-Dhra: Field X.3, Loc 29 (late EB III)	Bab edh-Dhra: Field X.3, Loc 49, br fall (late EB III)	Bab edh-Dhra: Field X.3, Loc 60 (late EB III)	Bab edh-Dhra: Field XIV.4, Loc 9, occ surface	Bab edh-Dhra: Field XII.5, Loc 24, beam on fl	Jericho: Tr III, St/ph XIV.xliva	Jericho: Tr III, St/ph XV.11-111	<pre>Jericho: Tr III, St/ph XVI.lxi-lxi1</pre>	Jericho: Tr III, St/ph XVI.lxv-lxv1	Jericho: Tr III, St/ph XVII.lxviiia

Provenience	Material	¹⁴ C date BP (BC)	CRD-lo date	Lab no.	Refs and Remarks
<pre>Jericho: Tr III, St/ph XVIII.1xxii</pre>	Charcoa1	3922 ± 78 (1972)	2640-2305 BC	BM-553	R (1977) 19: 152; Burleigh (1981): 502, 504
Jericho: Tr III, St/ph XIX.lxxvi	Charcoal	4170 ± 42 (2220)	2905-2760 BC	BM-554	R (1977) 19: 153; Burleigh (1981): 502, 504
<pre>Jericho: Tr III, St/ph XVI.lxii- lxiii</pre>	Charcoal	4080 ± 70 (2130) &13c = -23.6°/	2870-2545 BC	BM-1778	R (1982) 24: 279; Burleigh (1984): 762-763
<pre>Jericho: Tr III, St/ph XVI.lxii- lxiii</pre>	Charcoal	4160 ± 80 (2210) 613c = -25.5°/	2920-2640 BC	ВМ-1779	R (1982) 24: 279; Burleigh (1984): 762-763
Jericho: Tr III, St/ph XVII.lxviiia	Charcoal	$3890 \pm 60 (1940)$ $\delta^{13}C = -25.7^{\circ}/_{\circ\circ}$	2430-2305 BC	BM-1780	R (1982) 24: 279; Burleigh (1984): 762-763
Jericho: Tr III, St/ph XIX.lxxvi- lxxviia	Charcoal	$4120 \pm 40 (2170)$ $\delta^{13}C = -25.6^{\circ}/_{\circ \circ}$	2885-2635 BC	BM-1781	R (1982) 24: 280; Burleigh (1984): 762-763
Jericho: Tr II, St/ph XVIII.lviii	Charcoal	3940 ± 80 (1990) $\delta^{13}C = -26.1^{\circ}/_{\circ}$	2645-2310 BC	BM-1783	R (1982) 24: 280; Burleigh (1984): 762-763
Numeira: SE 3/4, Loc 7, base of town wall, dest debris	Charcoal	4085 ± 55 (2135)	2875-2620 BC	SI-4136	Rast & Schaub (1980): 47, table 3
Numeira: SE 3/1, Loc 9, W of Wall 4, collected in water flotation system	Grapes (Vitis <u>vinifera</u>)	4310 ± 70 (2360)	3065-2890 BC	SI-4137	Rast & Schaub (1980): 46, table 3; additional data from W E Rast & R T Schaub, pers commun
Numeira: NE 3/1, Loc 15, dest debris	Charcoal	4130 ± 70 (2180)	2890-2640 BC	SI-4138	Rast & Schaub (1980): 47, table 3
Numeira: NE $4/4$, Loc 16, dest debris	Charred grain	$^{4090}_{\circ}$ ± 70 (2140) $^{$^{13}\text{C}_{\text{PDB}}}$ = -26.32 ± 0.26°/	2875-2620 BC	P-3367	Unpub; pers commun, W E Rast & R T Schaub

Numeira: SE 8/1, Loc 12, roof fall and occ debris	Roof thatching	4180 ± 60 (2230)	2910-2765 BC	P-3454	Unpub; pers commun, W E Rast & R T Schaub
		Early Bronze Age III (?)			
Gibeon: Sndg in Area 10-M-6, "Early Bronze level"	Charcoal, limestone	4501 ± 65 (2551)	3370-3050 BC	P-837	R (1965) 7: 194; Callaway & Weinstein (1977): 11, table 2
Bab edh-Dhra: Field VIII.IA, Loc 3, town wall collapse (loc not sealed)	Charcoal e	1090 ± 45 (AD 860)	AD 875-1020	SI-2873	Unpub; pers commun, W E Rast & R T Schaub
		Early Bronze Age II-IVA			
Bab edh-Dhra: Charnel house A55, NW corner, left of doorway	Burned fabric, charcoal, ash	3680 ± 90 (1730)	2305-1905 BC	SI-2497	Unpub; pers commun, W E Rast & R T Schaub; "small sample, diluted"
Bab edh-Dhra: Charnel house A 55, fl, opposite doorway	Charcoal	4015 ± 75 (2065)	2660-2530 BC	SI-2499	Rast & Schaub (1980): 46-47, table 3
Bab edh-Dhra: Charnel house A 55, doorway	Charcoal	4420 ± 80 (2470)	3365-2925 BC	SI-2501	Unpub; pers commun, W E Rast & R T Schaub
Bab edh-Dhra: Charnel house A 55, NE corner	Charcoal	4320 ± 65 (2370)	3150-2895 BC	SI-2874	Rast & Schaub (1980): 46, table 3
		Early Bronze Age IVA			
Bab edh-Dhra: Field X, Ph 3	Olive stones	3770 ± 60 (1820)	2335-2135 BC	P-2573	R (1978) 20: 226

Provenience	Material	14 _C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Bab edh-Dhra:	Charcoal	5090 ± 85 (3140)	3955-3775 BC	SI-2869	Unpub; pers commun
Field X.1, Loc 28		Early Bronze Age IVB-C			
Mushabi 103	Charcoal	3800 ± 330 (1850)	2680-1765 BC	RT-447B	Bar-Yosef & Phillips (1977): table 67
Ain Abu Rugum 1	Charcoal	4180 ± 300 (2230)	3355-2395 BC	RT-447A	Bar-Yosef & Phillips (1977): table 67
Jericho: Tr III, St/ph XX.lxxxa	Charcoal	3560 ± 40 (1610) $\delta^{13}C = -26.2$ %.	2035-1855 BC	BM-1782	R (1982) 24: 280; Burleigh (1984): 762-763
<pre>Jericho: Tr II, St/ph XXI.lxviii- XXII.lxix(a)</pre>	Charcoal	$3620 \pm 40 (1670)$ $\delta^{13}C = -25.3^{\circ}/\circ \circ$	2155-1890 BC	BM-1784	R (1982) 24: 280; Burleigh (1984): 762-763
		Middle Bronze Age II (formerly MBA IIB)	ormerly MBA IIB)		
Gibeon: Sndg in Area 15-K-18, Level 4a	Charcoal, limestone	3154 ± 56 (1204)	1565-1375 BC	P-842	R (1965) 7: 195; for archaeol context, see Pritchard (1964): 42-43, 45-47
Jericho: Tomb J 14	Wood	3510 ± 110 (1560)	2000-1700 BC	GL-33	RMCI (1967): 31; Burleigh (1981): 502, 504
Jericho: Tomb B 35, funerary furniture	Wood	3270 ± 110 (1320)	1710-1425 BC	GL-5	Zeuner (1956): 196; Burleigh (1981): 502, 504
Jericho: Tomb B 35, funerary furniture	Wood	4100 ± 150 (2150)	2910-2530 _. BC	GL-6	Zeuner (1956): 196: Burleigh (1981): 502, 504
Jericho: Tomb J 19	Flesh	3220 ± 60 (1270)	1665-1415 BC	GL-30	Zeuner (1956): 196; Burleigh (1981): 502, 504

Provenience	Material	¹⁴ C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
		Late Bronze Age II			
Baq'ah Valley: Jebel al-Qesir, Cave B3	Charcoal	3200 ± 60 (1250)	1655-1405 BC	P-3209	R (1984) 26: 223
Baq'ah Valley: Jebel al-Qesir, Cave B3	Charcoal	3350 ± 70 (1400)	1760-1590 BC	P-3210	R (1984) 26: 223
Khirbet Umm ad- Dananir: Field V, Area 2, Loc 19, carbonized beams	Charcoal (olive)	3580 ± 70 (1630)	2120-1865 BC	P-3219	R (1984) 26: 223; material from Patrick McGovern, pers commun
		Late Bronze Age IIB			
Lachish: Level VI temple, roof beams	Charred wood (cedar)	3090 ± 120 (1140)	1545-1245 BC	Hel-810	Ussishkin (1978): 90
Lachish: Level VI temple, door paneling (?)	Charred wood (cedar)	3510 ± 120 (1560)	2000-1700 BC	Hel-1028	Ussishkin (1978): 90
		Late Bronze Age IIB (?)			
Deir 'Alla: LB temple, roof beam	Charred wood	3130 ± 60 (1180)	1550-1360 BC	GrN-4553	R (1967) 9: 140
		Late Bronze Age IIB-Iron Age I	n Age I		
Timna: Site 2, Area E, Pit C	Charcoal	1350 ± 50 (AD 600)	AD 595–660	GrN-4381	R (1967) 9: 141
Timna: Site 2, Area F, hearth	Charcoal	3000 ± 40 (1050)	1380-1225 BC	GrN-4493	R (1967) 9: 141; Rothenberg & Lupu (1967): 69, nlO (3000 ± 50 cited here)
Timna: Site 212/1, Egyptian tunnel	Charcoa1	2910 ± 70 (960)	1250-1035 BC	HAM-207	R (1976) 18: 286

Conrad & Rothenberg (1980): 179	BONN-2357	1250-1035 BC	2910 ± 60 (960)	Charcoal	Timna: Site 212, Mine S27
Conrad & Rothenberg (1980): 179	BONN-2356	1250-1035 BC.	2910 ± 70 (960)	Charcoal	Timna: Site 212, Mine S27
R (1982) 24: 165	BM-1598	1095-830 BC	2790 ± 50 (840) 613C = -21.3°/	Charcoal	Timna: Site 30, Str 3
R (1979) 21: 349	ВМ-1162	645-555 BC	$2480 \pm 35 (530)$ $\delta^{13}C = -24.6^{\circ}/_{\circ}$	Charcoal inclusions	Timna: Site 30, Area C5, Stratum I, slag
R (1979) 21: 349	BM-1115	1115-880 BC	$2840 \pm 51 (890)$ $\delta^{13}C = -23.8^{\circ}$	Charcoal	Timna: Site 2, Area E, Pit B
R (1976) 18: 287	HAM-216	1750-1575 BC	3340 ± 60 (1390)	Charcoal	Timna: Site 30, slag pile, Layer l
R (1976) 18: 287; sample presumably from Site 30	HAM-215	2680-2515 BC	4020 ± 100 (2070)	Charcoal	Timna: "Mining site, slag pile (Cut 25, Layer 2)"
R (1976) 18: 287	HAM-214	2670-2505 BC	4000 ± 90 (2050)	Charcoal	Timna: Site 212/2a, Egyptian tunnel
R (1976) 18: 287	HAM-213	2430-2305 BC	3890 ± 70 (1940)	Charcoal	Timna: Site 212/2, Egyptian tunnel
R (1976) 18: 287	HAM-212	1110-810 BC	2780 ± 90 (830)	Charcoal	Timna: Site 212/2, Egyptian tunnel
R (1976) 18: 287	HAM-211	840-780 BC	2640 ± 60 (690)	Charcoal	Timna: Site 212/1g, Egyptian tunnel
R (1976) 18: 287	HAM-210	1410-124,5 BC	3050 ± 70 (1100)	Charcoal	Timna: Site 212/1e, Egyptian tunnel
R (1976) 18: 287	HAM-208	1250-1035 BC	2910 ± 60 (960)	Charcoal	Timna: Site 212/1, Egyptian tunnel

Provenience	Materia1	14 _C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Timna: Site 212, Mine S18	Charcoal	3050 ± 70 (1100)	1410-1245 BC	BONN-2359	Conrad & Rothenberg (1980): 179
Timna: Site 212, Mine S19	Charcoal	2640 ± 60 (690)	840-780 BC	BONN-2360	Conrad & Rothenberg (1980): 179
Timna: Site 212, Mine S28	Charcoal	2780 ± 90 (830)	1110-810 BC	BONN-2361	Conrad & Rothenberg (1980): 179
		Late Bronze Age II/Iron Age I (?)	Age I (?)		
Sea bed near Kibbutz ha-Hotrim: Poss shipwreck	Charcoal	2560 ± 360 (610)	1120-375 BC	P-3099	R (1984) 26: 222 for assoc archaeol finds, see Wachsmann & Raveh (1981)
Sea bed near Kibbutz ha-Hotrim: Poss shipwreck	Wood or charred wood	2500 ± 100 (550)	800-420 BC	P-3226	R (1984) 26: 222 for assoc archaeol finds, see Wachsmann & Raveh (1981)
		Iron Age IB			
Deir 'Alla: "One of 'first' seasonal layers"	Ash, chaff, charred grain	3290 ± 50 (1340)	1700-1545 BC	GrN-4748	R (1967) 9: 140
Deir 'Alla: Ph D	Charred beans, grain	3140 ± 35 (1190)	1545-1375 BC	GrN-4749	R (1967) 9: 140; Franken (1969): 245
Deir 'Alla: Ph J	Charcoal	3000 ± 40 (1050)	1380-1225 BC	GrN-4554	R (1967) 9: 140; Franken (1969): 245
		Iron Age I (12th century BC ?)	/ BC ?)		
Gibeon: Sndg in Area 10-M-3/4, F1 4	Charcoal	3505 ± 59 (1555)	1970-1740 BC	P-843A	R (1965) 7: 194

Gibeon: Sndg in Area 10-M-3/4, below Fl 4	Charcoal limestone	3073 ± 48 (1123)	1425-1255 BC	P-941	R (1965) 7: 194
		Iron Age I/Early Arab Period	eriod		
Timna: Wadi Amram, Site 33, slag heap	Charcoal inclusions	1240 ± 36 (AD 710) \$13 _C = -24.1°/°	AD 635-875	BM-1163	R (1979) 21: 350
		Iron Age IIA			
Tell er-Rumeith: Str VIII, gateway, dest debris	Charcoal	2860 ± 160 (910)	1330-825 BC	M-2028	R (1972) 14: 218
Tell er-Rumeith: Str VIII, posts	Charcoal	2530 ± 150 (580)	825-420 BC	M-2031	R (1972) 14: 218
		Iron Age IIB-C			
Tell Areini: Area A, oven, "Middle Israelite layer"	Charcoal	2640 ± 140 (690)	905-750 BC	BM-394	R (1971) 13: 183
Deir 'Alla: Ph M, pit	Charcoal	2690 ± 60 (740)	890-765 BC	GrN-5283	R (1972) 14: 53
Deir 'Alla: Ph M, dest debris	Charred grain	$2600 \pm 50 (650)$ $6^{13}C = -23.3^{\circ}/_{\circ}$	820-765 BC	GrN-5633	R (1972) 14: 53
Dibon: Str IV, Area C, rm	Grain	2815 ± 165 (865)	1145-810 BC	MP-?	Reed (1957): 9; Winnett & Reed (1964): 49
Dothan: Level 6-A, Area 12, roof beams (?)	Charcoal	2760 ± 80 (810)	1100-805 BC	L-365	Broecker & Kulp (1957): 1330; Free (1957)
<pre>Jericho: Tr I (Sq C), St/ph XLVII. 1xxi1-lxxiii(1)</pre>	Charcoal	$2040 \pm 40 (90)$ $613c = -26.3^{\circ}/_{\circ}$	170 BC-AD 20	BM-1791	R (1982) 24: 280; Burleigh (1984): 762- 763

Provenience	Material	14 C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Lachish: Level IV, later ph	Charred wood	2830 ± 150 (880)	1255-815 BC	Не1-1027	Ussishkin (1978): 90
Lachish: Level III, Loc 3561	Charred wood	2940 ± 110 (990)	1360-1030 BC	Не1-1026	Ussishkin (1978): 90
Lachish: Level II, Loc 4084, shelves/ jar-stands	Charred wood (cedar)	2830 ± 110 (880)	1125-835 BC	Не1-1025	Ussishkin (1978): 90
Tell er-Rumeith: Str VII, posts in fort wall	Charcoal	2420 ± 140 (470)	785-390 BC	M-2029	R (1972) 14: 218
Tell er-Rumeith: Str VII, posts in fort wall	Charcoal	2580 ± 140 (630)	870-560 BC	M-2030	R (1972) 14: 218
Tell er-Rumeith: Str VI, dest debris	Charcoal	2610 ± 150 (660)	890-590 BC	M-2032	R (1972) 14: 219
Tell er-Rumeith: Str VI (?), dest debris	Charcoal	2820 ± 150 (870)	1145-810 BC	M-2033	R (1972) 14: 219
Tell er-Rumeith: Str V, kiln	Charcoal	2800 ± 150 (850)	1130-805 BC	M-2034	R (1972) 14: 219
Tell er-Rumeith: Str V, house, burned debris	Charcoal	2130 ± 140 (180)	400 BC-AD 15	M-2035	R (1972) 14: 219
Tell es-Sa'idiyeh: Str 5, ab Fl 2	Charcoal, sand, dirt	2596 ± 56 (646)	820-765 BC	P-829	R (1965) 7: 195
Tell es-Sa'idiyeh: Str 5, street with level of Fl 2	Charcoal, limestone	2572 ± 59 (622)	810-755 BC	P-830	R (1965) 7: 195

31 R (1965) 7: 195	32 R (1965) 7: 195	33 R (1965) 7: 195	34 R (1965) 7: 195	35 R (1965) 7: 195	36 R (1965) 7: 195	999 R (1970) 12: 583	100 R (1970) 12: 583	101 R (1970) 12: 583	144 R (1970) 12: 583		IVIC-108 R (1965) 7: 64; 8th cent. BC archaeol date suggested by James Sauer, pers commun
P-831	P-832	P-833	P-834	P-835	P-836	P-1099	P-1100	P-1101	P-1444		IVIC
800-600 BC	615-410 BC	800-600 BC	1105-780 BC	620-410 BC	795-585 BC	810-760 BC	620-410 BC	825-770 BC	835-775 BC		825-600 BC
2542 ± 46 (592)	2406 ± 52 (456)	2537 ± 52 (587)	2726 ± 157 (776)	2418 ± 54 (468)	2523 ± 53 (573)	2577 ± 53 (627)	2424 ± 57 (474)	2609 ± 58 (659)	2633 ± 60 (683)	Iron Age IIB-C (?)	2575 ± 100 (625)
Charcoal, sand, limestone	Mildewed charcoal, sand, limestone	Mildewed charcoal, sand, limestone	Charcoal	Charcoal, limestone	Charcoal, dirt, limestone	Charcoal	Charcoal	Charcoal	Charcoal		Wood ("worm- eaten and partially charred")
Tell es-Sa'idiyeh: Str 5, below street pavement	Tell es-Sa'idiyeh: Str 5, Fl 2	Tell es-Sa'idiyeh: Str 5, Fl 2	Tell es-Sa'idiyeh: Str 5, Fl 2	Tell es-Saidiyeh: Str 5, Fl 2	Tell es-Sa'idiyeh: Str 5, roof beam from ab Fl 2	Tell es-Sa'idiyeh: Str 5	Tell es-Sa'idiyeh: Str 5, Fl 2, beam	Tell es-Sa'idiyeh: Str 5, beam	Tell es-Sa'idiyeh: Str 5, Fl 2		Rujm Mekhayyat: Moabite fortress or watch tower,

Provenience	Material	14 C date BP (BC)	CRD-lo date	Lab no.	Refs and Remarks
Rujm Mekhayyat: Moabite fortress or watch tower,	Wooden log	2530 ± 100 (580)	805-555 BC	IVIC-109	R (1965) 7: 64; for archaeol date, see IVIC-108 above
Tell Siran: Area A, Sq 1, Loc 1, in bronze bottle	Grain	2350 ± 50 (400)	440-395 BC	P-2207	R (1977) 19; 211; Thompson (1983); for archaeol context, see
		Persian Period			tnompson (1973)
Deir 'Alla: Burned layer between Ph N & O	Charred grain	$2410 \pm 55 (460)$ $\delta^{13}C = -23.4^{\circ}/_{\circ \circ}$	615-410 BC	GrN-5634	R (1972) 14: 53
Tell es-Sa'idiyeh: Sndg below Str 3 "palace"	Grain	2415 ± 54 (465)	620-410 BC	P-1442	R (1970) 12: 582
Tell es-Sa'idiyeh: Sndg below Str 3 "palace," furnace	Charcoal	2310 ± 100 (360)	440-375 BC	P-1443	R (1970) 12: 582
Tell es-Sa'idiyeh: Sndg below Str 3 "palace," House 4	Grain	2141 ± 55 (191)	255-145 BC	P-1445	R (1970) 12: 582
Tell es-Sa'idiyeh: Sndg below Str 3 "palace," Rm 5/1W	Grain	2485 ± 57 (535)	785-550 BC	P-1448	R (1970) 12: 582
Tell es-Sa'idiyeh: Str 3 "palace," Fl lc	Charcoal	2226 ± 50 (276)	405-180 BC	P-1446	R (1970) 12: 582
		Persian Period (?)			
Tel Michal: Pit	Charcoal	230 ± 40 (AD:1720)	AD 1635-1665 (Stuiver corrected)	P-2718	R (1981) 23: 232

Linder & Ramon (1981); sample poss from covering of ram, cf Steffy (1983): 235, 246, n4		R (1970) 12: 582	R (1970) 12: 582	R (1970) 12: 582	R (1970) 12: 582	R (1970) 12: 582		Zeuner (1956): 196; (1960): 27-28; RMCI (1967): 31; same sample as GL-47	Zeuner (1960): 27-28; RMCI (1967): 31; cf GL-25, diff pretreatment		2 R (1973) 15: 580
RT-?		P-1095	P-1096	P-1097	P-1098	P-1447		GL-25	GL-47		TF-1002
625-370 BC		190-15 BC	395-170 BC	390-165 BC	410-370 BC	405-180 BC	Roman Period	40 BC-AD 85	160 BC-AD 70		170 BC-AD 55
2350 ± 130 (400)	Hellenistic Period	2098 ± 55 (148)	2199 ± 55 (249)	2179 ± 53 (229)	2267 ± 53 (317)	2228 ± 48 (278)	Late Hellenistic/Early Roman Period	1940 ± 80 (AD 10)	1965 ± 80 (15)	Roman Period	2000 ± 90 (50)
Wood (silver fir)		Wood	Burned Wood	Charcoal	Charcoal	Charcoa1		Charred wood (date palm)	=		Wood
Sea of Athlit: Bronze ship's ram		Tell es-Sa'idiyeh: Str 2 bldg, roof beam	Tell es-Sa'idiyeh: Str 2 bldg, beam	Tell es-Sa'idiyeh: Str 2 bldg, beam	Tell es-Sa'idiyeh: Str 2 bldg, beam	Tell es-Sa'idiyeh: Str 2 bldg, ab Fl l		Qumran: Period Ib or II, poss from rafters	Qumran: Period Ib or II, poss from rafters		Masada: Roman rampart

Proventence	Material	¹⁴ C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
Nahal Hever: Cave of Horror	Cloth (impregnated with blood & flesh)	1649 ± 100 (AD 301)	AD 230-560	Q-621	R (1962) 4: 70; same sample as Q-771
Nahal Hever: Cave of Horror	=	1795 ± 100 (AD 155)	AD 40-335	Q-771	R (1964) 6: 134;
Qumran (Ain Feshka): Cave IQ, poss scroll wrappings	Cloth	1917 ± 200 (AD 33)	175 BC- AD 245	c-576	Libby (1951); 291; (1955): 84; Sellers (1951a; 1951b); Crowfoot (1955): 27; solid-carbon date
Wadi Murabba'at: Cave l or 2 (precise cave not stated)	Woolen textile	1350 ± 60 (AD 600)	AD 595-660	GL-37	Zeuner (1960): 28; Crowfoot & Crowfoot (1961): 5, nl; RMCI (1967): 31; same sample as Gro (GrN)-940, -943, -965
Wadi Murabba'at: Cave l or 2	=	1665 ± 42 (AD 285)	AD 235-435	Gro-940	de Vries & Waterbolk, (1958): 1555; <u>cf</u> GL-37, diff pretreatment
Wadi Murabba'at: Cave l or 2	=	1910 ± 42 (AD 40)	1 BC/AD 1- AD 80	GrN-940	RMCI (1967): 35; corrected date for Gro-940
Wadi Murabba'at: Cave l or 2	=	1575 ± 50 (AD 375)	AD 375-575	Gro-943	de Vries & Waterbolk (1958): 1555; <u>cf</u> GL-37, diff pretreatment
Wadi Murabba'at: Cave l or 2	Ξ	1815 ± 50 (AD 135)	AD 190-235	GrN-943	RMCI (1967): 35; corrected date for

de Vries & Waterbolk (1958): 1555; <u>cf</u> GL-37, diff pretreatment	RMCI (1967): 35; corrected date for Gro-965		R (1979) 21: 349		Kedar & Mook (1978)		Bar-Yosef & Goren (1973): 51; Belfer-Cohen & Bar-Yosef (1981): 19-20	Bar-Yosef & Goren (1973): 51; Belfer-Cohen & Bar-Yosef (1981): 19-20		R (1966) 8: 283
Gro-965	GrN-965		BM-1117		GrN-7987		Hv-2675	Hv-?		M-1673
AD 410-585	AD 205-245		930-825 BC	erlod	AD 245-465	tine Period	AD 610-780	AD 35-230		AD 540-635
1550 ± 75 (AD 400)	1790 ± 75 (AD 160)	Roman Period (?)	2779 ± 55 (829) \$13G = -13.8°/	Late Roman/Byzantine Period	1630 ± 50 (AD 320)	Late Roman-Early Byzantine Period	1310 ± 65 (AD 640)	1845 ± 65 (AD 105)	Byzantine Period	1435 ± 120 (AD 515)
=	=		Charcoal		Organic inclusions in mortar		¢.	¢.		Wood
Wadi Murabba'at: Cave l or 2	Wadi Murabba'at: Cave 1 or 2		Timna: Site 200, Nabataean furnace		Ashkelon: City wall, just S of E gate, 50-120cm ab ground level		Hayonim Cave: Hearth at top of Str B (= Natufian)	Hayonim Cave: Hearth at top of Str B (= Natufian)		Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave

358

Provenience	Material	14 _C date BP (BC)	CRD-lo date	Lab no.	Refs and Remarks
Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave	Wood	1215 ± 120 (AD 735)	AD 630–895	M-1674	R (1966) 8: 283
Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave	Wood	1315 ± 120 (AD 635)	AD 595-855	M-1675	R (1966) 8: 283
Monastery of St Catherine: Church of the Transfig- uration, window chassis	Wood	1700 ± 120 (AD 250)	AD 215-440	M-1676	R (1966) 8: 283; <u>cf</u> entry below
Monastery of St Catherine: Church of the Transfig- uration, window chassis	E	1500 ± 120 (AD 450)	AD 420-610	M-1676	R (1966) 8: 283; re-run of sample, no change in lab no.
Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave	Wood	150 ± 100 (AD 1800)	Too young to be meaning- fully calibrated	M-1677	R (1966) 8: 283; <u>cf</u> entry below
Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave	=	0 ± 100 (AD 1950)		M-1677	R (1966) 8: 283; re-run of sample, no change in lab no.

360

man (1975)

James M Weinstein

9

194

194

rimes, &

rimes, & 97, 107,

M-1812 R (1968) 10: 108	AD 595-890 M-1813 R (1968) 10: 108	AD 1630-1850 M-1814 R (1968) 10: 108 (Stuiver corrected)	AD 605-765 BM-1222 R (1982) 24: 164	AD 560-615 BM-1223 R (1982) 24: 165	AD 445-600 BM-1224 R (1982) 24: 165
"Modern"	1280 ± 140 (AD 670) AD	200 ± 100 (AD 1750) AD (St	1330 ± 40 (AD 620) AD 613C = -24.6°/00	1450 ± 50 (AD 500) AD §13C = -23.0°/	1490 ± 60 (AD 460) AD $\delta^{13}C = -24.9^{\circ}/\circ \circ$
Mood Bood	Wood	Wood	Wood (sapwood, bark and branches visible)	Wood	Wood
Monastery of St Catherine: Church of the Transfig- uration, withe from window armature	Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave	Monastery of St Catherine: Church of the Transfig- uration, window	Monastery of St Catherine: Church of the Transfig- uration, roof truss over nave	Monastery of St Catherine: Church of the Transfig- uration, NW corner tower ceiling	Monastery of St Catherine: Church of the Transfig- uration, roof

Provenience	Material	14C date BP (BC)	CRD-10 date	Lab no.	Refs and Remarks
		Crusader Period			
Caesarea: City wall, S of E gate	Organic inclusions in mortar (poss Phoenix dactylifera)	960 ± 160 (AD 990)	AD 890-1235	RT-?	Kedar & Kaufman (1975)
		Ottoman Period (?)			
Khirbet Umm ad- Dananir: Field V, Area 2, Surface of Loc 6	Dessicated wood	250 ± 50 (AD 1700)	AD 1540-1795 (Stuiver corrected)	P-3218	R (1984) 26: 223
		Modern Period (?)			
Bab edh-Dhra: Field H.3, Loc 4	Peach pit	"Modern"		QL-1558	Unpub; pers commun, W E Rast & R T Schaub
		Archaeological date unknown	lown		
Caesarea: Burial, 125cm bs	<pre>Human bone (collagen)</pre>	240 ± 150 (AD 1710)	AD 1465-1700 (Stuiver corrected)	UCR-276	R (1982) 24: 64
Gibeon: Sndg in Area 10-N-4, Level 6	Charcoal, limestone	3164 ± 48 (1214)	1570-1380 BC	P-838	R (1965) 7: 194
Gibeon: Sndg in Area 10-N-4, Level 6	Charcoal	3148 ± 119 (1198)	1640-1340 BC	P-839	R (1965) 7: 194
Gibeon: Sndg in Area 10-M-4/4, Rm 2	Charcoal, dirt	3231 ± 57 (1281)	1670-1420 BC	P-840	R (1965) 7: 194
Jebel Khirbet en- Nahas: Slag pile	Charcoal	2540 ± 200 (590)	875-410 BC	W-4051	Overstreet, Grimes, & Seitz (1982): 97, 107, table 20

1750-1270 BC W-4456 Overstreet, Grimes, & Seitz (1982): 97, 124, table 20	2925-2780 BC BONN-746 R (1973) 15: 36	3965-3780 BC BONN-747 R (1973) 15: 36	BM-1325 Burleigh (1981): 502; R (1982) 24: 166; "invalidated by misassoc"	870-785 BC Gro-938 de Vries & Waterbolk (1958): 1555; "Fimnah" evidently a misprint for "Timnah"	1670-825 BC W-4054 Overstreet, Grimes, & Seitz (1982): 97, 107, table 20
3220 ± 200 (1270)	4200 ± 70 (2250)	5110 ± 110 (3160)	40,500 ± 2700 (38,550) 613C = -28.0°/°°	2655 ± 65 (705)	3000 ± 300 (1050)
Charcoal	Charcoal	Charcoal	Charcoal	Charcoal	Charcoal
Jebel Khirbet en- Nahas: Slag pile	Jericho: "1/3 to 1/2 of total depth of pit, 250 cm"	Jericho: "Same location350 cm"	Jericho: Site M I, St/ph XIII.lxxiva	Timna: "Grave" in "Wadi Fimnah"	Wadi Feinan-Wadi Dana area: slag pile

REFERENCES

- Aharoni, Yohanan, 1962, Expedition B—The cave of horror: Israel Explor Jour, v 12, no. 3-4, p 186-199.
- ————— Î964, The second season of excavation at Tel Arad (1963): Yediot, v 28, no. 3-4, p 153-175 (Hebrew).
- 1967, Excavations at Tel Arad: preliminary report on the second season, 1963: Israel Explor Jour, v 17, no. 4, p 233-249.
- Amiran, Ruth, Paran, Uzzi, Shiloh, Yigal, Brown, Rafi, Tsafrir, Yoram, and Ben-Tor, Amnon, 1978, Early Arad: The Chalcolithic settlement and Early Bronze city, v I: First-fifth seasons of excavations, 1962-1966: Jerusalem, Israel Explor Soc, 130 p.
- Bar-Adon, Pessah, 1980, The cave of the treasure: The finds from the caves in Nahal Mishmar: Jerusalem, Israel Explor Soc, 243 p.
- Bar-Yosef, Ofer, 1975, The Epipalaeolithic in Palestine and Sinai, in Wendorf, Fred and Marks, A E, eds, Problems in prehistory: North Africa and the Levant: Dallas, Texas, Southern Methodist Univ Press, p 363-378.
- 1981a, The Epi-Palaeolithic complexes in the southern Levant, in Cauvin, Jacques and Sanlaville, Paul, eds, Préhistoire du Levant: Paris, Centre Nat Recherche Sci, p 389-408.
- Bar-Yosef, Ofer and Belfer, Anna, 1977, The Lagaman industry, in Bar-Yosef, Ofer and Phillips, J L, eds, Prehistoric investigations in Gebel Maghara, northern Sinai: Jerusalem, Inst Archaeol, Hebrew Univ Jerusalem, p 42-84.
- Bar-Yosef, Ofer, Gopher, A, and Goring-Morris, A N, 1980, Netiv Hagdud: A 'Sultanian' mound in the lower Jordan valley: Paléorient, v 6, p 201-206.
- Bar-Yosef, Ofer and Goren, Naama, 1973, Natufian remains in Hayonim cave: Paléorient, v 1, p 49-68.
- Bar-Yosef, Ofer and Goring-Morris, A N, 1977, Geometric Kebaran A occurrences, in Bar-Yosef, Ofer and Phillips, J L, eds, Prehistoric investigations in Gebel Maghara, northern Sinai: Jerusalem, Inst Archaeol, Hebrew Univ Jerusalem, p 115-148.
- Bar-Yosef, Ofer and Phillips, James L, 1977, Prehistoric investigations in Gebel Maghara, northern Sinai: Jerusalem, Inst Archaeol, Hebrew Univ Jerusalem, 269 p.
- Belfer-Cohen, Anna and Bar-Yosef, Ofer, 1981, The Aurignacian at Hayonim cave: Paléorient, v 7, no. 2, p 19-42.
- Belfer-Cohen, Anna and Goldberg, Paul, 1982, An Upper Palaeolithic site in south central Sinai: Israel Explor Jour, v 32, no. 4, p 185-189.
- Blake, Ian, 1969, Climate, survival and the second-class societies in Palestine before 3000 BC: Advancement Sci, v 25, no. 126, p 409-421.
- Broecker, W S and Kulp, J L, 1957, Lamont natural radiocarbon measurements IV: Science, v 126, no. 3287, p 1324-1334.
 Burleigh, Richard, 1981, Radiocarbon dates, in Kenyon, K M, Excavations at Jericho, v
- Burleigh, Richard, 1981, Radiocarbon dates, in Kenyon, K M, Excavations at Jericho, v 3: The architecture and stratigraphy of the tell, Holland, T A, ed: London, British School Archaeol Jerusalem, p 501-504.
- rusalem, p 760-765. Callaway, J A, 1972, The Early Bronze age sanctuary at Ai (et-Tell), no. 1: London, Bernard Quaritch Ltd, 341 p.
- Callaway, J A and Weinstein, J M, 1977, Radiocarbon dating of Palestine in the Early Bronze age: Am Schools Oriental Research Bull, no. 225, p 1-16.
- Chinzei, Kiyotaka, 1970, The Amud cave site and its deposit, in Suzuki, Hisashi and Takai, Fuyuji, eds, The Amud man and his cave site: Tokyo, Univ Tokyo Press, p 21-52.
- Conrad, H G and Rothenberg, Benno, eds, 1980, Antikes Kupfer im Timna-Tal: 4000 Jahre Bergbau und Verhüttung in der Arabah (Israel): Bochum, Deutsches Bergbau-Mus, 236 p.
- Copeland, Lorraine and Vita-Finzi, Claudio, 1978, Archaeological dating of geological deposits in Jordan: Levant, v 10, p 10-25.
- Crew, H L, 1976, The Mousterian site of Rosh Ein Mor, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v I, The Avdat/Aqev area, pt 1: Dallas, Texas, Southern Methodist Univ Press, p 75-112.
- Crowfoot, G M, 1955, The linen textiles, in Barthélemy, Dominique and Milik, J T, Discoveries in the Judaean desert, v I: Qumran Cave I: Oxford: Clarendon Press, p 18-38.

- Crowfoot, G M and Crowfoot, Elizabeth, 1961, The textiles and basketry, in Benoit, P, Milik, J T, and Vaux, Roland de, Discoveries in the Judaean desert, v II: Les grottes de Murabba eat: Oxford: Clarendon Press, p 51-63.
- Deevey, E S, Flint, R F, and Rouse, Irving, eds, 1967, Radiocarbon measurements: comprehensive index, 1950-1965: Am Jour Sci, 221 p.
- Dever, W G, 1973, The EB IV-MB I horizon in Transjordan and southern Palestine: Am Schools Oriental Research Bull no. 210, p 37-63.
- 1982, Review of Amiran, Ruth, Paran, Uzzi, Shiloh, Yigal, Brown, Rafi, Tsafrir, Yoram, and Ben-Tor, Amnon, Early Arad: The Chalcolithic settlement and Early Bronze city, v I: Israel Explor Jour, v 32, no. 2-3, p 170-175.
- Dever, W. G., Lance, H. D., Bullard, R. G., Cole, D. P., and Seger, J. D., 1974, Gezer II: Report of the 1967-70 seasons in Fields I and II. Jerusalem: Hebrew Union Coll/Nelson Glueck School Biblical Archaeol, 137 p.
- Dothan, Moshe, 1956, Radioactive examination of archaeological material from Israel: Israel Explor Jour, v 6, no. 2, p 112-114.
- Epstein, Claire, 1979, Golan, Chalcolithic sites, 1978: Israel Explor Jour, v 29, no. 3-4, p 225-227.
- 1981, Golan, Chalcolithic sites, 1979, 1980: Israel Explor Jour, v 31, no. 1-2, p 112-116.
- Franken, H J, 1969, Excavations at Tell Deir ^eAlla I: A stratigraphical and analytical study of the Early Iron age pottery: Leiden, E J Brill, 249 p.
- Free, J.P., 1957, Radiocarbon date of Iron age level at Dothan: Am Schools Oriental Research Bull, no. 147, p. 36-37.
- Gisis, I and Gilead, Isaac, 1977, Lagama III, in Bar-Yosef, Ofer and Phillips, J L, eds, Prehistoric investigations in Gebel Maghara, northern Sinai: Jerusalem, Inst Archaeol, Hebrew Univ Jerusalem, p 85-102.
- Gophna, Ram, 1979, Tell Tsaf—a Chalcolithic settlement on the banks of the Jordan: Qadmoniot, v 12, no. 2-3, p 54-56 (Hebrew).
- Gophna, Ram and Kislev, M. 1979, Tel Şaf (1977-1978): Rev Biblique, v 86, no. 1, p 112-114.
- Goring-Morris, A N and Gopher, A, 1983, Naḥal Issaron: A Neolithic settlement in the southern Negev: Israel Explor Jour, v 33, no. 3-4, p 149-162.
- Haas, Herbert, 1977, Radiocarbon dating of charcoal and ostrich egg shells from Mushabi and Lagama sites, in Bar-Yosef, Ofer and Phillips, J L, eds, Prehistoric investigations in Gebel Maghara, northern Sinai: Jerusalem, Inst Archaeol, Hebrew Univ Jerusalem, p 261-264.
- Hamada, Tatsuji, 1970, Comments on the reliability of bone radiocarbon, in Suzuki, Hisashi and Takai, Fuyuji, eds, The Amud man and his cave site: Tokyo, Univ Tokyo Press, p 423-424.
- Helback, Hans, 1974, Grain from the Tell Siran bronze bottle: Dept Antiquities Jordan Ann, v 19, p 167-168.
- Hennessy, J B, 1982, Teleilat Ghassul: Its place in the archaeology of Jordan, in Hadidi, Adnan, ed. Studies in the history and archaeology of Jordan I: Amman, Dept Antiquities, p 55-58.
- Henry, D.O., 1982, The prehistory of southern Jordan and relationships with the Levant: Jour Field Archaeol, v. 9, no. 4, p. 417-444.
- ______1983, Adaptive evolution within the Epipaleolithic of the Near East, in Wendorf, Fred and Close, A E, eds, Advances in World Archaeol, v 2, p 99-160.
- Henry, D.O., Hassan, F.A., Cooper Henry, Kathleen, and Jones, Marcia, 1983, An investigation of the prehistory of southern Jordan: Palestine Explor Quarterly, v. 115, p. 1-24.
- Henry, D O and Leroi-Gourhan, Arlette, 1976, The excavation of Hayonim terrace: An interim report: Jour Field Archaeol, v 3, no. 4, p 391-406.
- Henry, D O and Servello, A F, 1974, Compendium of carbon-14 determinations derived from Near Eastern prehistoric deposits: Paléorient, v 2, no. 1, p 19-44.
- Hietala, Harold and Marks, A E, 1981, Changes in spatial organization at the Middle to Upper Palaeolithic site of Boker Tachtit, central Negev, Israel, *in* Cauvin, Jacques and Sanlaville, Paul, eds, Préhistoire du Levant: Paris, Centre Nat Recherche Sci, p 305-318.
- Jelinek, A J, 1982. The Tabun cave and Paleolithic man in the Levant: Science, v 216, no. 4553, p 1369-1375.
- Kaplan, Jacob, 1969, Ein el Jarba: Chalcolithic remains in the plain of Esdraelon: Am Schools Oriental Research Bull, no. 194, p 2-39.
- Kaufman, Daniel, 1983, D101B: A Mushabian site in the Nahal Zin, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v III, The Avdat/

- Aqev area, pt 3: Dallas, Texas, Dept Anthropol, Southern Methodist Univ, p 333-
- Kedar, B Z and Kaufman, A, 1975, Radiocarbon measurements of medieval mortars: A preliminary report: Israel Explor Jour, v 25, no. 1, p 36-38.
- Kedar, B Z and Mook, W G, 1978, Radiocarbon dating of mortar from the city-wall of Ascalon: Israel Explor Jour, v 28, no. 3, p 173-176.
- Kenyon, K M, 1959, Earliest Jericho: Antiquity, v 33, no. 129, p 5-9.
- 1979, Archaeology in the Holy Land, 4th ed: New York, W W Norton and
- Klein, Jeffrey, Lerman, J C, Damon, P E, and Ralph, E K, 1982, Calibration of radiocarbon dates: Tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale: Radiocarbon, v 24, no. 2, p 103-150.
- Lapp, PW, 1963, Tell er-Rumeith: Rev Biblique, v70, no. 3, p406-411. 1968, Tell er-Rumeith: Rev Biblique, v 75, no. 1, p 98-105.
- Lee, J R, (ms), 1973, Chalcolithic Ghassul: New aspects and master typology: PhD dissert, Hebrew Univ Jerusalem.
- Levy, T E, (ms), 1981, Chalcolithic settlement and subsistence in the northern Negev desert, Israel: PhD dissert, Sheffield Univ, England.
- Libby, W F, 1951, Radiocarbon dates, II: Science, v 114, no. 2960, p 291-296.
- 1954, Chicago radiocarbon dates V: Science, v 120, no. 3123, p 733-742.
- 1955, Radiocarbon dating, 2nd ed: Chicago, Univ Chicago Press, 175 p. Linder, Elisha and Ramon, Yehoshua, 1981, A bronze ram from the Sea of Athlit, Israel:
- Archaeology, v 34, no. 6, p 62-64. Marks, A E, 1975, An outline of prehistoric occurrences and chronology in the central Negev, Israel, in Wendorf, Fred and Marks, A E, eds, Problems in prehistory: North
- Africa and the Levant: Dallas, Texas, Southern Methodist Univ Press, p 351-362 1976a, Ein Aqev: A Late Levantine Upper Paleolithic site in the Nahal Aqev, with an appendix by J Anne Attebury, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev. Israel, v I, The Avdat/Aqev area, pt 1: Dallas, Texas, Southern Methodist Univ Press, p 227-291.

 1976b, Site D5: A Geometric Kebaran "A" occupation in the Nahal Zin, in
- Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v I, The Avdat/Aqev area, pt 1: Dallas, Texas, Southern Methodist Univ Press, p 293-
- 1977a, Introduction: A preliminary overview of central Negev prehistory, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v II, The Avdat/Aqev area, pt 2 and the Har Harif: Dallas, Texas, Dept Anthropol, Southern Methodist Univ, p 3-34.
- . 1977b, The Upper Paleolithic sites of Boker Tachtit and Boker: A preliminary report, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v II, The Avdat/Aqev area, pt 2 and the Har Harif: Dallas, Texas, Dept Anthropol, Southern Methodist Univ, p 61-79.
- 1981a, The Middle Paleolithic of the Negev, Israel, in Cauvin, Jacques and Sanlaville, Paul, eds, Préhistoire du Levant: Paris, Centre Nat Recherche Sci, p 287-298.
- 1981b, The Upper Paleolithic of the Negev, in Cauvin, Jacques and Sanlaville, Paul, eds, Préhistoire du Levant: Paris, Centre Nat Recherche Sci, p 343-352.
- Marks, A E and Larson, P A, Jr. 1977. Test excavations at the Natufian site of Rosh Horesha, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v II, The Avdat/Aqev area, pt 2 and the Har Harif: Dallas, Texas, Dept Anthropol, Southern Methodist Univ, p 191-232.
- Marks, A E and Scott, T R, 1976, Abu Salem: Type site of the Harifian industry of the southern Levant: Jour Field Archaeol, v 3, no. 1, p 43-60. Mellaart, James, 1979, Egyptian and Near Eastern chronology: a dilemma?: Antiquity,
- v 53, no. 207, p 6-18.
- Mendenhall, G E, 1971, The "Philistine" documents from the Hebron area: A supplementary note: Dept Antiquities Jordan Ann, v 16, p 99-102.
- Moore, A M T, 1982, A four-stage sequence for the Levantine Neolithic, ca 8500-3750 BC: Am Schools Oriental Research Bull, no. 246, p 1-34.
- Naveh, Joseph, 1982, Some recently forged inscriptions: Am Schools Oriental Research Bull, no. 247, p 53-58.
- Noy, Tamar, Legge, A J, and Higgs, E S, 1973, Recent excavations at Nahal Oren, Israel: Prehist Soc Proc, v 39, p 75-99
- Overstreet, W C, Grimes, D J, and Seitz, J F, 1982, Geochemical orientation for mineral exploration in the Hashemite Kingdom of Jordan: U S Geol Survey open-file rept 82-0791, 225 p.

- Perrot, Jean, 1968, Préhistoire Palestinienne, in Dictionnaire de la Bible, supplément 8: Paris, Letouzey & Ané, cols 286-446.
- Phillips, J L and Mintz, E, 1977, The Mushabian, in Bar-Yosef, Ofer and Phillips, J L, eds, Prehistoric investigations in Gebel Maghara, northern Sinai: Jerusalem, Inst Archaeol, Hebrew Univ Jerusalem, p 149-183.
- Prausnitz, M W and Wreschner, Ernst, 1971, Neve-Yam—A submerged Neolithic settlement: Qadmoniot, v 4, no. 4, p 120-121 (Hebrew).
- Pritchard, J B, 1964, Winery, defenses, and soundings at Gibeon: Philadelphia, Univ Mus, Univ Pennsylvania, 130 p.
- Rast, W E, 1981, Settlement at Numeira, in Rast, W E and Schaub, R T, eds, The south-eastern Dead Sea plain expedition: An interim report of the 1977 season: Am Schools Oriental Research Ann, v 46, p 35-44.
- Rast, W E and Schaub, R T, 1978, A preliminary report of excavations at Bâb edh-Dhrâc, 1975: Am Schools Oriental Research Ann, v 43, p 1-32.
- ______ 1980, Preliminary report of the 1979 expedition to the Dead Sea plain, Jordan: Am Schools Oriental Research Bull, no. 240, p 21-61.
- Reed, W. L., 1957, A recent analysis of grain from ancient Dibon in Moab: Am Schools Oriental Research Bull, no. 146, p 6-10.
- Ronen, Avraham, 1973, New radiocarbon dates from Mt Carmel: Archaeology, v 26, no. 1, p. 60-62
- Rothenberg, Beno and Lupu, Alexander, 1967, Excavations at Timna: Preliminary report on the excavations at camp no. 2 in Wadi Timna, 1964-1966: Mus Haaretz Bull, v 9, p 53-70.
- Rubin, Meyer and Suess, H E, 1956, U S Geological Survey radiocarbon dates III: Science, v 123, no. 3194, p 442-448.
- Schick, Tamar and Stekelis, Moshé, 1977, Mousterian assemblages in Kebara cave, Mount Carmel: Eretz-Israel, v 13, p 97*-149*.
- Schwarz, H.P., Blackwell, Bonnie, Goldberg, Paul, and Marks, A.E., 1979, Uranium series dating of travertine from archaeological sites, Nahal Zin, Israel: Nature, v 277, no. 5697, p 558-560.
- Schwarcz, H.P., Goldberg, P.D., and Blackwell, Bonnie, 1980, Uranium series dating of archaeological sites in Israel: Israel Jour Earth-Sciences, v 29, no. 1-2, p 157-165.
- Scott, T R, 1977, The Harifian of the Central Negev, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v II, The Avdat/Aqev area, pt 2 and the Har Harif: Dallas, Texas, Dept Anthropol, Southern Methodist Univ, p 271-322.
- Seger, J D. 1972, Shechem field XIII, 1969: Am Schools Oriental Research Bull, no. 205, p 20-35.
- Sellers, O R, 1951a, Date of cloth from the 'Ain Fashka cave: The Biblical Archaeologist, v 14, no. 1, p 29.
- ______1951b, Radiocarbon dating of cloth from the ^eAin Feshka cave: Am Schools Oriental Research Bull, no. 123, p 24-26.
- Servello, A F, 1976, Nahal Divshon: A Pre-Pottery Neolithic B hunting camp, in Marks, A E, ed, Prehistory and paleoenvironments in the central Negev, Israel, v I, The Aydat/Agev area, pt. 1: Dallas, Texas, Southern Methodist Univ Press, p. 349-370.
- Avdat/Aqev area, pt 1: Dallas, Texas, Southern Methodist Univ Press, p 349-370. Steffy, J R, 1983, The Athlit ram: A preliminary investigation of its structure: The Mariner's Mirror, v 69, no. 3, p 227-247.
- iner's Mirror, v 69, 10. 3, p 227-247. Stuiver, Mirze, 1982, A high-precision calibration of the AD radiocarbon time scale: Radiocarbon, v 24, p 1-26.
- Tchernov, E and Bar-Yosef, Ofer, 1982, Animal exploitation in the Pre-Pottery Neolithic B period at Wadi Tbeik, southern Sinai: Paléorient, v 8, no. 2, p 17-37.
- Thompson, H.O. 1973, The excavations of Tell Siran (1972): Dept Antiquities Jordan Ann, v 18, p 5-14.
- 1983, The Tell Siran bottle: An additional note: Am Schools Oriental Research Bull, no. 249, p 87-89.
- Ussishkin, David, 1978, Excavations at Tel Lachish—1973-1977, preliminary report: Tel Aviv, v 5, no. 1-2, p 1-97.
- 1983, Excavations at Tel Lachish 1978-1983: Second preliminary report: Tel Aviv, v 10, no. 2, p 97-175.
- Vita-Finzi, Claudio, 1966, The Hasa formation: An alluvial deposition in Jordan: Man (NS), v 1, no. 3, p 386-390.
- Vries, Hessel de and Waterbolk, H T, 1958, Groningen radiocarbon dates III: Science, v 128, no. 3338, p 1550-1556.
- Wachsmann, S and Raveh, K. 1981, An underwater salvage excavation near Kibbutz ha-Hotrim, Israel: Internatl Jour Nautical Archaeol Underwater Exploration, v 10, no. 2, p 160.

- Waterbolk, H T, 1971, Working with radiocarbon dates: Prehist Soc Proc, v 37, p 2, p
- Winnett, F V and Reed, W L, 1964, The excavations at Dibon (Dhībân) in Moab, pt 1-2: Am Schools Oriental Research Ann, v 36-37. New Haven, Am Schools Oriental Research, 79 p.
- Wreschner, E E, 1967, The Geula caves—Mount Carmel. Excavation, finds and summary: Quaternaria, v 9, p 69-89.
- 1977, Newe Yam-A submerged Late-Neolithic settlement near Mount Car-
- mel: Eretz-Israel, v 13, p 260*-271*. Yeivin, Ephrat and Olami, Yaakov, 1979, Nizzanim—A Neolithic site in Nahal Evtah: Excavations of 1968-1970: Tel Aviv, v 6, no. 3-4, p 99-135.
- Yogev, Ora, 1983, A fifth millennium BCE sanctuary in the 'Uvda Valley: Qadmoniot, v 16, no. 4, p 118-122.
- Zeuner, F E, 1956, The radiocarbon age of Jericho: Antiquity, v 30, no. 120, p 195-197.
- 1960, Notes on Qumrân: Palestine Explor Quarterly, v 92, p 27-36.

ADDENDUM

Two items came to the author's attention too late to be included in the article above. (1) Fourteen new dates (Hel-1417 to -1424, Pta-3320, -3336, -3364, -3368 to -3370) from Middle and Late Bronze age and Iron age strata at Lachish have just appeared in print (Ussishkin, 1983, p 164-165, tables 2-3). (2) Based on conversations with other archaeologists and remarks made in several recent publications, it would appear that there are at present 35-40 unpublished 14C dates. They come from at least 6 sites in Jordan, southern Israel, and Sinai and derive mostly from Neolithic and Chalcolithic contexts, though there are a few Epipalaeolithic and EB IV dates.

HAMBURG UNIVERSITY RADIOCARBON DATES IV

H W SCHARPENSEEL, HEINRICH SCHIFFMANN, and PETER BECKER

Ordinariat für Bodenkunde der Universität Hamburg Allendeplatz 2, 2000 Hamburg 13, West Germany

This list consists of dates of soil samples from selected soil profiles in Tunisia, Sudan, and Argentina. The profiles from Tunisia were taken to elucidate ages of typic paleosols of paleoclimatic significance. The Sudan profiles increase our understanding of pedogenesis of Sudanese Vertisols. The existence of pedoturbation in these profiles is further explored and questioned. The profiles of Argentina were dated to supplement information from chemical and micromorphological studies.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft.

SAMPLE DESCRIPTIONS

SOIL SAMPLES

Pretreatment of soil samples is described by Scharpenseel and Pietig (1969) and Scharpenseel (1972; 1977).

Tunisia

Dates are from genetic horizons or layers of soil largely characteristic of paleosols throughout Tunisia.

HAM-1029. 2420 ± 70

Fossil gyttja, 12km NW of Degache, Chott el Rharsa (34° 5′ N, 8° 11′ E), 68cm depth.

HAM-1030. $22,730 \pm 400$

Paleargid near Algerian border (33° 50′ N, 7° 43′ E), underlying fringes of dunes, 70 to 80cm depth.

HAM-1031. 8050 ± 100

Oued Lakarit (34° 3' N, 10° 2' E), fA overlying fBt, 250cm depth.

HAM-1032. 3470 ± 70

Buried Argixeroll, 12km before Ksour Essaf (35° 23' N, 10° 54' E), 90 to 100cm depth.

HAM-1033. 4550 ± 80

Tirsoid Vertisol, Sta d'Amélioration des Parcours (36° 11′ N, 10° 29′ E) 200cm depth.

HAM-1034. 7960 ± 110

Palexeroll, 18km before Tadjerouine (from Le Kef), (36° 5′ N, 8° 39′ E), 70cm depth.

HAM-1035. 8520 ± 180

Same profile, fAh, 180 to 210cm depth. Samples coll and subm 1981 by H W Scharpenseel. *Comment*: results agree with previous soil dates from Tunisia, BONN-433 and -434, HAM-157, -174, and -258, -259 (R, v 12, p 33; v 18, p 282-283; v 19, p 172) regarding three main phases of age ca 2500, 4500-5000, and 8000 BP. HAM-1030 is important, representing soil formation in older pluvial.

Dates from paleosols of deep Tunisian soil profiles located in different climatic zones from perhumid to Saharian.

HAM-1222. 2790 ± 80

Paleosol 20km W of Nefta (33° 48′ N, 7° 40′ E), exposed in sand dunes, 0.22% C, 0 to 20cm depth.

HAM-1223. $10,260 \pm 120$

Same profile, 0.11^{op} C, 60 to 80cm depth.

HAM-1224. 3350 ± 100

Paleosol, N rim of Chott Djerid, 300m W, 13km to Nefta (33° 51′ N, 8° 31′ E), 0.23% C, 32 to 51cm depth.

HAM-1225. 4330 ± 90

Same profile, 0.26% C, 73 to 90cm depth.

HAM-1226. 3980 ± 90

Same profile, 0.15% C, 100 to 105cm depth.

HAM-1227. 1950 ± 60

Humic layer in exposed gravel terrace, 7m towards Chott from HAM-1224, 40cm depth.

HAM-1229. 920 ± 80

Paleosol, W bank, 300m N of streetbridge G P 16, Kebili to Gabès, 62km W of Gabès (33° 48′ N, 9° 36′ E), marl, 0.14% C, 50 to 80cm depth.

HAM-1233. 4810 ± 80

Polyphasic steppe soil N of steep bank of Oued Ersifa, E St M C 107, Gabès-Matmata, ca 25km to Matmata (33° 46′ N, 10° 03′ E), 0.22% C, 0 to 20cm depth.

HAM-1234. 6260 ± 160

Same profile, 0.04% C, fAh, 160 to 180cm depth.

HAM-1235. 5340 ± 90

Same profile, 0.13% C, fAh, 220 to 237cm depth.

HAM-1236. 6420 ± 130

Same profile, 1.15% C, fAh, 250 to 270cm depth.

HAM-1237. 5200 ± 160

Fossil gleysoil, bank of Oued, 5km N of Remada, near G P 19 (32° 18′ N, 10° 20′ E), 0.04% C, 40 to 60cm depth.

HAM-1239. 5130 ± 80

Same profile, 0.03% C, fGo, 90 to 120cm depth.

HAM-1240. 7010 ± 170

Deep cut with several paleosols in bank of Oued Tatahouine, N of Foum Tatahouine, near St G P 19 (32° 58′ N, 10° 28′ E), steppe soil, fAh 0.04% C, 100 to 130cm depth.

HAM-1247. $13,490 \pm 220$

Same profile, fossil Bv, 750 to 770cm depth.

HAM-1248. 7880 ± 130

Cut in Quaternary sediments, 11m deep, with calcareous nodules, ca 300m SW of Matmata-Toujane St, 3.9km from Marhala-Hotel in Matmata (33° 35′ N, 10° 3′ E), 0.09% C, 160 to 200cm depth.

HAM-1249. 6570 ± 200

Same profile, 0.03% C, 330 to 380cm depth. (Due to very low C concentration slight rejuvenation during handling cannot be excluded).

HAM-1251. $13,530 \pm 370$

Paleosol, same profile, 430 to 500cm depth.

HAM-1261. 2820 ± 90

Sequence of paleosols S of St M 201 Gafsa-Moulares, 18km from center of Gafsa, cut of bank Oued Melah (34° 31′ N, 8° 31′ E), 1.1% C, epipedon 0 to 15cm depth. Following samples are from same profile.

HAM-1264.	0.39% C, 68 to 79cm	3910 ± 80
HAM-1265.	0.5% C, 93 to 105 cm	4320 ± 80
HAM-1266.	0.53% C, 105 to 131cm	2920 ± 80
HAM-1267.	2.25% C, 151 to 192cm	4490 ± 80
HAM-1268.	0.63% C, 192 to 200cm	4520 ± 80
HAM-1270.	0.66% C, 219 to 251cm	4340 ± 80
HAM-1271.	0.56% C, 251 to 264cm	3900 ± 80
HAM-1273.	0.58% C, 287 to 303cm	4510 ± 80
HAM-1274.	0.57% C, 319 to 339cm	5520 ± 80

HAM-1275. $117.0 \pm 0.6\%$ modern

Polyphasic paleosol, W El Frouch, foot of Djebel Chambi, E of road to Serept (35° 13′ N, 8° 13′ E), lower part of "Historique layer," 0.26% C, 20 to 30cm depth. Following samples are from same profile.

370	H W Scharpenseel,	Heinrich Schiffmann,	and Peter Becker
0,0	11 II benui penseet,	Tremited Schiffmann,	ana reier becker

HAM-1276.	fAh, 0.79% C, 30 to $80cm$	1980 ± 70
HAM-1277.	fAh, 1.01% C, 80 to 110cm	1090 ± 70
HAM-1278.	fAh, 0.70% C, 110 to 160cm	5100 ± 80
HAM-1279.	fBt, 0.55% C, 160 to 200cm	7270 ± 90

HAM-1283. 4080 ± 80

Red relic soil in crevices of rock, Sta Bordj Chambi, Djebel Chambi (35° 15′ N, 8° 40′ E), 1300m alt, 85 to 200cm depth.

HAM-1285. 1770 ± 80

Polyphasic paleosol, ca 800m from HAM-1275-79 (35° 13′ N, 8° 43′ E), 0.65% C, 77 to 92cm depth. Following samples are from same profile.

fAh, 0.96% C, 92 to 144 cm	1000 ± 70
0.51% C, 144 to 167cm	1900 ± 80
0.37% C, 192 to 225cm	3760 ± 90
1.25% C, 225 to 263cm	4880 ± 80
0.46% C, 287 to 312cm	4650 ± 80
	fAh, 0.96% C, 92 to 144cm 0.51% C, 144 to 167cm 0.37% C, 192 to 225cm 1.25% C, 225 to 263cm 0.46% C, 287 to 312cm

HAM-1295.

$103 \pm 0.5\%$ modern

Cut in bank of Oued Bou Hamid, foot of Djebel Semmama (35° 15′ N, 8° 54′ E), 1.31% C, 10 to 20cm depth. Following samples are from same profile.

HAM-1296.	0.62% C, 40 to 90cm	2220 ± 80
HAM-1298.	0.44% C, 185 to 195cm	2460 ± 80
HAM-1300.	0.94% C, 230 to 240cm	2700 ± 80
HAM-1302.	0.56% C, 333 to 354cm	3270 ± 90
HAM-1303.	0.59% C, 354 to 460cm	2290 ± 80
HAM-1304.		3070 ± 90

Terrace material at foot of profile.

HAM-1305. 2610 ± 90

Bank of Oued Bou Hamid, profile 200m downstream of HAM-1295-1304, 0.58% C, 52 to 67cm depth. Following samples are from same profile.

HAM-1306.	0.67% C, 67 to 105cm	3460 ± 90
HAM-1307.	0.58% C, 105 to 133 cm	3260 ± 80
HAM-1308.	0.42% C, 133 to 169cm	3560 ± 90
HAM-1310.	0.23% C, 189 to 234cm	6860 ± 100
HAM-1311.	0.18% C, 288 to 321cm	14.530 ± 250

HAM-1312. 9920 ± 120

Transition to terrace material at foot of profile, 0.03% C, 321 to 345cm (slight rejuvenation during processing of sample due to very low organic C content cannot be excluded).

HAM-1313. 900 ± 80

Organic matter in terrace substrate of Oued Bou Hamid, opposite bank of river and HAM-1305-12, 0 to 40cm depth. Following samples are from same profile.

HAM-1319.		520 ± 70
HAM-1318.	225 to 265cm	4670 ± 90
HAM-1317.	175 to 225cm	4140 ± 90
HAM-1316.	115 to 175cm	3110 ± 80
HAM-1315.	75 to 115cm	2930 ± 80
HAM-1314.	40 to 75cm	1650 ± 80

Douplex Vertisol, NW Jendouba, N of street to Chamtou, before Satfoura (Oued Bajer) (36° 33′ N, 8° 39′ E), 1.23% C, 63 to 100cm depth. Following samples are from same profile.

HAM-1319*.	HAM-1319 after 6 N HCl hydrolysis	2740 ± 80
HAM-1320.	0.34% C, 116 to 235cm	4840 ± 80
HAM-1321.	0.82% C, 235 to 250cm	4170 ± 100
HAM-1323.	0.45% C, 285 to 324cm	6760 ± 90
HAM-1324.	Flood deposited young material, 324 to 350cm.	1940 ± 80

HAM-1326. 1660 ± 60

Polyphasic paleosol, bank of Oued Ogla, ca 2km W of street G P 17, Le Kef—Tadjerouine, N bank (36° 5′ N, 8° 38′ E), 0.74% C, 0 to 40cm depth. Following samples are from same profile.

HAM-1327.	1.15% C, 80 to 110cm	3100 ± 70
HAM-1329.	1.38% C, 146 to 178cm	5550 ± 80
HAM-1330.	0.88% C, 178 to 210cm	4270 ± 90

HAM-1333. $122.5 \pm 0.7\%$ modern

Medjerdah alluvium, E Tebourba, S of street Tebourba to Tunis (36° 49′ N, 9° 53′ E), 0.84% C, 47 to 64cm depth. Following samples are from same profile.

HAM-1334.	0.49% C, 80 to 110cm	$106.6 \pm 0.5\%$ modern
HAM-1335.	0.57% C, 110 to 140cm	1730 ± 80
HAM-1336.	0.37% C, 140 to 182cm	1240 ± 80

372 H W Scharpenseel, Heinrich Schiffmann,	and Peter Recker	
--	------------------	--

HAM-1341.		2420 ± 80
HAM-1340.	0.25% C, 306 to 420cm	3350 ± 100
HAM-1339.	0.37% C, 252 to 306cm	5850 ± 90
HAM-1338.	0.75% C, 212 to 258cm	5620 ± 90
HAM-1337.	0.47% C, 182 to 212cm	2790 ± 80

Alluvium of Oued Miliane, N of street Pont du Fahs-Smindja, 10km from Pont de Fahs (36° 28′ N, 9° 56′ E), 0.40% C, 130 to 156cm depth. Following samples are from same profile.

HAM-1342.	0.78% C, 156 to 189cm	2830 ± 80
HAM-1343.	0.80% C, 225 to 258cm	3100 ± 80
HAM-1346.	0.19% C, 323 to 378cm	3350 ± 90

HAM-1347.

100% of modern

Wadi with paleosols, N of G P 3, road from Kairouan to Sbeitla, $1300 \mathrm{m}$ W crossing Sbeitla-Kairouan-Tunis (35° 36' N, 10° 1' E), entrance to quarry, 0.32% C, 0 to 20cm depth. Following samples are from same profile.

HAM-1348.	0.33% C, 20 to 42cm	90 ± 80
HAM-1349.	0.32% C, 42 to 68 cm	2030 ± 80
HAM-1350.	0.42% C, 68 to 87cm	2530 ± 80
HAM-1351.	0.57% C, 87 to 115cm	2650 ± 80
HAM-1352.	0.81% C, 130 to 172cm	4030 ± 90

HAM-1358. 4930 ± 90

Cut in alluvium of Oued Melize, S of G P 6, Jendouba to Ghardimaou, near bridge (36° 28′ N, 8° 29′ E), fAh, 0.43% C, 290 to 340cm depth. Following samples are from same profile.

HAM-1360.	fAh, 0.36% C, 404 to 460cm	6560 ± 120
HAM-1361.	fAh, 0.76% C, 530 to 580cm	3510 ± 80
HAM-1362.	fAh, 0.77% C, 580 to 630cm	4460 ± 90
HAM-1363.	fAh, 0.60% C, 630 to 675cm	6420 ± 100
HAM-1364.	fAh, 0.34% C, 675 + cm	$11,020 \pm 130$

HAM-1365.

$146.5 \pm 0.5\%$ modern

W of G P 1, Tunis—Sfax, km 84 to Sousse, near crossing, Hammamet R cut (36° 25′ N, 10° 28′ E), fAh, 0.19% C, 80 to 125cm depth. Following samples are from same profile.

HAM-1366.	0.19% C, 125 to 150cm	780 ± 80
-----------	-----------------------	------------

HAM-1367. 0.67% C, 150 to 180cm

 620 ± 80

HAM-1369. 1040 ± 80

Paleosol in bank of Oued Guilene, E of G P 12, Haffouz to Maktar, near bridge (35° 50′ N, 9° 14′ E), fAh, 0.34% C, 40 to 60cm.

HAM-1371. 950 ± 80

Paleosol in bank of Oued Hatab, S of G P 4, Maktar to Tebessa (35° 44′ N, 9° 3′ E), 300m before crossing with M C 71, 100m from street, fAhGr, 0.43% C, 380 to 450cm. Following samples are from same profile.

HAM-1378.		1790 ± 80
HAM-1377.	0.32% C, 650 to 690cm	8080 ± 130
HAM-1376.	0.23% C, 617 to 650cm	6420 ± 100
HAM-1375.	0.35% C, 586 to 617 cm	3450 ± 70
HAM-1374.	0.59% C, 558 to 586cm	3150 ± 90
HAM-1373.	0.89% C, 497 to 558cm	3880 ± 90
HAM-1372.	0.75% C, 450 to 497 cm	2530 ± 70

Paleosol in N bank of Medjerdah R, 500m E of bridge Ghardimaou (36° 26′ N, 8° 22′ E), 0.26% C, 80 to 120cm. Following samples are from same profile.

HAM-1379.	0.40% C, 200 to 240cm	1420 ± 80
HAM-1380.	0.37% C, 270 to 400cm	3820 ± 80

HAM-1381. Parallel sample to HAM-1380, but 100m W. $15,000 \pm 210$

Samples coll and subm 1979 by H Schiffmann and H U Neue, Ordinariat f Bodenkunde, Univ Hamburg. *Comment*: most paleosols indicate origin during Rharbien/Holocene. Only HAM-1247, -1251, -1311, -1364, -1381 reach into late Soltanien/Würmian; HAM-1030, a buried Argid, suggests soil formation during Soltanien pluvial/Würmian high glacial.

In all other paleosol/sediment samples, ratio of organic to carbonate C was too low for reliable sample of 3g organic C after carbonate destruction. Our efforts were wasted, when we tried to produce datable samples from materials of low organic C but high carbonate C. The benzene method, requiring 2 to 3g C, is obsolete for such samples that contain <0.1% organic C.

Results further indicate, that depth of "Historique-layer" as well as of Rharbien/Holocene soils is often underestimated due to extensive fluvial transport during rainy season or torrential floods in ustic and xeric climate. Some anomalous dates, mostly at greater depth (HAM-1249, -1266, -1277, -1303, -1324, -1330, -1340, -1361, -1374) are explainable only by flood deposition of substantial lumps of soil at the flank of the riverbed. Another explanation, animal transport of younger organic matter cannot be excluded. The results confirm our hypothesis, that dating of

such sediments, eg, for paleoclimatic inf, is not very reliable when based on single or few samples. Layer by layer sampling and dating of 5 to 2cm intervals, including Δ^{13} C, as we are doing now in connection with other sample collns, guarantees max resolution of C dynamics.

Results of Tunisia series including earlier dates (BONN-433 and -434; HAM-157 to -174, -258 and -259 (R, v 12, p 33; v 18, p 282-283; v 19, p 172) confirm strongly developed soil formation, frequently in several distinguishable phases during Rharbien (Scharpenseel & Zakosek, 1979; Scharpenseel et al, 1980; Scharpenseel et al, in press). Figures 1a and 1b are histograms of all available ¹⁴C dates of Tunisian soil sediment and groundwater samples, indicating time intervals of higher humidity responsible for soil and groundwater formation. Since sampling was done rather randomly all over the country, the number of samples of certain ages may reflect, within limits of total number of samples, frequency of occurrence of different ages.

Sudan

Thirteen soil profiles of Vertisols from Gezira were measured. Instead of coordinates, which were not taken, sampling loci are according to figure 2. Samples are part of large sample colln including Vertisols of all continents (fig 3).

HAM-1407. 640 ± 80

Profile 1, 1km SW of Wad Shawer, 0 to 20cm depth. Following samples are from same profile.

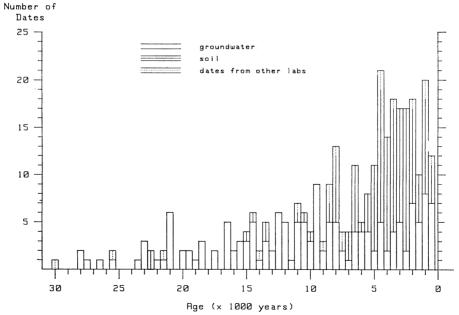


Fig 1a. ¹⁴C dates of all available Tunesian groundwater and soil samples; histogram for 500 yr intervals (groundwater dates corrected according to Tamers (1967).

	Hamburg University Radiocarbon Dates IV	375
HAM-1408.	20 to 40cm	1720 ± 80
HAM-1409.	40 to 60cm	1870 ± 80
HAM-1410.	60 to 80cm	2640 ± 90
HAM-1411.	80 to 100cm	4660 ± 90
HAM-1412.	100 to 120cm	4680 ± 90
HAM-1413.	120 to 140cm	5190 ± 100
HAM-1414.	140 to 165cm	5580 ± 100
HAM-1415.	165 to 185cm	3390 ± 80
HAM-1416.	185 to 210cm	5050 ± 90
HAM-1417.	210 to 235cm	1900 ± 80
HAM-1418.	235 to 270cm	3470 ± 80
HAM-1419.	270 to 300cm	5770 ± 100
HAM-1420.	300 to 330cm	4780 ± 90
HAM-1424.		1570 ± 80

Profile 2, Gezira Selemme Hum Dalik Minor/Wad Mahmoud Major, 0 to 15cm depth. Following samples are from same profile.



Fig 1b. ¹⁴C dates of all available Tunesian groundwater and soil samples; histogram for 250 yr intervals (no groundwater date correction).

376 H W Scharpenseel, Heinrich Schiffmann, and Peter Becker

HAM-1425.	15 to 40cm	2210 ± 80
HAM-1426.	40 to 65cm	2040 ± 80
HAM-1427.	65 to 90cm	3240 ± 80
HAM-1428.	90 to 120cm	5330 ± 90
HAM-1429.	120 to 140cm	6250 ± 100
HAM-1430.	140 to 160cm	6290 ± 90
HAM-1433.	210 to 245cm	4690 ± 80
HAM-1434.	245 to 280cm	6300 ± 90

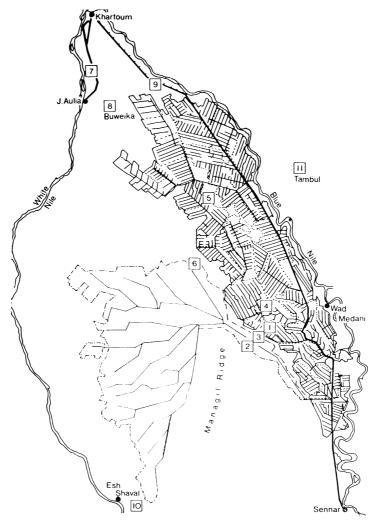
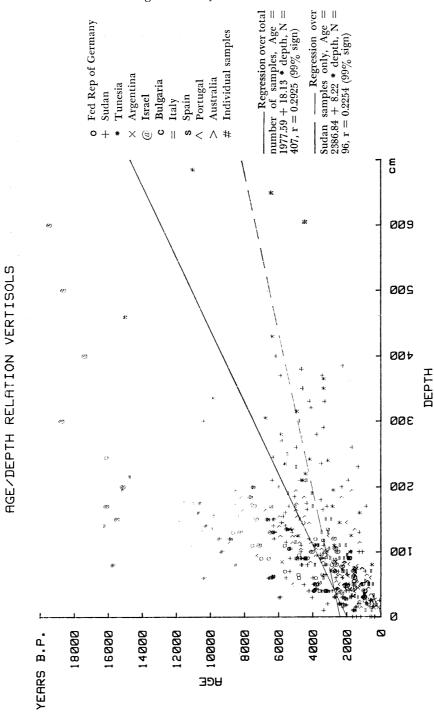



Fig 2. Sites of dated soil profiles in Gezira, Sudan.

Fig 3. Age vs depth, Vertisols (world-wide), id by countries of origin.

HAM-1440.

$106.5 \pm 1\%$ modern

Profile 3, Vertisol, 400m W of Saraf Omeir Minor, 0 to 25cm depth. Following samples are from same profile.

Following samples are from same profile.		
25 to 45cm	70 ± 70	
45 to 70cm	2070 ± 80	
70 to 100cm	2500 ± 120	
135 to 155cm	5270 ± 140	
155 to 180cm	5710 ± 100	
180 to 210cm	3500 ± 90	
210 to 240cm	6360 ± 130	
300 to 330cm	$10,370 \pm 150$	
370 to 400cm	5850 ± 180	
400 to 430cm	6150 ± 170	
	540 ± 70	
, Vertisol, Madina Block 15, 0	to 20cm depth. Following sam-	
•	1000	
20 to 40cm	1230 ± 80	
40 to 60cm	2350 ± 80	
60 to 80cm	2260 ± 80	
80 to 100cm	4620 ± 90	
120 to 140cm	4210 ± 90	
165 to 175cm	4320 ± 120	
175 to 205cm	4390 ± 120	
	370 ± 80	
Profile 5, Vertisol, 1km W of Meheiriba, 0 to 20cm depth. Following samples are from same profile.		
20 to 40cm	2200 ± 80	
40 to 65cm	3460 ± 90	
65 to 90cm	3230 ± 90	
90 to 115cm	4710 ± 100	
115 to 145cm	5550 ± 100	
145 to 170cm	5840 ± 100	
170 to 200cm	5390 ± 120	
	25 to 45cm 45 to 70cm 70 to 100cm 135 to 155cm 155 to 180cm 180 to 210cm 210 to 240cm 300 to 330cm 370 to 400cm 400 to 430cm 400 to 430cm 40 to 60cm 60 to 80cm 80 to 100cm 120 to 140cm 165 to 175cm 175 to 205cm 6, Vertisol, Ikm W of Meheirib from same profile. 20 to 40cm 40 to 65cm 65 to 90cm 90 to 115cm 115 to 145cm 115 to 145cm 145 to 170cm	

Hamburg University Radiocarbon Dates IV	379	
HAM-1481. 200 to 230cm	5980 ± 170	
HAM-1486. 350 to 380cm	4580 ± 180	
HAM-1487. 380 to 410cm	4640 ± 190	
HAM-1488.	1180 ± 80	
Profile 6, Vertisol, Qoz er Ruheid, 0 to 20cm depth. F ples are from same profile.	ollowing sam-	
HAM-1489. 20 to 40cm	1240 ± 80	
HAM-1490. 40 to 70cm	2050 ± 80	
HAM-1492. 100 to 130cm	1280 ± 80	
HAM-1493. 130 to 170cm	1270 ± 100	
HAM-1494. 170 to 200cm	3160 ± 80	
HAM-1495. 200 to 230cm	2280 ± 110	
HAM-1497. 260 to 300cm	4940 ± 250	
	1.3% modern	
Profile 7, Vertisol in terrace of White Nile, SE rim of 10cm depth. Following samples are from same profile.	Tureina, 0 to	
HAM-1501. 10 to 30cm	3350 ± 80	
HAM-1502. 30 to 50cm	4030 ± 90	
HAM-1503. 50 to 70cm	4510 ± 90	
HAM-1504. 70 to 90cm	5340 ± 100	
HAM-1505. 90 to 110cm	3280 ± 90	
HAM-1506. 110 to 140cm	3860 ± 90	
HAM-1511. 147.5 \pm 4% modern Profile 8, Vertisol, 1km W of Buweika, surface sample. Following samples are from same profile.		
HAM-1512. 0 to 20cm	1660 ± 80	
HAM-1513. 40 to 60cm	2870 ± 90	
HAM-1514. 60 to 80cm	3600 ± 90	
HAM-1515. 80 to 100cm	4310 ± 100	
HAM-1521. Profile 9, Vertisol, 8km W of Mesou dir Secondary Block, 0 to 20cm depth. Following samples are from same pr		
HAM-1522. 20 to 40cm	3120 ± 90	

380 H W Scharpenseel, Heinr	ich Schiffmann, and Peter Becker	
HAM-1523. 40 to 60cm	4230 ± 250	
HAM-1524. 60 to 80cm	5560 ± 100	
HAM-1530.	320 ± 70	
Profile 10, Vertisol, 3km NE ing samples are from same profile.	of Esh Shaval, 0 to 30cm depth. Follow-	
HAM-1535. 150 to 180cm	4530 ± 80	
HAM-1537. 210 to 240cm	5930 ± 120	
HAM-1538. 240 to 285cm	5760 ± 100	
HAM-1539. Profile 11, Vertisol, 3km N of samples are from same profile.	120 ± 100 of Tamsul, 0 to 25cm depth. Following	
HAM-1540. 25 to 50cm	1780 ± 80	
HAM-1541. 50 to 75cm	1930 ± 80	
HAM-1542. 75 to 100cm	3220 ± 90	
HAM-1543. 100 to 125cm	3850 ± 90	
HAM-1544. 125 to 150cm	5260 ± 100	
HAM-1545. 150 to 175cm	5190 ± 100	
HAM-1546. 175 to 200cm	3660 ± 90	
HAM-1547. 200 to 225cm	5320 ± 110	
HAM-1012. 125.4 \pm 1% modern Vertisol, sent by Gezira Admin, Hosh series, entic Pellustert, Ghabsaneblock, 0 to 15cm depth. Following samples are from same profile.		
HAM-1013. 15 to 40cm	470 ± 80	
HAM-1014. 40 to 90cm	1970 ± 80	
HAM-1015. 90 to 135cm	3360 ± 90	
HAM-1016. 135 to 180cm	3210 ± 90	
Medani, fallow plot, 0 to 10cm of profile.	1390 ± 70 Chromustert, Gezira Research Sta, Wad lepth. Following samples are from same 430 ± 70	
HAM-1018. 10 to 30cm	430 ± 70	

 $480\,\pm\,70$

 $1740\,\pm\,80$

HAM-1020. 50 to 95cm

HAM-1021. 95 to 140cm

Samples coll and subm 1979 by H Schiffmann and O Khodary, Ordinariat f Bodenkunde, Univ Hamburg and Soil Survey Admin Wad Medani, Sudan, Comment: 13 soil profiles of different depth, serving as cross-sec of Gezira Vertisols, reflect age gradients up to ca 10,000 BP, mostly 5000-6000 BP. This coincides with existing estimates (Greene, 1928; Tothill, 1946), placing origin of Gezira soils in Alleröd time, when allowance is made for slow development to climax of humic-C accumulation as well as for inevitable rejuvenation within cracking zone. Self-mulching, accompanied by above-mentioned crack formation during dry season can bring about inflections of age gradient with depth caused by modern organic matter dropping in deepest holes of cracks (profile 1, 5, 7). If below inflection trend of age vs depth increase continues, it confirms that pedoturbation ends with deepest point of age inflection (profile 2,11). Interruption of age vs depth trend can also be influenced by termite holes and droppings or individual deep roots. Within graph of dated Vertisols of worldwide origin, the correlation of age vs depth is highly significant, and dates of Sudanese Vertisols are located mostly below regression line in younger age vs depth bracket (see fig 3).

Argentina

Samples dated for genesis of Vertisols in Entre Rios prov, testing extent of vertic soil dynamics (pedoturbation).

HAM-1178. 2810 ± 70

Soils from rolling pampa near Pergamino (33° 40′ S, 60° 3′ W), vertic Argiudoll, loess, Urquiza series.

HAM-1179. 2220 ± 70

Typic Argiudoll (34° 13′ S, 60° 49′ W), loess, Rojas series.

HAM-1180. 1650 ± 60

Typic Hapludoll (34° 53′ S, 60° 25′ W), sandy loess, Segui series.

HAM-1204. 300 ± 50

Crossing Hwy La Paz to Feliciano street San Gustavo (30° 42′ S, 59° 26′ W), argillic Pelludert, 1.3% C, 15 to 30cm depth. Following samples are from same profile.

HAM-1205.	0.9% C, 30 to 50 cm	1120 ± 60
HAM-1206.	0.8% C, 45 to 60 cm	1650 ± 80
HAM-1207.	0.8% C, 60 to 75 cm	2880 ± 80
HAM-1208.	0.6% C, 75 to 90 cm	4440 ± 110

HAM-1209. $106 \pm 0.9\%$ modern

Profile, Fac Agric, UNL near Paraná (31° 50′ S, 60° 32′ W), vertic Pelludert, 1.5% C, 0 to 17cm depth. Following samples are from same profile.

HAM-1210.	1.3% C, 17 to 43cm	240 ± 70
HAM-1211.	1.3% C, 43 to 60 cm	440 ± 70
HAM-1212.	0.9% C, 80 to 100 cm	2180 ± 90

HAM-1213.

 $108 \pm 1\%$ modern

Fac Agric, UNL near Paraná (31° 50′ S, 60° 32′ W), Febré 2, vertic Argiudoll, 1.5% C, 0 to 17cm depth.

HAM-1214. 1120 ± 60

10km SW of General Campos, near main street (31° 26′ S, 58° 25′ W), Yerna 1, argillic Pelludert, 1% C, 15 to 30cm depth. Following samples are from same profile.

HAM-1556.		1910 ± 60
HAM-1666.	0.2% C, 90 to 105cm	3760 ± 70
HAM-1554.	0.4% C, 75 to 90 cm	4140 ± 90
HAM-1553.	0.6% C, 60 to 75 cm	2890 ± 70
HAM-1552.	0.7% C, 45 to 60cm	2610 ± 70
HAM-1551.	0.8% C, 30 to 45 cm	2320 ± 60
HAM-1550.	2.7% C, 0 to 15cm	$107 \pm 1\%$ modern

Oro Verde 2, 1.25km NW of Experimental Sta INTA, Paraná (31° 52′ S, 60° 27′ W), Campo anexo, aquic Argiudoll, 0.5% C, 45 to 65cm depth.

HAM-1549. 1110 ± 70

Fac Agric, UNL near Paraná, Febré 2, vertic Argiudoll, 0.8% C, coord, see HAM-1213, 42 to 58cm depth.

Samples coll and subm by S Stephan, Inst f Bodenkunde, Univ Bonn. Comment: soils, investigated by micromorphology, scanning electron microscopy, EDAX and laser-induced mass spectroscopy, and ¹⁴C dating show that process of pedoturbation is, at most, very slow and incomplete. ¹⁴C age gradients in typical zone of crack formation in real Vertisols is not too pronounced for effective churning and self-mulching system (Stephan et al, 1983). As for most vertic soils, tested soil profiles are rather young.

REFERENCES

Greene, H, 1928, Soil profile in the eastern Gezira: Jour Agric Sci, v 18, p 527.

Scharpenseel, H W, 1972, Messung der natürlichen C-14 Konzentration in der organischen Substanz von rezenten Böden, eine Zwischenbilanz: Zeitschr Pflanzenernähr Bodenkunde, v 133, p 241-263.

Scharpenseel, H W and Pietig, F, 1969, Einfache Boden und Wasserdatierung durch Messung der ¹⁴C- und Tritium-Konzentration: Geoderma, v 2, p 273-289.

Scharpenseel, H W, Pietig, F, and Schiffmann, H, 1976, Hamburg University radiocarbon dates I: Radiocarbon, v 18, p 268-289.

- Scharpenseel, H W and Schiffmann, H, 1977, Hamburg University radiocarbon dates II: Radiocarbon, v 19, p 170-182.
- Scharpenseel, H W, Schiffmann, H, Neue, H U, Selmi, S, and Souissi, A, in press, Radiocarbon dating of Tunisian soils, in Maghrebien soil sci conf, 1st, Proc. Tunis, May
- 1983, in press.

 Scharpenseel, H W and Zakosek, H, 1979, Phasen der Bodenbildung in Tunesien:
 Zeitschr Geomorph N F supp, v 33, p 118-126.
- Scharpenseel, H W, Zakosek, H, Neue, U, and Schiffmann, H, 1980, Search for pedogenic phases during younger Pleistocene and Holocene (Soltanien and Rharbien) of Tunisia, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th,
- Proc: Radiocarbon, v 22, no. 3, p 879-884.

 Stephan, S, Berrier, J, De Petre, A A, Jeanson, C, Kooistra, M J, Scharpenseel, H W, and Schiffmann, H, 1983, Characterization of in situ organic matter constituents in Vertisols from Argentina, using submicroscopic and cytochemical methods-first report: Geoderma, v 30, p 21-34.
- Tamers, M A, 1967, Radiocarbon ages of groundwater in an arid zone unconfined aqui-
- fer: Am Geophys Union Mono, v 11, p 143-152. Tothil, J D, 1946, The origin of the Sudan Gezira clay plain: Sudan, Notes and Records,

INSTITUT ROYAL DU PATRIMOINE ARTISTIQUE RADIOCARBON DATES X

MICHÈLE DAUCHOT-DEHON, MARK VAN STRYDONCK, and JOS HEYLEN

Institut royal du Patrimoine artistique, Koninklijk Instituut voor het Kunstpatrimonium, Brussels, Belgium

This list contains the results of ¹⁴C determinations obtained at the laboratory in 1982-1983.

ACKNOWLEDGMENTS

The authors would like to thank the 14 C laboratory in Lyon for the δ^{13} C measurement. M Dupas is gratefully acknowledged for analysis of mortar samples.

GEOLOGIC SAMPLES

Belgium

Doel-Beveren series

Peat and wood from Doel-Beveren in O Vlaanderen (51° 18′ N, 4° 15′ E). Coll Sept 1981 and subm Oct 1982 by C Verbruggen, Univ Gent, Belgium.

IRPA-454. III 4900 ± 60

Peat from base of thin clay layer at 350cm depth. Comment (CV): date is probably correct.

IRPA-455. I 2050 ± 70

Peat from top of peat layer at 200cm depth. Comment (CV): date agrees with extension of Fagus in pollen diagram, typical for that period.

IRPA-456. I 3000 ± 70

Wood from top of peat layer at 200cm depth. Comment (CV): date similar to IRPA-455 was expected.

IRPA-457. II 5350 ± 70

Peat from top of thin layer at 338cm depth. Comment (CV): date is too old compared to IRPA-454 at base of layer.

IRPA-458. IV 5490 ± 80

Peat from base of peat layer at 412cm depth. Comment (CV): date confirms onset of peat growth in lower Scheldt-basin.

Assenede series

Peat from Holocene sediment in de Schelde polders at Assenede in O Vlaanderen (51° 16′ N, 3° 47′ E). Coll and subm Sept 1982 by C Baeteman, Geol Service, Belgium.

IRPA-487. B1 3130 ± 60

Peat from 168 to 183cm.

Michèle Dauchot-Dehon, Mark Van Strydonck, and Jos Heylen 385

IRPA-488. (1) B87 3790 ± 6	± 60
--------------------------------	------

Peat from 155 to 180cm. Distillation product.

IRPA-488.	(2) B87	3900 ± 60
IKPA-488.	(2) B87	3900 ± 00

Peat from 155 to 180cm.

IRPA-489. B5
$$3090 \pm 60$$

Peat from 140 to 150cm.

IRPA-567. DB3
$$4560 \pm 70$$

Peat from 155 to 160cm.

IRPA-568. DB4
$$2230 \pm 50$$

Peat from 185 to 190cm.

General Comment (CB): IRPA-567 is much older than other dates, most probably due to boring (DB3) in strong micro-relief of top of cover sand. IRPA-568 is much younger than expected most probably due to contamination by younger roots.

Western coastal plain of Belgium series

Peat and wood from several levels of core in W Vlaanderen. Dated to study evolution of so-called surface peat (Baeteman *et al*, 1979; Baeteman, ms). Coll and subm 1982 by C Baeteman.

IRPA-524. Driegrachten 1-A

 3610 ± 60

Wood from 383 to 388cm at Noordschote (50° 57′ 45″ N, 2° 49′ 22″ E).

IRPA-529. Driegrachten 1-B

 3540 ± 60

Peat from 383 to 388cm at Noordschote (50° 57′ 45″ N, 2° 49′ 22″ E). General Comment (LD): samples date slight increase of marine influence corresponding with end of peat formation in some parts of coastal plain.

IRPA-530. Driegrachten 2

 3790 ± 60

Peat from 463 to 467cm at Noordschote (50° 57′ 45″ N, 2° 49′ 22″ E). Comment (LD): dates possible dry period indicated by diatom analysis.

IRPA-531. Driegrachten 3

 5220 ± 70

Peat from 611 to 617cm at Noordschote (50° 57′ 45″ N, 2° 49′ 22″ E).

IRPA-532. Pervijse Orthodoxe kerk 1

 5130 ± 70

Peat from 408 to 411cm at Lampernisse (51° 03′ 20″ N, 2° 47′ 32″ E).

IRPA-538. Jacobs 1

 5360 ± 70

Peat from 410 to 412cm at Oudekapelle (51° 01′ 11″ N, 2° 48′ 10″E). General Comment (CB): samples date onset of freshwater predominance and early start of continuous peat growth in region. Dates are as expected. They coincide well and show that peat growth started slightly earlier in land areas than in surrounding areas.

IRPA-537. Jacobs 2

 1870 ± 60

Peat from 217 to 220cm at Oudekapelle (51° 01′ 11″ N, 2° 48′ 10″ E). Comment (CB): age indicates that end of peat growth in area is later than in surrounding areas. Date agrees with expected ages as other ¹⁴C dates indicated that in this area peat could grow much longer than in surrounding coastal plain.

IRPA-533. Pervijse Orthodoxe kerk 2

 7230 ± 70

Peat from 882 to 885cm at Lampernisse (51° 03′ 20″ N, 2° 47′ 32″ E).

IRPA-534. Pervijse Orthodoxe kerk 3

 7110 ± 90

Peat from 875 to 879cm at Lampernisse (51° 03′ 20″ N, 2° 47′ 32″ E).

IRPA-541. Dijk 1

 6680 ± 80

Peat from 816 to 819cm at Oudekapelle (51° 01′ 11″ N, 2° 48′ 10″ E).

IRPA-542. Dijk 2

 6870 ± 80

Peat from 833 to 836cm at Oudekapelle (51° 01′ 11″ N, 2° 48′ 10″ E). General Comment (CB): top and base of basal peat showed that initial marine influence in area was already occurring at beginning of Atlantic period. Dates agree with expected ages in relation to depth.

Oostkerke series

Peat from Oostkerke, W Vlaanderen (51° 02′ 40″ N, 2° 47′ 30″ E). Coll and subm Sept 1982 by C Baeteman.

 6750 ± 80

IRPA-536. 12.34 to 12.38m

 7000 ± 80

General Comment (CB): samples date top and base of deepest intercalated peat layer, as yet known, in coastal plain in first part of Atlantic period.

Avekapelle series

Peat from Avekapelle, W Vlaanderen (51° 03′ 55″ N, 2° 45′ 55″ E). Coll and subm Sept 1982 by C Baeteman.

 3890 ± 70

IRPA-540. 760 to 768cm

 2680 ± 60

General Comment (CB): both samples were coll from same tidal channel sequence at rather great depth (-5.7m and -3.5m). Ages show that peat is eroding from surface of upper regional peat layer and not from second regional peat layer occurring at greater depth (-2.5m).

Wulpen series

Peat from Wulpen in W Vlaanderen (51° 06′ N, 2° 42′ 45″ E). Coll and subm March 1982 by C Baeteman. Results used to study stratigraphy in Western coastal plain.

IRPA-527. Wulpen A-1

 3490 ± 60

Base of upper peat layer at 117cm below surface.

IRPA-528. Wulpen A-2

 2970 ± 60

Top of upper peat layer at 100cm below surface.

General Comment (CB): samples coll from top and base of upper part of "surface peat" in area divided by intercalated clay layer, corresponding with CIV-B transgression. Age of top coincides well with all other data indicating end of surface peat in W coastal plain. Age of base coincides with some dates of similar series in same area (Baeteman et al, 1979).

IRPA-512. Raversyde

 2580 ± 60

Peat from top layer at 349cm below surface in W Vlaanderen (51° 11′ 45″ N, 2′ 52′ 20″ E). Coll and subm Jan 1983 by C Baeteman.

Kallo series

Peat and wood from Kallo, Antwerpen (51° 15′ 45″ N, 4° 14′ 31″ E). Coll and subm May 1982 by D Ferguson, Univ Antwerpen, Belgium.

 2530 ± 70

Wood at 190cm below surface.

IRPA-544. Profile 2-1

 2810 ± 60

Top of peat layer at 130cm below surface.

IRPA-545. Profile 2-2

 4240 ± 70

Middle of peat layer at 227cm below surface.

IRPA-546. Profile 2-3

 6790 ± 80

Base of peat layer at 347cm below surface.

Mark series

These results complete pub list (R, 1981, v 23, p 345-346; R, 1983, v 25, p 868-869) of samples from alluvial plain of Mark R in W Vlaanderen and Brabant. Coll and subm 1983 by W Huybrechts, Geol Inst, Free Univ Brussels.

IRPA-506. Galmaarden B80/6/36 Top 2580 ± 60

Clayey peat 229 to 234cm below surface (50° 45′ N, 3° 57′ E).

IRPA-548. Galmaarden B80/6/36 Base 3260 \pm 60 Clayey peat 280 to 290cm below surface (50° 45′ N, 3° 57′ E).

IRPA-549. Galmaarden B82/6/16 Top 4330 \pm 70 Clayey peat 362 to 367cm below surface (50° 45′ N, 3° 57′ E).

IRPA-550. Galmaarden B81/6/16 Top 5730 \pm 80 Clayey peat 320 to 326cm below surface (50° 45′ N, 3° 57′ E).

IRPA-551. Galmaarden B81/6/16 Base 5770 ± 80 Clayey peat 341.5 to 350cm below surface (50° 45′ N, 3° 57′ E).

IRPA-552. Herne B81/6/5 Middle 8890 ± 100

Wood 622 to 625cm below surface (50° 43′ N, 4° 01′ E).

IRPA-554. Herne B81/6/5 Base

 $10,060 \pm 110$

Residues of wood 695 to 700cm below surface (50° 43′ N, 4° 01′ E).

IRPA-556. Herne B81/6/9 Base

 2390 ± 6

Wood 195 to 200cm below surface (50° 43′ N, 4° 01′ 15″ E).

Other countries

IRPA-543. Hulst

 3770 ± 70

Wood (trunk) from upper peat layer in Schelde Channel at Hulst, Zeeuws Vlaanderen, Netherlands (51° 22′ N, 4° 13′ E). Coll and subm March 1983 by S Dievoet.

Djelfa series

Calcareous crusts and organic material from Djelfa, Algeria. Coll and subm Feb 1981 by H Tsaki, Univ Oran, Algeria.

IRPA-451. DJI/E1DZ

 7970 ± 370

Organic material from black soil horizon (34° 41′ N, 3° 15′ E) at 850cm in profile. Diluted: 26% sample. Expected age: 7000 to 10,000 Bp.

IRPA-459. C107/1DCDZ

 $21,000 \pm 350$

Calcareous crust from 20cm depth (34° 52′ N, 3° 27′ E). Expected age: >20,000 BP.

IRPA-460. C88DCDZ

 $10,570 \pm 120$

Crusty calcareous tufa from 40cm depth (34° 50′ N, 3° 27′ E). Expected age: 10,000 to 15,000 вр.

IRPA-461. C13bis 1DCDZ

>47,000

Calcareous crust from 10cm depth (34° 53′ N, 3° 26′ E). Expected age: >30,000 BP.

IRPA-462. C13/2DCDZ

 $26,000 \pm 800$

Crusty calcareous tufa from 25cm depth (34° 53′ N, 3° 27′ E). Expected age: >30,000 BP.

IRPA-463. C13/1DCDZ

 $14,910 \pm 180$

Calcareous crust from 10cm depth (34° 53′ N, 3° 27′ E). Expected age: >25,000 BP.

IRPA-464. DCI/ODZ

 $31,200 \pm 1300$

Calcareous and friable crust from 80cm depth (34° 53′ N, 3° 26′ E). Expected age: >30,000 BP.

IRPA-465. DCI/00DZ

 $31,600 \pm 1300$

Calcareous crust from 30cm depth (34° 53′ N, 3° 26′ E). Expected age: >30,000 BP.

IRPA-466. DCI/000DZ

 $22,200 \pm 430$

Calcareous crust from 10cm depth (34° 53′ N, 3° 26′ E). Expected age: >30,000 BP.

Institut Royal du Patrimoine Artistique Radiocarbon Dates X 389

IRPA-467. C52DCDZ

 25.100 ± 600

Calcareous crust from 30cm depth (34° 51′ N, 3° 27′ E). Expected age: >20,000 BP.

IRPA-468. DJII/2DZ

 $34,400 \pm 2100$

Calcareous crust from 20cm depth (34° 50′ N, 3° 20′ E). Expected age: >40,000 BP.

IRPA-469. DCI/3DZ

 $11,730 \pm 140$

Calcareous and friable crust from 50cm depth (34° 51' N, 3° 27' E).

IRPA-470. DJII/7DZ

>48,000

Calcareous crust, very powdery, from 180cm depth (34° 40′ N, 3° 20′ E). Expected age: >40,000 BP.

IRPA-471. DJII/4DZ

 $36,800 \pm 2800$

Crusty calcareous tufa from 60cm depth (34° 40′ N, 3° 20′ E). Expected age: >40,000 BP.

General Comment (HT): all samples are of Würmian or Soltanien age in stratigraphy of North Africa, which indicate that crusts have been redeposited. This can be explained by running water during last period of rain. Chronology of layers follows: crusts (IRPA-460 and -469) and crusts (IRPA-459) of Tensifto-Amirien glacis from middle Quaternary are younger than crust (IRPA-462) and crust (IRPA-466) of Soleto-Moulouyenne outliers from lower Quaternary. Results confirm geomorphologic layers.

ARCHAEOLOGIC SAMPLES

Belgium

IRPA-526. Evergem

 3480 ± 60

Charcoal from Evergem, O Vlaanderen (51° 6′ 36″ N, 3° 42′ 32″ E). Coll and subm Dec 1982 by C Verbruggen. Archaeol date: Bronze age.

Destelbergen series

Charcoal from graves, Destelbergen, O Vlaanderen (51° 03′ 16″ N, 3° 46′ 40″ E). Coll and subm June 1982 by H Thoen, Univ Gent, Belgium.

IRPA-476. Grave 84

 2430 ± 50

Sample from 64 to 94cm depth. Expected age: Bronze or Early Iron age.

IRPA-477. Grave 87

 2410 ± 50

Sample from 67 to 77cm depth. Expected age: late Bronze or Early Iron age.

IRPA-505. Webbekom

 2230 ± 70

Charcoal from Webbekom, Brabant (50° 57′ 54″ N, 5° 04′ 26″ E). Coll and subm March 1982 by L Van Impe, Natl Service Excavations, Belgium. *Comment*: no NaOH pretreatment. Archaeol date: 2650 to 2300 Bp.

390 Michèle Dauchot-Dehon, Mark Van Strydonck, and Jos Heylen

Donk series

Samples from Donk, Limburg (50° 56′ N, 5° 07′ 30″ E). Coll and subm May 1983 by L Van Impe.

IRPA-507. 82DO554

 1010 ± 50

Charcoal from 80 to 100cm depth. Expected date: 2400 to 2200 BP.

IRPA-508. 81DO507

 1220 ± 70

Charcoal from 90 to 110cm depth. Diluted: 41% sample. Expected date: 3950 to 3450 BP.

IRPA-509. 80DO429

 1740 ± 80

Charcoal from 70 to 80cm depth. Diluted: 57% sample. Expected date: 1700 to 1550 BP.

IRPA-510. 81DO515

 1440 ± 50

Wood from well at 185 to 205cm below water-bearing bed. Expected date: 2650 to 1550 BP.

IRPA-511. 81DO505

 3110 ± 60

Charcoal from 130 to 140cm depth. Expected date: 2650 to 2350 BP.

IRPA-503. 81 Wellin B2

 1420 ± 70

Charcoal from Wellin, Luxembourg (50° 5′ 2″ N, 5° 6′ 54″ E), at 185cm below surface. Coll and subm Aug 1981 by A Matthys, Natl Service Excavations. Expected date: 1850 BP.

Ucimont series

Charcoal from Ucimont, Luxembourg (49° 49′ 54″ N, 5° 3′ 21″ E). Coll and subm 1982 by A Matthys. No archaeol data.

IRPA-522. UC79/n°2

 1390 ± 50

IRPA-523. UC79/n°1

Modern

IRPA-525. 77 Cu 10

Modern

Charcoal from Cugnon, Luxembourg (49° 48′ 9″ N, 5° 12′ 14″ E), at 125cm below surface. Coll 1977 and subm 1982 by A Matthys.

IRPA-606. Karbonkelhuis

 610 ± 50

Timber from Karbonkelhuis, Antwerpen (51° 13′ 16″ N, 4° 23′ 60″ E). Subm Jan 1984 by P de Henau, Inst Royal Patrimoine artistique. *Comment*: dated to establish original building 16th century or 19th century rebuilding. Calibrated date (Klein *et al*, 1982): AD 1270-1410. Since sample was taken from beam, annual rings are missing; accounting also for drying time of wood, date agrees with 16th century construction.

Mortar series

Dating of mortars has been studied in our lab since 1980. With collaboration of Centre de Datation et d'Analyses isotopiques, Univ Claude Bernard, Lyon, France, we have followed a method based on those of

Folk and Valastro (1976). Results come from activity measurement of "hypothetical fraction" where no "dead carbonate" has reacted. Isotopic fractionation correction was made (Van Strydonck, Dupas, & Dauchot-Dehon, in press).

IRPA-296. St Lambert

 1740 ± 60

Mortar from St Lambert cathedral, Liège (50° 38′ 45″ N, 5° 34′ 30″ E). Coll and subm 1979 by H Danthine, Univ Liège. Sample was taken from underground remains of wall constructed between 7th and 13th century, at 1.8m below street level.

IRPA-490. Antwerpen

 530 ± 50

Mortar from "Onze-Lieve-Vrouw" cathedral, Antwerpen (51° 13′ 16″ N, 4° 23′ 60" E). Coll and subm 1982 by M Van Strydonck. Sample was taken from column of bricks embedded in sandstone at 6m above street level. Column is loc in nave of church, built between 530 and 515 BP.

IRPA-496. Vrasene 1

 1600 ± 60

Very powdery mortar from "Heilige-Kruis" church, Vrasene, O Vlaanderen (51° 13' N, 4° 12' E). Coll and subm 1982 by M Van Strydonck. Sample was taken from Romanesque bench surrounding pillar built between 800 and 767 BP.

IRPA-497. Vrasene 2

 870 ± 50

Mortar from same church. Coll and subm 1982 by M Van Strydonck. Sample was taken from chalk blending used during construction period (ca AD 1350) at street level.

General Comment: IRPA-490 and -497 agree with historic age. IRPA-296 is too old but contamination by running water containing carbonate is possible because of location of sample. For IRPA-496, method of "hypothetical fraction" does not work probably because sample is very powdery. If we assume that at first approximation, measured δ¹³C is proportional to abundance of "live" carbonate, we can calculate theoretical date which corroborated historic age, 980 ± 80 BP, (Van Strydonck, Dupas, & Dauchot-Dehon, in press).

REFERENCES

Baeteman, C, ms, 1981, De Holocene ontwikkeling van de Weselijke kustvlakte (België):

PhD dissert, Univ Brussels, 297 p. Baeteman, C, Verbruggen, C, with Dauchot-Dehon, M, Heylen, J, and Van Strydonck, M, 1979, New approach to the evolution of the so-called surface peat in the Western Coastal Plain of Belgium: Service Geol Belgium. Prof paper, v 11, no. 167,

Dauchot-Dehon, M, Van Strydonck, M, and Heylen, J. 1981, Institut royal du Patrimoine artistique radiocarbon dates IX: Radiocarbon, v 23, p 345-346. Klein, J, Lerman, J C, Damon, P E, and Ralph, E K, 1982, Calibration of radiocarbon

dates: tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale: Radiocarbon, v 24, p 103-150.

Folk, R L and Valastro, S, 1976, Successful technique for dating of lime mortar by carbon-14: Jour Field Archaeol, v 3, p 203-208.

Van Strydonck, M, Dupas, M, and Dauchot-Dehon, M, in press, A further step in the radiocarbon dating of old mortars: Inst Royal Patrimoine artistique Bull, in press.

UNIVERSITY OF LUND RADIOCARBON DATES XVII

SÖREN HÅKANSSON

Radiocarbon Dating Laboratory, Department of Quaternary Geology, University of Lund, Sweden

INTRODUCTION

Most of the ¹⁴C measurements reported here were made between October 1982 and October 1983. Equipment, measurement, and treatment of samples are as reported previously (R, 1968, v 10, p 36-37; 1976, v 18, p 290; 1980, v 22, p 1045).

Age calculations are based on a contemporary value equal to 95% of the activity of NBS oxalic acid standard (No. 4990A) and on the conventional half-life for 14 C of 5568 yr. Results are reported in years before 1950 (years BP). Errors quoted with the dates are based on counting statistics alone and are equivalent to ± 1 standard deviation ($\pm \sigma$).

Corrections for deviations from $\delta^{13}C = -25.0\%$ in the PDB scale are applied for almost all samples; also for marine shells. The apparent age for marine material due to the reservoir effect must be subtracted from our dates on such samples.

The remark "undersized; diluted," in *Comments* means the sample did not produce enough CO₂ to fill the counter to normal pressure and "dead" CO₂ from anthracite was introduced to make up the pressure. "% sample" indicates amount of CO₂ derived from the sample present in the diluted counting gas; the rest is "dead" CO₂. Organic carbon content reported for bone samples is calculated from yield of CO₂ by combustion of gelatine remaining after treatment. Organic carbon lost during treatment is not included in calculated percentage.

The description of each sample is based on information provided by the submitter.

ACKNOWLEDGMENTS

The author thanks Kerstin Lundahl for sample preparation and routine operation of the dating equipment, and O Gustafsson, Dept of Marine Geology, University of Göteborg, for mass-spectrometric determination of δ^{13} C.

SAMPLE DESCRIPTIONS

GEOLOGIC SAMPLES

Sweden

Sännen series

Water mosses and other coarse organic matter washed from sediment from SE corner of Lake Sännen, 13km N of Listerby, Blekinge (56° 19' N, 15° 23' E). Coll 1982 and subm by S Björck, Dept Quaternary Geol, Univ Lund. Dating is part of study of deglaciation chronology of S Sweden (Björck, 1979; 1981). Depths refer to water surface. All samples pretreated with HCl.

 12.190 ± 80

Lu-2103. Sännen 1, 600 to 605cm

 $\delta^{13}C = -25.7\%$

Water mosses and other coarse organic matter from slightly muddy clay underlain by unvarved and varved clay, 260 to 265cm below sediment surface. Regional Pollen Assemblage Zone 2 corresponding to Older Dryas Chronozone (Björck, 1979, p 41-45 & p 126, fig 43a; 1981, p 18-19 & p 48, fig 42A). Comment: (3 1-day counts.)

 $12,080 \pm 90$

Lu-2104. Sännen 2, 595 to 600cm

 $\delta^{13}C = -25.4\%$

Water mosses and other coarse organic matter from clay, 255 to 260cm below sediment surface. Same pollen zone as Lu-2103, above. *Comment*: (3 1-day counts.)

 11.960 ± 90

Lu-2105. Sännen 3, 590 to 595cm

 $\delta^{13}C = -26.2\%e$

Coarse organic matter, mainly water mosses, from clay gyttja, 250 to 255cm below sediment surface. Regional Pollen Assemblage Zone 3 corresponding to 1st half of Allerød Chronozone. Comment: (3 1-day counts.)

 11.630 ± 90

Lu-2164. Sännen 4, 580 to 585cm

 $\delta^{13}C = -26.3\%e$

Coarse organic matter, mainly moss remains, 240 to 245cm below sediment surface. End of Regional Pollen Assemblage Zone 3. Comment: (3 1-day counts.)

 $10,790 \pm 260$

Lu-2165. Sännen 5, 570 to 575cm

 $\delta^{13}C = -25.0\%$

Coarse organic matter, mainly water mosses, 230 to 235cm below sediment surface. End of Regional Pollen Zone 4 corresponding to end of Allerød Chronozone. *Comment*: sample very small; diluted; 19% sample. (4 1-day counts.)

 10.510 ± 80

Lu-2166. Sännen 6, 560 to 565cm

 $\delta^{13}C = -25.8\%c$

Coarse organic matter, mainly water mosses, 220 to 225cm below sediment surface. Later part of Regional Pollen Assemblage Zone 5 corresponding to 1st half of Younger Dryas Chronozone. *Comment*: (3 1-day counts.)

Dags Mosse series II

Sediment and peat from S part of Dags Mosse, SW of Lake Tåkern, Östergötland (58° 19.5′ N, 14° 42′ E). Coll 1982 by H Göransson and T Persson; subm by H Göransson, Dept Quaternary Geol, Univ Lund. Dated as complement to Dags Mosse Series I (R, 1983, v 25, p 877-880). Depths refer to present bog surface. All samples pretreated with HCl.

 7010 ± 70

Lu-2106. Dags Mosse 1982:I

 $\delta^{13}C = -29.9\%$

Coarse detritus gyttja, rich in rootlets, 503.5 to 506.5cm. Just below empirical *Tilia* limit.

 7000 ± 70

Lu-2107. Dags Mosse 1982:II

 $\delta^{13}C = -27.5\%$

Coarse detritus gyttja, rich in *Phragmites* rootlets, 493.5 to 496.5cm. Empirical *Tilia* limit (*Tilia* increasing from 0.7 to 1.7%).

 6970 ± 70

Lu-2108. Dags Mosse 1982:III

 $\delta^{13}C = -28.1\%$

Phragmites peat, 446 to 449cm. Rational Tilia limit (Tilia increasing from 2.7 to 6%).

General Comment (HG): date for rational Tilia limit (Lu-2108) agrees with dates for this limit from other studies. Unexpectedly small age differences between samples may be explained by very rapid sediment and peat accumulation, or by some rejuvenation of Lu-2106 and -2107 by penetrating rootlets, or both.

Håkulls mosse series (III)

Sediment from Håkulls mosse on hill ridge Kullaberg, NW Scania (56° 17′ N, 12° 31′ E). Alt ca 125m. Coll 1975 and subm by B E Berglund, Dept Quaternary Geol, Univ Lund. Samples are from Cores I and II taken with Livingstone sampler, 10cm diam. Depths refer to bog surface. For other dates from Håkulls mosse, see R, 1978, v 20, p 416-417; 1980, v 22, p 1049-1050. Pretreated with HCl. (3 1-day counts for all samples.)

 $11,370 \pm 80$

Lu-2119. Håkulls mosse 13, 827 to 829cm $\delta^{is}C = -22.7\%$ Clayey fine detritus gyttja, Core II. Middle part of Allerød zone.

 $11,240 \pm 80$

Lu-2120. Håkulls mosse 14, 819 to 821cm $\delta^{13}C = -22.0\%$ Clayey fine detritus gyttja, Core II. Later part of Allerød zone.

 $10,760 \pm 80$

Lu-2121. Håkulls mosse 15, 798 to 800cm $\delta^{13}C = -26.3\%$ Clay gyttja, Core II. Early part of Younger Dryas zone.

 $10,640 \pm 80$

Lu-2122. Håkulls mosse 16, 789 to 791cm $\delta^{13}C = -25.8\%$ Clay gyttja, Core II. Early part of Younger Dryas zone.

 $10,770 \pm 80$

Lu-2123. Håkulls mosse 17, 777 to 779cm $\delta^{13}C = -26.1\%$ Clay gyttja, Core II. Middle part of Younger Dryas zone.

 $10,400 \pm 80$

Lu-2124. Håkulls mosse 18, 761 to 763cm $\delta^{13}C = -26.4\%$ Clay gyttja, Core II. Later part of Younger Dryas zone.

 $10,\!430 \pm 80$

Lu-2125. Håkulls mosse 19, 743 to 745cm $\delta^{13}C = -25.6\%$

Clay gyttja, Core I. End of Younger Dryas zone. Comment (BEB): no exact depth correlation between Core I and Core II.

 9530 ± 70

Lu-2126. Håkulls mosse 20, 695 to 697cm

 $\delta^{13}C = -25.6\%e$

Fine detritus gyttja, Core I. Transition Pre-boreal/Boreal.

Vätlingmyr series

Pinus cones and small wood fragments washed from sediment rich in carbonate from core taken near former shore of Vätlingmyr, Austergårds, Stenkyrka parish, Gotland (57° 47′ N, 18° 31′ E). Coll 1982 and subm by N-O Svensson, Dept Quaternary Geol, Univ Lund. Dated as part of study of Late Weichselian and Early Holocene shoreline displacement on Gotland and in E Småland. Depths given are below present surface.

 9080 ± 80

Lu-2133. Vätlingmyr, 138 to 148cm

 $\delta^{13}C = -26.1\%$

Pinus cones and small wood fragments. Immigration of *Corylus* 5cm below sample. *Comment*: no pretreatment; sample undersized; diluted; 89% sample. (3 1-day counts.). Burned at <600°C to avoid thermal decomposition of carbonate.

 8800 ± 80

Lu-2131. Vätlingmyr, 133 to 138cm

 $\delta^{13}C = -25.0\%$

Pinus cones. Increase of Ulmus before immigration of Alnus. Comment: pretreated with HCl and NaOH.

 8620 ± 70

Lu-2132. Vätlingmyr, 123 to 128cm

 $\delta^{13}C = -25.5\%$

Pinus cones. Just before immigration of Alnus. Comment: pretreated with HCl and NaOH. (3 1-day counts.)

General Comment: dates useful for chronology correlation using pollen stratigraphy in calcareous sediments unsuitable for ¹⁴C dating.

Subfossil marine shell series

 11.030 ± 100

Lu-2157. Flåghultsåsen

 $\delta^{13}C = +2.1\%$

Shells (Mya truncata and Balanus porcatus) from marine clay underlain by glaciofluvial material at S side of hill ridge Flåghultsåsen, N Bohuslän (58° 58.5′ N, 11° 25′ E). Coll 1982 and subm by Å Hillefors, Dept Phys Geog, Univ Göteborg. Dated as part of study of deglaciation chronology in area. Comment: outer 61% removed by acid leaching.

 $12,690 \pm 110$

Lu-2158. Svedaskogen 1982

 $\delta^{13}C = -0.2\%$

Shells (small *Balanus* sp) from glacial-tectonized marine sediment overlain by wave-washed sand and gravel at Svedaskogen, Halland (57° 29' N, 12° 11' E). Alt 68m. Coll 1982 and subm by Å Hillefors. Dated as part of study of deglaciation of area. Site described by submitter (Hillefors, 1979, p 159 & fig 7, p 161). For other dates from Svedaskogen, see R, 1976, v 18, p 296; 1979, v 21, p 393. *Comment*: outer 46% removed by acid leaching.

General Comment: corrections for deviations from $\delta^{13}C = -25\%$ PDB are applied also for shell samples. No corrections are made for apparent age of shells of living marine organisms due to reservoir effect. Revised values of reservoir age for different areas pub by Håkansson (1983b, table 3, p 67).

Toppeladugård series

Sediment from ancient lake 0.7km NNE of Toppeladugård, S Scania (55° 36' N, 13° 22.2' E). Coll 1982 by S Björck, B Liedberg-Jönsson, and G Lemdahl; subm by B Liedberg-Jönsson, Dept Quaternary Geol, Univ Lund. Dated as part of joint palaeoecol study of Late Weichselian sediments from SW Sweden. Depths given are below present surface.

Lu-2182. Toppeladugård 1

 $11,150 \pm 100$ $\delta^{13}C = -27.2\%$

Carbonate-rich sand with $<1.5^{\circ\prime}_{10}$ organic carbon, 2.38 to 2.43m, underlain by sand and overlain by slightly organic clay. Comment: carbonate removed completely by treatment with HCl before burning.

Lu-2183. Toppeladugård 2, insoluble

 11.800 ± 110 $\delta^{13}C = -27.7\%$

Insoluble organic fraction from clayey carbonate-rich algal gyttja, 2.105 to 2.155m, underlain and overlain by clay gyttja. Pollen analysis indicates Allerød Chronozone. Comment: sample pretreated with HCl and NaOH.

Lu-2183A. Toppeladugård 2, soluble

 $11,410 \pm 100$ $\delta^{13}C = -27.7\%$

Acid-precipitated part of NaOH-soluble fraction from Lu-2183.

Atteköps mosse series

Limnetic brown-mosses and small amounts of terrestrial organic matter washed from sediment from Atteköps mosse, 4km NE of Grevie, NW Scania (56° 23' N, 12° 51' E). Coll 1982 and subm by B Liedberg-Jönsson. Dated as part of same study as Toppeladugård series, above. Depths given are below present surface. Samples pretreated with HCl.

 $12,980 \pm 140$ Lu-2207. Atteköps mosse 2, 6.73 to 6.78m $\delta^{13}C = -29.6\%$ Comment: sample undersized; diluted; 80% sample.

 $13,060 \pm 120$ Lu-2208. Atteköps mosse 3, 6.78 to 6.83m $\delta^{13}C = -30.0\%$

 $13,070 \pm 120$ $\delta^{13}C = -29.6\%$

Lu-2209. Atteköps mosse 4, 6.83 to 6.88m

Nissunvagge series (II)

Organic matter from plant horizon buried by debris flow lobe from W slope of Nissuntjårro Mt, Nissunvagge valley (68° 16' N, 18° 53' E).

Abisko area, N Sweden. Coll 1982 and subm by R Nyberg, Dept Phys Geog, Univ Lund. Dated as complement to Nissunvagge series (R, 1982, v 24, p 197). Depths given refer to present surface.

 310 ± 45

Lu-2161. Nissunvagge 1982:1, insoluble $\delta^{13}C = -26.2\%$

Insoluble organic fraction, depth 130cm, 175cm from lobe front. Comment: pretreated with HCl and NaOH.

 320 ± 45

Lu-2161A. Nissunvagge 1982:1, soluble Est $\delta^{1s}C = -26.1\%$

Acid-precipitated part of NaOH-soluble fraction from Lu-2161. *Comment*: no δ^{13} C measurement. δ^{13} C value estimated from values for Lu-2161 and -2162.

 600 ± 45

Lu-2162. Nissunvagge 1982:2

 $\delta^{13}C = -25.9\%$

Total organic fraction, depth 75cm, 160cm from lobe front.

Rakaslako series

Peat from mire with permafrost mounds (sw palsmyr) at Rakaslako, 5km W of Björkliden, N Sweden (68° 26′ N, 18° 34′ E). Coll 1982 and subm by B Malmström and J Åkerman, Dept Phys Geog, Univ Lund. Pretreated with HCl and NaOH.

 8040 ± 80

Lu-2216. Rakaslako 1, insoluble

 $\delta^{13}C = -24.0\%$

Insoluble fraction of peat from 45cm below present surface in presumed fossil solifluction lobe.

 7030 ± 90

Lu-2216A. Rakaslako 1, soluble

 $\delta^{13}C = -26.3\%$

Acid-precipitated part of NaOH-soluble fraction from Lu-2216. *Comment*: sample undersized; diluted; 69% sample.

 2670 ± 50

Lu-2217. Rakaslako 2, insoluble

 $\delta^{13}C = -25.2\%$

Insoluble fraction of peat from 60cm below present surface, just above 2nd uppermost ice lens in permafrost mound (sw pals).

 2210 ± 50

Lu-2217A. Rakaslako 2, soluble

 $\delta^{13}C = -27.1\%$

Acid-precipitated part of NaOH-soluble fraction from Lu-2217.

 7360 ± 70

Lu-2211. Ängelholm

 $\delta^{13}C = -25.1\%$

Wood from ca 15 of outermost remaining annual rings of oak trunk with ca 300 annual rings from deposits of Rönneå R, town of Ängelholm, NW Scania (56° 14.7′ N, 12° 52.1′ E). Coll 1982 in connection with construction work for bridge; subm by E Lehmann, Cultural Council, Ängelholm. Pretreated with HCl and NaOH.

Norway

 4570 ± 60

Lu-2206. Kåsi, Mysuseter, 1983

 $\delta^{13}C = -25.6\%$

Wood from firmly rooted large pine stump from bottom of unintentionally drained small lake near Kåsi Mt, ca 1km N of Mysuseter, Rondane (61° 49′ N, 9° 40′ E). Alt ca 1000m. Coll 1983 and subm by A Lima-De-Faria, Dept Molecular Cytogenetics, Univ Lund. Other wood sample from same site dated at 4890 ± 65 BP (Lu-995, R, 1980, v 22, p 1051). Pretreated with HCl and NaOH.

Iceland

 1600 ± 50

Lu-2101. Önundafjördur

 $\delta^{13}C = -27.7\%$

Wood (*Betula* sp) pieces from thin wood layer, 1m below present surface and 0.5m below present sea level at Vadall, Önundafjördur, NW Iceland (66° 05′ N, 23° 20′ W). Wood layer underlain by marine sand containing walrus remains and overlain by marine sand containing ill-preserved shell fragments. Coll 1981 and subm by L A Símonarson, Sci Inst, Univ Iceland, Reykjavík. Pretreated with HCl and NaOH.

Icelandic Subfossil Marine Shell Series II

Marine bivalve shells from SW Iceland. Coll 1980 and 1982 and subm by O Ingolfsson, Dept Quaternary Geol, Univ Lund. Dated as part of study of Late Weichselian glacial stratigraphy and chronology of lower part of Borgarfjördur region. For other shell dates from area, see R, 1983, v 25, p 882.

 $12,830 \pm 110$

Lu-2193. Melabakkar-Melaleiti 1

 $\delta^{13}C = +1.8\%$

One shell valve (*Chlamys islandica*) from glacial-marine silt; ca +2m at Melabakkar, N of Akranes (64° 25′ N, 22° 02′ W). Silt probably overridden by last ice advance in area. *Comment*: outer 36% of shell removed by acid leaching.

 $12,460 \pm 120$

Lu-2192. Melabakkar-Melaleiti 2

 $\delta^{13}C = +1.4\%$

Large shell fragments (Chlamys islandica and Mya truncata) from glacial-marine silt; ca +3.5m. Same site as Lu-2193, above. Comment: outer 15% removed by acid leaching. Sample undersized; diluted; 91% sample.

 $12,830 \pm 110$

Lu-2194. Grjóteyri

 $\delta^{13}C = +0.6\%$

Shell fragments (*Hiatella arctica*, *Mya truncata*, and *Macoma calcarea*) from glacial-marine drift, alt ca 20m, at Grjoteyri, E of Borgarnes (64° 32′ N, 21° 50′ W). Drift overridden by last ice advance in area (cf Ashwell, 1975). Comment: outer 18% removed by acid leaching.

 $12,870 \pm 110$

Lu-2195. 'Asbakkar

 $\delta^{13}C = +1.6\%$

Two shell valve parts (Chlamys islandica) from glacial-marine silt,

overlain by basal till; ca +2m at 'Asbakkar, N of Akranes (64° 24' N, 22° 02' W). Comment: outer 39% removed by acid leaching.

 $11,980 \pm 130$

Lu-2196. 'Asbakkar-'Asgil

 $\delta^{13}C = +1.1\%$

Shell fragments (Mya truncata and Chlamys islandica) from glacial-marine silt; ca +3m at 'Asbakkar, N of Akranes (64° 24' N, 22° 02' W). Silt underlain and overlain by basal till. Shell fragments not in situ. Comment: outer 11% removed by acid leaching. Sample undersized; diluted; 74% sample.

 $10,370 \pm 90$

Lu-2197. Skipanes

 $\delta^{13}C = +1.1\%$

Two shell valves (*Chlamys islandica*) found *in situ* in littoral sand; ca +4m at Skipanes, Melasveit, N of Akranes (64° 24′ N, 21° 54′ W). Sand probably deposited in connection with Holocene marine transgression in area. *Comment*: outer 17% removed by acid leaching.

General Comment: corrections for deviations from $\delta^{13}C = -25\%$ PDB are applied. No corrections are made for reservoir age of living marine mollusks. Reservoir age for coastal waters of Iceland pub by Håkansson (1983b) based on Icelandic recent marine shell series (R, 1983, v 25, p 881).

Spitsbergen

Bohemanflya series

Marine bivalve shells from Bohemanflya, Isfjorden, W Spitsbergen. Coll 1982 by C Hjort and E Lagerlund in connection with reconnaissance for study of shoreline displacement and till stratigraphy in area; subm by C Hjort, Dept Quaternary Geol, Univ Lund.

 9440 ± 80

Lu-2136. Bohemanflya 1

 $\delta^{13}C = +1.4\%$

Shell fragments (*Mya truncata*) from till at Bohemanflya (78° 28′ N, 14° 25′ E). *Comment*: outer 30% of shells removed by acid leaching.

 8130 ± 80

Lu-2137. Bohemanflya 2

 $\delta^{13}C = +0.4\%$

Shell fragments (Mytilus edulis) from beach gravel; ca +10m; between 2 distinct beach cuts at Bohemanflya (78° 26′ N, 14° 35′ E). Comment: outer 44% removed by acid leaching.

 9630 ± 90

Lu-2138. Bohemanflya 3

 $\delta^{13}C = +1.3\%c$

Shells (Mya truncata) from silt, alt 18 to 20m, above uppermost distinct beach cut at Bohemanflya (78° 26′ N, 14° 34′ E). Comment: outer 50% removed by acid leaching.

 4620 ± 60

Lu-2139. Bohemanflya 4

 $\delta^{13}C = +1.3\%$

Shells (*Hiatella arctica*) from push-moraine at Bohemanflya (78° 28′ N, 14° 32′ E). *Comment*: outer 22% removed by acid leaching.

General Comment: corrections for deviations from $\delta^{13}C = -25\%$ PDB are applied. No corrections are made for reservoir age of living marine mollusks. Revised reservoir age for coastal waters of Spitsbergen pub by Olsson (1980, fig 6, p 673).

Northern Ireland

Sandelford series

Estuarine mud from E bank of R Bann 100m S of Sandelford Bridge, Coleraine, N Ireland (55° 07′ 30″ N, 6° 40′ 10″ W). Coll 1980 and subm by R W Battarbee, Palaeoecol Lab, Univ College London. Dated as part of study of sea-level change in area.

Lu-2127. Sandelford 1

 7440 ± 70 $\delta^{13}C = -25.9\%$

Mud from 507 to 517cm below ground. Core SF VII.

 6980 ± 70

Lu-2128. Sandelford 2

 $\delta^{13}C = -22.8\%c$

Mud from 467 to 477cm below ground. Core SF VII.

 6430 ± 70

Lu-2129. Sandelford 3

 $\delta^{13}C = -27.2\%$

Mud from 145 to 150cm below ground. From monolith tin (SF M).

 6120 ± 70

Lu-2130. Sandelford 4

 $\delta^{13}C = -25.9\%$

Mud from 105 to 110cm below ground. From monolith tin (SF M).

Czechoslovakia

Vernérovice series (II)

Peat from mire 0.5km S of village Vernéřovice near Broumov, N Czechoslovakia (50° 06′ N, 16° 15′ E). Alt ca 400m. Coll 1973 by M Peichlová, E Rybníčková, and K Rybníček; subm by M Peichlová, Dept Ecol Bot, Czechoslovak Acad Sci, Brno. Dated as complement to Vernéřovice series (R, 1982, v 24, p 202). Pollen zones according to Firbas (1949). Pretreated with HCl.

 2180 ± 50

Lu-2199. Vernérovice BV-2-A, 32cm

 $\delta^{13}C = -28.3\%$

Highly humified peat with small wood fragments and other coarse plant remains. Depth 32cm. Boundary Sub-boreal/Sub-atlantic.

 3040 ± 50

Lu-2200. Vernérovice BV-2-A, 45cm

 $\delta^{13}C = -25.7\%$

Slightly humified peat. Depth 45cm. Beginning of Sub-boreal with 1st traces of human activity.

Bulgaria

Tschokljovo Marsh Series II

Clay and peat from Tschokljovo marsh, W Bulgaria (42° 22′ N, 22° 50′ E). Alt 870m. Coll 1980 and 1982 and subm by E Bozilova, Biol Fac.

Univ Sofia. Dated as complement to Tschokljovo Marsh Series I (R, 1983, v 25, p 883-884). Lu-2169 pretreated with HCl. All other samples too small for pretreatment and, therefore, burned at $<600^{\circ}$ C to avoid thermal decomposition of carbonate. No δ^{13} C measurements available for this series. Estimated δ^{13} C value is based on previous measurements on 8 samples from same site. Standard deviation for dates increased accordingly.

 8000 ± 110

Lu-2167. Tschokljovo I, 437 to 442cm

Est $\delta^{13}C = -25.5\%$

Clay with ca 4.5% organic carbon. Depth 437 to 442cm. *Comment*: sample undersized; diluted; 62% sample.

 4760 ± 80

Lu-2168. Tschokljovo I, 353 to 358cm

Est $\delta^{13}C = -25.5\%$

Highly humified *Phragmites* and *Carex* peat. Depth 353 to 358cm. *Comment*: sample undersized; diluted; 67% sample.

 1250 ± 50

Lu-2169. Tschokljovo 1982, 90 to 105cm Est $\delta^{13}C = -25.5\%$

Moderately humified peat with coarse plant material. Depth 90 to 105cm.

 8520 ± 170

Lu-2170. Tschokljovo III, 360 to 365cm Est $\delta^{13}C = -25.5\%$

Clay with ca 1.5% organic carbon. Depth 360 to 365cm. Comment: sample undersized; diluted; 22% sample. (3 1-day counts.)

Jamaica

Black River Morass Series II

Peat from coastal wetland at Black R, S Jamaica (18° 05′ N, 77° 50′ W). Coll 1982 and 1983 (Lu-2201) and subm by G Digerfeldt, Dept Quaternary Geol, Univ Lund. Dating is part of study of development of coastal wetland and eustatic sea-level changes in area. For other dates from Black R Morass, see R, 1982, v 24, p 203. Depths given are below surface. All samples pretreated with HCl.

 6500 ± 70

Lu-2072. Black R Morass B 1, 695 to 705cm $\delta^{13}C = -26.5\%$ Swamp forest peat, highly humified.

 6120 ± 70

Lu-2096. Black R Morass B 1, 640 to 650cm $\delta^{13}C = -27.2\%$ Sedge peat, highly humified.

 4760 ± 60

Lu-2095. Black R Morass B 1, 440 to 450cm $\delta^{13}C = -26.5\%$ Sedge peat, moderately humified.

 3310 ± 50

Lu-2094. Black R Morass B 1, 240 to 250cm $\delta^{13}C = -26.7\%$ Sedge peat, highly humified.

	2160 ± 50
Lu-2093. Black R Morass B 1, 140 to 150cm Mangrove peat, highly humified.	$\delta^{13}C = -27.3\%$
Lu-2077. Black R Morass B 2, 260 to 270cm Swamp forest peat, highly humified.	4140 ± 60 $\delta^{13}C = -28.5\%$
Lu-2189. Black R Morass B 2, 140 to 150cm	2020 ± 50 $\delta^{13}C = -28.5\%$
Swamp forest peat, highly humified. Lu-2069. Black R Morass B 3, 175 to 185cm	3590 ± 60 $\delta^{13}C = -26.8\%$
Swamp forest peat, highly humified. Lu-2070. Black R Morass B 4, 300 to 310cm	5470 ± 60 $\delta^{1s}C = -29.0\%$
Swamp forest peat, highly humified. Lu-2092. Black R Morass B 4, 240 to 250cm	$4470 \pm 60 \\ \delta^{13}C = -28.5\%$
Sedge peat, highly humified. Lu-2091. Black R Morass B 4, 80 to 90cm	1240 ± 45 $\delta^{13}C = -25.8\%$
Sedge peat, highly humified. Lu-2076. Black R Morass B 5, 460 to 470cm	6080 ± 70 $\delta^{13}C = -27.2\%$
Sedge peat, moderately humified. Lu-2188. Black R Morass B 5, 340 to 350cm	$4940 \pm 60 \\ \delta^{13}C = -26.4\%$
Sedge peat, highly humified. Lu-2187. Black R Morass B 5, 140 to 150cm Sedge peat, highly humified.	2720 ± 50 $\delta^{13}C = -27.1\%$
Lu-2071. Black R Morass B 6, 190 to 200cm	$4410 \pm 60 \\ \delta^{13}C = -42.3\%$
Sedge peat, highly humified. Lu-2074. Black R Morass B 7, 670 to 680cm Mangrove peat, highly humified.	6470 ± 70 $\delta^{13}C = -29.6\%$
Lu-2099. Black R Morass B 7, 540 to 550cm Mangrove peat, highly humified.	5490 ± 70 $\delta^{13}C = -27.7\%$
Lu-2098. Black R Morass B 7, 340 to 350cm	3700 ± 60 $\delta^{13}C = -27.6\%$
Mangrove peat, highly humified. Lu-2097. Black R Morass B 7, 140 to 150cm Mangrove peat, moderately humified.	$2100 \pm 50 \\ \delta^{13}C = -26.9\%$

	6030 ± 70
Lu-2075. Black R Morass B 8, 506 to 516cm Sedge peat, highly humified.	$\delta^{\iota s}C=-28.2\%$
Lu-2186. Black R Morass B 8, 440 to 450cm Mangrove peat, moderately humified.	$5680 \pm 70 \\ \delta^{13}C = -28.3\%$
Lu-2185. Black R Morass B 8, 240 to 250cm Mangrove peat, moderately humified.	4180 ± 60 $\delta^{13}C = -27.2\%$
Lu-2184. Black R Morass B 8, 140 to 150cm Mangrove peat, moderately humified.	3240 ± 60 $\delta^{13}C = -26.8\%$
Lu-2078. Black R Morass B 9, 230 to 240cm	3890 ± 60 $\delta^{13}C = -23.2\%$
Mangrove peat, highly humified. Lu-2191. Black R Morass B 9, 140 to 150cm	2680 ± 50 $\delta^{13}C = -27.3\%$
Mangrove peat, moderately humified. Lu-2073. Black R Morass B 10, 700 to 710cm	5950 ± 70 $\delta^{13}C = -27.6\%$
Mangrove peat, highly humified. Lu-2082. Black R Morass B 10, 640 to 650cm	5760 ± 60 $\delta^{13}C = -26.3\%$
Mangrove peat, moderately humified. Lu-2081. Black R Morass B 10, 440 to 450cm	4500 ± 60 $\delta^{13}C = -21.5\%$
Sedge peat, highly humified. Lu-2080. Black R Morass B 10, 240 to 250cm	2700 ± 50 $\delta^{13}C = -26.0\%$
Sedge peat, highly humified.	1510 ± 45 $\delta^{13}C = -27.8\%$
Lu-2079. Black R Morass B 10, 140 to 150cm Mangrove peat, highly humified.	6220 ± 70
Lu-2089. Black R Morass B 11, 640 to 650cm Sedge peat, highly humified.	$\delta^{13}C = -28.7\%$ 6320 ± 70
Lu-2090. Black R Morass B 14, 610 to 620cm Sedge peat, highly humified.	$\delta^{13}C = -28.6\%$ 480 ± 45
Lu-2088. Black R Lower Morass at Luana Sedge peat, 130 to 140cm, highly humified.	$\delta^{13}C = -27.9\%$ 3000 ± 50
Lu-2086. Black R Upper Morass 2 Sedge peat, 160 to 170cm, highly humified.	$\delta^{13}C=-29.1\%$

$$1470 \pm 45$$

Lu-2201. Black R Upper Morass 2

Sedge peat, 60 to 70cm, highly humified.

$$\delta^{13}C = -28.1\%$$

 1180 ± 45

Lu-2087. Black R Upper Morass 4

Sedge peat, 110 to 120cm, moderately humified.

$\delta^{13}C = -26.4\%$

Negril Morass Series III

Peat from coastal wetland at Negril, W Jamaica (18° 20' N, 78° 20' W). Coll 1982 and subm by G Digerfeldt. Dating is part of same study as Black River Morass Series II, above. For other dates from Negril Morass, see R, 1982, v 24, p 203-204; 1983, v 25, p 884-886. Depths given are below surface. All samples pretreated with HCl.

$$7720 \pm 80$$

Lu-2083. Negril Morass N 9, 1370 to 1380cm Sedge peat, highly humified.

 3560 ± 60

Lu-2084. Negril Morass, at E canal

 $\delta^{13}C = -28.5\%$

 $\delta^{13}C = -26.0\%$

Swamp forest peat, highly humified, 140 to 150cm.

 7880 ± 80

Lu-2085. Negril Morass

 $\delta^{13}C = -28.5\%$

Sedge peat, highly humified, 1185 to 1195cm, 175m E of Crystal Water.

ARCHAEOLOGIC SAMPLES

Sweden

Kyrkudden series

Charcoal and wood from excavation of medieval site at Kyrkudden, Hietaniemi parish, Norrbotten (66° 13′ N, 23° 43′ E). Coll 1978 to 1980 and subm by T Wallerström, Norrbottens Mus, Luleå. Dated as complement to unpub series dated by Lab for Isotope Geol, Stockholm.

$$440 \pm 40$$

Lu-2058. Kyrkudden, F1856

$$\delta^{13}C = -25.5\%$$

Small pieces of wood (No. IV) from frame belonging to Carelian grave construction. *Comments*: mild pretreatment with HCl and NaOH. (3 1-day counts.) (TW): wood from same frame dated at 320 ± 110 BP (St-7762).

$$50 \pm 45$$

$$\mathbf{D}^{14}\mathbf{C}^* = -6.0 \pm 5.1\%$$

$$\delta^{13}C = -25.0\%$$

Small pieces of wood from log in cultural layer. Log supposed to be part of nearby rampart construction. *Comments*: normal pretreatment with HCl and NaOH. (TW): sample obviously not from rampart construction. * D¹⁴C according to Stuiver and Polach (1977, p 357).

Lu-2060. Kyrkudden, F2879

 560 ± 45 $\delta^{13}C = -24.3\%$

Charcoal from wall of burned building. Coordinates 987.71: 341.95. *Comment*: mild pretreatment with HCl and NaOH.

 620 ± 45

Lu-2061. Kyrkudden, F3119

 $\delta^{13}C = -24.4\%$

Charcoal from burned vegetation layer below clay floor. *Comments*: normal pretreatment with HCl and NaOH. (TW): other dates from same layer are: 610 ± 80 BP (St-7974), 665 ± 155 BP (St-7763), and 640 ± 90 BP (St-8097).

 320 ± 45

Lu-2062. Kyrkudden, F2181

 $\delta^{13}C = -24.8\%$

Charcoal from cultural layer close to defense rampart; coordinates 991.27:315.60. Sample supposedly derives from and dates superstructure of rampart. *Comment*: mild pretreatment with NaOH and HCl.

 630 ± 45

Lu-2063. Kyrkudden, F2719

 $\delta^{13}C = -25.4\%$

Charcoal from cultural layer in burned house; coordinates 984.75: 339.78. Sample supposedly comes from house walls or posts. *Comment*: mild pretreatment with NaOH and HCl.

 410 ± 45

Lu-2064. Kyrkudden, F2891

 $\delta^{13}C = -25.1\%$

Charcoal from wall of same building as Lu-2060 and -2063, above, derive from; coordinates 983.62:341.05. *Comment*: mild pretreatment with NaOH and HCl.

 320 ± 45

Lu-2066. Västra Kikkejaure

 $\delta^{13}C = -25.2\%c$

Wood from keel of sewn boat (Hallström, 1909) found after storm on shore of W Kikkejaure, Lappland (65° 40′ N, 19° 05′ E). Coll 1972 by H Wigenstam; subm by S Jansson, Skellefteå Mus, Skellefteå. Comment: pretreated with HCl and NaOH. 320 \pm 45 BP corresponds approx to AD 1485 to AD 1640 according to calibration graphs by Stuiver (1982, p 8-9).

Skateholm Series III

Charcoal, wood, and human bone from settlement area (Early Ertebølle culture) with 2 settlements (Skateholm I and II) combined with grave fields at Skateholm, Tullstorp parish, S Scania (55° 23′ 10″ N, 13° 29′ E). Coll 1932 and 1982 by L Larsson, H Göransson (Lu-2110), and F Hansen (Lu-2156); subm by L Larsson, Inst Archaeol, Univ Lund. Preliminary excavation repts pub by submitter (Larsson, 1980; 1981; 1982). For other dates from area, see R, 1982, v 24, p 205-206; 1983, v 25, p 887. Bone collagen extracted as described previously (R, 1976, v 18, p 290), Lu-2109 with NaOH treatment and Lu-2156 without.

 6270 ± 70

Lu-2109. Skateholm, Grave 37

 $\delta^{13}C = -16.8\%$

Collagen from femur of human female from Grave 37 (Larsson, 1982,

p 22). Comment: organic carbon content: 2.5%. Sample undersized; diluted; 68% sample. (3 1-day counts.)

 7030 ± 70

Lu-2110. Skateholm I, Alnus

 $\delta^{13}C = -28.7\%$

Wood from *Alnus* stem (id by T Bartholin) from level 230 to 244 in trench for pollen sampling. *Comment*: pretreated with HCl and NaOH.

 6430 ± 70

Lu-2111. Skateholm, PII:1

 $\delta^{13}C = -27.1\%$

Wood (Alnus sp) id by T Bartholin and unid. bark from sampling Point II. Comment: wood pretreated with HCl and NaOH; bark only pretreated with HCl.

 6370 ± 70

Lu-2112. Skateholm, PII:2

 $\delta^{13}C = -27.6\%$

Wood (Corylus avellana) id by T Bartholin from sampling Point II. Comment: no pretreatment; sample undersized; diluted; 78% sample. (3 1-day counts.)

 6590 ± 70

Lu-2113. Skateholm II, x=200, y=221

 $\delta^{13}C = -25.7\%$

Charcoal from cultural layer; x=200, y=221. *Comment*: pretreated with HCl and NaOH.

 6910 ± 70

Lu-2114. Skateholm II, x=200, y=225

 $\delta^{13}C = -26.5\%$

Charcoal from cultural layer; x=200, y=225, level 70 to 80cm. *Comment*: pretreated with HCl and NaOH.

 6380 ± 70

Lu-2115. Skateholm II, x=200, y=220

 $\delta^{13}C = -25.7\%$

Charcoal from cultural layer; x=200, y=220, level 35 to 50cm. *Comment*: pretreated with HCl and NaOH.

 5990 ± 70

Lu-2116. Skateholm I, Grave 26

 $\delta^{13}C = -25.5\%$

Charcoal (Fraxinus, Corylus avellana, & Alnus sp) id by T Bartholin from Grave 26 (Larsson, 1982, p 17). Comment: mild pretreatment with NaOH and HCl.

 5850 ± 90

Lu-2156. Skateholm 1932

 $\delta^{13}C = -18.6\%$

Collagen from human femur and tibia, id by O Persson, from grave structure. *Comment*: organic carbon content: 1.2%. Sample undersized; diluted; 43% sample.

 1280 ± 70

Lu-2135. Transval, Åhus

 $\delta^{13}C = -19.3\%$

Collagen from human tibia from top of gravel pit wall at Transval, Ahus parish, E Scania (55° 55′ N, 14° 17′ E). Coll 1974; subm by J Callmer, Inst Archaeol, Univ Lund. *Comment*: collagen extracted as described previously (R, 1976, v 18, p 290) without NaOH treatment. Organic carbon content: 3.3%. Sample undersized; diluted; 48% sample.

Nymölla series (II)

Charcoal from coastal settlement areas (Middle Neolithic—Pitted Ware culture) at Nymölla 12³⁵ and 12³⁸, Gualöv parish, NE Scania (56° 02′ N, 14° 28′ E). Coll 1981 and 1982 by B Wyszomirska and B Helgesson; subm by B Wyszomirska, Inst Archaeol, Univ Lund. Dated as complement to Nymölla series (R, 1982, v 24, p 210). No δ^{13} C measurements available for this series. Standard deviation for dates increased accordingly.

 2400 ± 70

Lu-2140. Nymölla 1235, Sq z17

Est $\delta^{13}C = -25.0\%$

Charcoal from Hearth No. 2, Sq z17, x=16.6, y=17.14, ca +3.6m. Assoc with flint implements and potsherds indicating Pitted Ware culture. *Comment*: mild pretreatment with NaOH and HCl. Sample undersized; diluted; 84% sample. Date much too late for assoc artifacts indicating re-use of site.

 3880 ± 110

Lu-2141. Nymölla 1238, Sq j10

Est $\delta^{13}C = -25.0\%$

Charcoal from occupation layer, Sq j10, x=9.5, y=9.5, ca +7.1m. Assoc with fragments of ground flint axes and potsherds indicating Pitted Ware culture. *Comment*: no pretreatment; sample undersized; diluted; 31% sample. (3 1-day counts.)

 3800 ± 70

Lu-2142. Nymölla 1238, Sq k10

Est $\delta^{13}C = -25.0\%$

Charcoal from occupation layer, Sq k10, x=10.5, y=9.5, ca +7.3m. Assoc with flint implements and Pitted Ware potsherds. *Comment*: mild pretreatment with NaOH and HCl. Sample undersized; diluted; 87% sample.

 4170 ± 70

Lu-2143. Nymölla 1238, Sq L10

Est $\delta^{13}C = -25.0\%$

Charcoal from occupation layer, Sq L10, x=11.5, y=9.5, ca +7.3m. Assoc with iron ocher, fragment of ground axe, flint implements, and potsherds. *Comment*: normal pretreatment with HCl and NaOH.

 4470 ± 70

Lu-2144. Nymölla 1238, Sq m10

Est $\delta^{13}C = -25.0\%$

Charcoal from occupation layer, Sq m10, x=12.5, y=9.5, ca +7.3m. Assoc with Middle Neolithic potsherds and flint implements. *Comment*: normal pretreatment with HCl and NaOH.

 5390 ± 110

Lu-2198. Stenbocksvallar, Barsebäck

 $\delta^{13}C = -26.3\%e$

Charcoal (*Corylus & Quercus*) id by T Bartholin from cultural layer (Ertebølle culture) at coastal site Stenbocksvallar, Barsebäck 38:3, Barsebäck parish, W Scania (55° 46′ N, 12° 55′ E). x=490, y=196, Layer 3. Coll 1982 and subm by K Jennbert-Spång, Inst Archaeol, Univ Lund. Assoc with pottery and flint waste. *Comment*: pretreated with HCl. Sample undersized; diluted; 33% sample. (3 1-day counts.)

Fosie Series I

Charcoal from settlement area with traces (eg, posthole marks) of houses from Stone, Bronze, and Iron ages (Björhem & Säfvestad, 1983) at Fosie, Lockarp parish, S Scania (55° 33′ N, 13° 03′ to 13° 04′ E). Coll 1979 and 1981 and subm by U Säfvestad, Inst Archaeol, Univ Lund. Excavation of area necessitated by exploitation of farmland for industry. Lu-2205 only pretreated with HCl; all other samples pretreated with HCl and NaOH.

 7480 ± 70

Lu-2202. Fosie IV, Settlement I

 $\delta^{13}C = -24.0\%$

Charcoal from post holes and storage pit, Settlement I, Structures 193 (Sq C, Level I), 259, and 262 (Coordinate 200). Assoc with animal bones, flint, and pottery, indicating Late Bronze age. *Comment* (US): date earlier than expected from assoc material.

 1640 ± 50

Lu-2203. Fosie IV, Settlement I, House II

 $\delta^{13}C = -26.0\%e$

Charcoal from hearth in W part of House II, Settlement I. Assoc with pottery indicating Late Iron age. *Comment* (US): date somewhat earlier than expected.

 1630 ± 50

Lu-2204. Fosie IV, Settlement IV, Sample 1

 $\delta^{13}C = -25.8\%$

Charcoal from post holes, Settlement IV, House XLII (Iron age). *Comment* (US): date ca 400 yr earlier than expected, but acceptable, since datable finds are scarce on this site.

 1660 ± 50

Lu-2205. Fosie IV, Settlement IV, Sample 2

 $\delta^{13}C = -25.4\%$

Charcoal from post holes, Settlement IV, Houses LVI and LXII (Iron age). *Comment*: sample undersized; diluted; 91% sample.

 4560 ± 70

Lu-2102. Ängdala 1981:MHM 6434

 $\delta^{13}C = -25.9\%$

Charcoal from hearth-pit in area with Neolithic flint mines at Ängdala, S Sallerup parish, S Scania (55° 35′ 20″ N, 13° 07′ 20″ E). Coll 1981 by E Rudebäck; subm by M Larsson. *Comment*: no pretreatment; sample undersized; diluted; 36% sample. (4 1-day counts.)

 4960 ± 70

Lu-2212. Ängdala 1983

 $\delta^{13}C = -27.8\%$

Wood from flint mine (No. 25, Area C) in Senonian chalk at Ängdala, S Sallerup parish, S Scania (55° 35′ 20″ N, 13° 07′ 20″ E). Coll 1983 and subm by E Rudebäck, Malmö Mus. Assoc with bone and worked flint indicating Early Neolithic culture. For other dates from area, see R, 1980, v 22, p 1058; 1981, v 23, p 398, and Lu-2102, above. *Comment*: no pretreatment; sample undersized; diluted; 83% sample.

Fotevik Series II

Wood and fibrous calking material from pole and boat wreck assoc with Late Viking age stone blocking in entrance to bay Foteviken, SW Scania (55° 28′ N, 12° 56′ E). Coll 1982 by Malmö Sjöfartsmuseum; subm by C Ingelman-Sundberg and P Söderhielm, Malmö Sjöfartsmus, Malmö. Preliminary repts pub by Ingelman-Sundberg and Söderhielm (1982) and Hårdh (1983). Dated as complement to Fotevik Series I (R, 1983, v 25, p 888).

 1030 ± 45

Lu-2213. Fotevik, F82.V1.27

 $\delta^{13}C = -24.0\%$

Fibrous calking material from Board 2B, boat Wreck 1 (Ingelman-Sundberg & Söderhielm, 1982, p 5-14). *Comment*: sample charred in nitrogen atmosphere before burning.

 950 ± 60

Lu-2214. Fotevik, F82.V3.5

 $\delta^{13}C = -27.4\%c$

Wooden peg with wedge from boat rib, Wreck 3 (Ingelman-Sundberg & Söderhielm, 1982, p 18). Comment: no pretreatment; sample undersized; diluted; 70% sample.

 950 ± 45

Lu-2215. Fotevik, F82.s.54

 $\delta^{13}C = -28.6\%$

Wood from Pole ARÖ near Wreck 2, N part of stone blocking (Ingelman-Sundberg & Söderhielm, 1982, p 16, fig 11). *Comment*: pretreated with HCl and NaOH.

 2020 ± 60

Lu-2218. DRACO, Lund

 $\delta^{13}C = -26.3\%e$

Charcoal from hearth (Structure 7, Layer 1) excavated in rescue operation at DRACO industrial area, NE part of Lund, S Scania (55° 42′ 35″ N, 13° 13′ 15″ E). Coll 1983 and subm by B Bondesson, Mus Cultural Hist, Lund. Assoc with pottery indicating Bronze or Iron age. *Comment*: pretreated with HCl. Sample undersized; diluted; 68% sample.

Aaland

Otterböte series

Food remains from potsherds from Bronze age settlement at Otterböte, Kökar I., Aaland (59° 56′ N, 20° 52′ E). Coll 1950 during study of settlement by C F Meinander, M Dreijer, and B Schönbäck; subm by B Hulthén, Lab for ceramic and clay mineralogy, Dept Quaternary Geol, Univ Lund. Pottery indicates Late Bronze or Early Iron age. Mild pretreatment with NaOH and HCl.

 2790 ± 50

Lu-2159. Otterböte, 200:218

 $\delta^{13}C = -27.6\%$

Food remains from potsherd No. 200:218.

 2850 ± 50

Lu-2160. Otterböte, 200:153

 $\delta^{13}C = -27.2\%$

Food remains from potsherd No. 200:153.

Denmark

Jonstrupvang series

Collagen from mixture of animal bone fragments and teeth underlying layer of hand-sized granite chips in megalithic construction "Ting-

stedet" (Laumann Jörgensen, 1980, p 25-27) at Jonstrupvang (Afd 69), NW of Copenhagen (55° 46′ N, 12° 13.5′ E). Coll 1980 and subm by E Laumann Jörgensen, Vaerlöse Mus, Vaerlöse. Bone sample from other megalithic construction in area dated at 4500 ± 55 BP (Lu-1952, R, 1982, v 24, p 211). Collagen extracted as described previously (R, 1976, v 18, p 290) without NaOH treatment.

 170 ± 70

Lu-2017. Jonstrupvang, Sample 1

 $\delta^{13}C = -20.6\%$

Collagen from mixture of ill-preserved animal bone fragments. Comment: organic carbon content: 2.9% (1-day count.) No explanation for unexpectedly late date.

 150 ± 45

Lu-2163. Jonstrupvang, Sample 2

 $\delta^{13}C = -22.4\%$

Collagen from mixture of ill-preserved animal bone fragments and teeth from same collection as Lu-2017, above. Dated as check on Lu-2017 by request of submitter. *Comment*: organic carbon content: 2.8%. Sample undersized; diluted; 65% sample. (3 1-day counts.)

REFERENCES

Ashwell, I Y, 1975, Glacial and Late Glacial processes in Western Iceland: Geog Ann, v 57A, p 225-245.

no. 14, 93 p.

Björhem, Nils and Säfvestad, Ulf, 1983, Fosie IV—en långdragen historia: Ale, Hist Tidskr för Skåneland (Lund), 1983, no. 1, p 3-29.

Firbas, F, 1949, Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen, I: Jena, Fischer Verlag, 480 p.

Håkansson, Sören, 1976, University of Lund radiocarbon dates IX: Radiocarbon, v 18, p 290-320.

1980, University of Lund radiocarbon dates XIII: Radiocarbon, v 22, p 1045-

1981, University of Lund radiocarbon dates XIV: Radiocarbon, v 23, p 384-

1982, University of Lund radiocarbon dates XV: Radiocarbon, v 24, p 194-

1983a, University of Lund radiocarbon dates XVI: Radiocarbon, v 25, p 875-

— 1983b, A reservoir age for the coastal waters of Iceland: Geol Fören Stockholm Förh, v 105, p 65-68.

Hårdh, Birgitta, 1983, Foteviksprojektet. En utställning om hamn, skepp och kommunikationer i järnålder och tidig medeltid: Rept 16, Inst Archaeol, Univ Lund, 14 p.

Hallström, Gustaf, 1909, Båtar och båtbyggnad i Ryska lappmarken: Nordiska Mus Tidskr (Stockholm), 1909, Häft 2, p 85-100.

Hillefors, Ake, 1979, Deglaciation models from the Swedish West Coast: Boreas (Oslo), v 8, p 153-169.

Ingelman-Sundberg, Catharina and Söderhielm, Per, 1982, Marinarkeologisk undersökning i Foteviken, Skåne. Prelim rapt, Okt 82: Malmö Sjöfartsmus, 26 p and 3 appendices.

- Larsson, Lars, 1980, Stenåldersjägarnas boplats och gravar vid Skateholm: Limhamniana
- 1980 (Malmö), p 13-39. ———— 1981, En 7000-årig sydkustboplats. Nytt om gammalt från Skatcholm: Limhamniana 1981, p 17-46.
- 1982, Skateholmsprojektet. Nya gravar och ett nytt gravfält från jägarstenål-
- dern: Limhamniana 1982, p 11-41. Laumann Jörgensen, E, 1980, Sakrale riller i sten. Upåagtede helleristninger: Hist Forening for Vaerlöse Kommune, Årsskr 1980, p 9-56.
- Olsson, I U, 1980, Content of ¹⁴C in marine mammals from northern Europe, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon,
- v 22, no. 3, p 662-675. Stuiver, Minze, 1982, A high-precision calibration of the AD radiocarbon time scale: Radiocarbon, v 24, p 1-26.
- Stuiver, Minze and Polach, H A, 1977, Discussion: Reporting of ¹⁴C data: Radiocarbon, v 19, p 355-363.

QUEENS COLLEGE RADIOCARBON MEASUREMENTS IV

RICHARD R PARDI, LYNN TOMECEK, and WALTER S NEWMAN Radiocarbon Laboratory, Queens College, City University of New York, Flushing, New York 11367

The following list includes radiocarbon analyses of samples related to studies of Holocene sea levels completed since the publication of the last list (R, 1980, v 22, p 1073-1083). Sample preparation and counting for liquid scintillation samples remain the same. However, an additional gasproportional facility was added in 1981 to handle the analyses of small samples, some of which are included in this list. The new system consists of two 660cc OFHC copper counters built at Queens College. Samples are counted over at least two 2800 minute intervals alternating with backgrounds and standards counted over 1400 minute intervals. Ages are based on the Libby half-life of 5568 years and include 1σ standard deviations of sample, standard, and background activities.

ACKNOWLEDGMENTS

The authors thank M Newman and K Tessmer for their able assistance in the laboratory. This work was supported by grant EAR 77-13666 from the National Science Foundation, contract 14-08-0001-17729 with the United States Geological Survey and grant RF-11661 from the City University of New York.

New York

Marlboro Marsh series

This series was taken from Marlboro Marsh. All samples are basal peat, at coordinates (41° 36′ 40″ N, 73° 57′ 58″ W), and coll 1979 by J Miller, H Craig and L I Cinquemani except where noted.

miner, ir chars	and if J conquemain except where noted.	
-	Marlboro Marsh 1 below mean high water.	2330 ± 240
-	Marlboro Marsh 2 below mean high water.	3010 ± 120
_	Marlboro Marsh 3 Plow mean high water.	4150 ± 100
-	Marlboro Marsh 4 elow mean high water.	4390 ± 220
•	Marlboro Marsh 5 m below mean high water. Coll by H Cra	4260 ± 130 aig, S Jencius,

QC-686. Marlboro Marsh 6 4570 ± 110

8.2 to 8.6m below mean high water. Coll by W S Newman, H Craig, S Jencius, and J Wilson. *Comment*: Marlboro 5 and 6 are on stiff clayey substrates and may not be valid sea level indicators.

Constitution Island series

This series was taken from Constitution I. Marsh. All samples are basal peat. Coordinates for Constitution I. marsh are: Constitution I. 2, 7, and 12 (41° 24′ 22″ N, 73° 56′ 53″ W), Constitution I. 5, 8, 11, and 13 (41° 24′ 40″ N, 73° 56′ 53″ W), and Constitution I. 1, 3, 4, 6, 9, 10, and 14 (41° 24′ 23″ N, 73° 56′ 30″ W).

OC-691. Constitution I. 1

 2320 ± 500

I to 1.3m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson. *Comment*: sample yields only freshwater diatoms; also some benzene evaporated.

OC-1039. Constitution I. 2

 2160 ± 130

1.7 to 2.08m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, B Duffy, J Schneller, H Greenberg, and K Tessmer.

OC-690. Constitution I. 3

 1440 ± 100

2.1 to 2.4m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson. *Comment*: sample yields only freshwater diatoms.

OC-695. Constitution I. 4

 2440 ± 100

2.9 to 3.4m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson.

OC-226. Constitution I. 5

 2320 ± 100

3.7 to 3.9m below mean high water. Coll 1976 by L J Cinquemani.

QC-693. Constitution I. 6

 3210 ± 110

4.7 to 5.2m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson.

OC-1042. Constitution I. 7

 4660 ± 130

5.8 to 6.1m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, B Duffy, J Schneller, H Greenberg, and K Tessmer.

QC-276. Constitution I. 8

4110 ± 100

5.95 to 6.15m below mean high water. Coll 1976 by L J Cinquemani.

QC-694. Constitution I. 9

 3760 ± 120

6.1 to 6.6m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson.

QC-696. Constitution I. 10

 2460 ± 110

6.7 to 7.2m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson. *Comment*: field notes suggest some sediment flowed into sample.

QC-227. Constitution I. 11

 4230 ± 120

7.5 to 7.7m below mean high water. Coll 1976 by L J Cinquemani.

OC-1040. Constitution I. 12

 6030 ± 290

7.9 to 8.3m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, B Duffy, J Schneller, H Greenberg, and K Tessmer.

QC-189. Constitution I. 13

 5570 ± 300

9.25 to 9.45m below mean high water. Coll 1976 by L J Cinquemani.

QC-692. Constitution I. 14

 4660 ± 140

9.35 to 9.75m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, and J Wilson. *Comment*: Marine Transgression appears more pronounced on E side of marsh.

QC-706. Manitou Marsh

 3530 ± 110

Basal peat, 3.65 to 4m below mean high water (41° 20′ 00″ N, 73° 58′ 00″ W). Coll 1979 by H Craig, S Jencius, and J Wilson.

Iona Island series

This series was taken from Ring Meadow, Iona Island. All samples are basal peat except where noted and at coordinates (41° 18′ 00″ N, 73° 58′ 50″ W).

QC-574. Iona I. 1

 390 ± 100

0.94 to 1.14m below mean high water. Coll 1978 by W S Newman.

QC-763. Iona I. 2

 1040 ± 12

0.6 to 1m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-764. Iona I. 3

 2240 ± 120

Wood and peat, 1.7 to 2m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

OC-575. Iona I. 4

 1460 ± 90

1.98 to 2.18m below mean high water. Coll 1978 by W S Newman.

QC-1021. Iona I. 5

 3430 ± 120

2.5 to 2.75m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, J Schneller, K Tessmer, and H Greenberg.

QC-765. Iona I. 6

 2140 ± 100

2.7 to 3m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-576. Iona I. 7

 2830 ± 130

Wood, 3.24 to 3.44m below mean high water. Coll 1978 by W S Newman.

QC-1022. Iona I. 8

 3510 ± 150

3.41 to 3.71m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, J Schneller, K Tessmer, and H Greenberg.

QC-766. Iona I. 9

 2840 ± 110

Peat, 3.6 to 3.9m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-1019. Iona I. 10

 4270 ± 260

4.37 to 4.67m below mean high water. Coll 1980 by W S Newman, L I Cinquemani, I Schneller, K Tessmer, and H Greenberg.

QC-274. Iona I. 11

 3610 ± 120

 $4.4\ to\ 4.6m$ below mean high water. Coll 1976 by L J Cinquemani and W S Newman.

QC-187. Iona I. 12

 3800 ± 160

4.55 to 4.75m below mean high water. Coll 1976 by L J Cinquemani.

QC-577. Iona I. 13

 4520 ± 120

4.89 to 5.09m below mean high water. Coll 1978 by W S Newman.

QC-767. Iona I. 14

 3140 ± 110

4.9 to 5.3m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-1023. Iona I. 15

 4800 ± 190

5.6 to 5.85m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, J Schneller, K Tessmer, and H Greenberg.

QC-768. Iona I. 16

 2960 ± 100

 $6.1\ to\ 6.5m$ below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-1020. Iona I. 17

 4370 ± 270

6.25 to 6.55m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, J Schneller, K Tessmer, and H Greenberg.

QC-1024. Iona I. 18

 5060 ± 270

6.6 to 6.9m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, J Schneller, K Tessmer, and H Greenberg.

QC-775. Iona I. 19

 3870 ± 120

Peat, 7 to 7.4m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

OC-776. Iona I. 20

 2170 ± 100

Peat, 7.6 to 8m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

OC-777. Iona I. 21

 2570 ± 90

Peat, 8.1 to 8.5m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-778. Iona I. 22

 4270 ± 120

Peat, 9.6 to 10m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-186. Iona I. 23

 3940 ± 140

10.55 to 10.75m below mean high water. Coll 1976 by L J Cinquemani. *General Comment*: Iona I. samples 2, 3, 6, 9, 14, 16, 19, 20, 21, 22, and 23 coll along transect 100m S of other samples and yield considerably higher transgression rates. These samples appear to have been taken from SE block of Timp Fault.

Roa Hook series

This series was taken from tidal marsh at Roa Hook (Camp Smith). All samples are basal peat, at coordinates (41° 17′ 58″ N, 73° 56′ 50″ W); coll 1978 except where noted. Roa Hook 1-6 are W of E-facing buried (fault?) scarp; other samples of this series are E of scarp.

OC-511. Roa Hook 1

126% modern

From marsh surface. Coll by W S Newman.

QC-569. Roa Hook 2

 2490 ± 120

1.94 to 2.14m below mean high water. Coll by W S Newman.

QC-722. Roa Hook 3

 2360 ± 100

Wood and basal peat, 2.3 to 2.6m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-567. Roa Hook 4

 4280 ± 110

3.83 to 4.03m below mean high water. Coll by W S Newman. *Comment*: result suspect because of data item omission.

QC-568. Roa Hook 5

 3170 ± 170

4.01 to 4.21m below mean high water. Coll by W S Newman.

QC-1041. Roa Hook 6

 3190 ± 160

4.25 to 4.55m below mean high water (41° 17′ 30″ N, 73° 56′ 00″ W). Coll 1980 by W S Newman, L J Cinquemani, B Duffy, J Schneller, H Greenberg, and K Tessmer.

QC-510. Roa Hook 7

 3140 ± 170

4.8 to 5m below mean high water. Coll by W S Newman, R R Pardi, G Greengold, and H Craig.

QC-721. Roa Hook 8

 3320 ± 110

5.5 to 5.8m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-723. Roa Hook 9

 3910 ± 130

6.7 to 7m below mean high water. Coll 1979 by H Craig, S Jencius, and F Ciapetti.

QC-566. Roa Hook 10

 4660 ± 100

Wood and peat, 6.87 to 7.07m below mean high water. Coll by W S Newman.

QC-1043. Roa Hook 11

 4450 ± 200

7.5 to 7.95m below mean high water. Coll 1980 by W S Newman, L J Cinquemani, B Duffy, J Schneller, H Greenberg, and K Tessmer.

QC-565. Roa Hook 12

 5470 ± 140

Wood and peat, 8.6 to 8.8m below mean high water. Coll by W S Newman.

QC-512. Roa Hook 13

 4120 ± 350

8.8 to 9m below mean high water. Coll by W S Newman.

QC-509. Roa Hook 14

 4550 ± 130

9.3 to 9.5m below mean high water. Coll by W S Newman, R R Pardi, G Greengold, and H Craig.

QC-573. Roa Hook 15

 6230 ± 120

Wood, 10.8 to 11m below mean high water. Coll by W S Newman.

Stony Point series

This series was taken from tidal marsh S of Stony Point. All samples are basal peat, at coordinates (41° 14′ 40″ N, 73° 58′ 05″ W); coll 1978 by W S Newman, L J Cinquemani, H Craig, S Nelson, and V Newman except where noted.

QC-505. Stony Point 1

 3100 ± 110

3.2 to 3.4m below mean high water.

QC-506. Stony Point 2

 3740 ± 200

5.8 to 6m below mean high water.

QC-469. Stony Point 3

 4830 ± 110

5.9 to 6.1m below mean high water. Coll 1977 by W S Newman, L J Cinquemani, H Craig, G Greengold, V Newman, and S Nelson.

Oscawana Island series

This series was taken from Tidal Marsh, Oscawana I. All samples are basal peat, at coordinates (41° 13′ 45″ N, 73° 55′ 50″ W); coll 1976 by L J Cinquemani except where noted.

QC-228. Oscawana I. 1

 1870 ± 90

2.5 to 2.7m below mean high water.

QC-729. Oscawana I. 2

 330 ± 100

5.6 to 5.9m below mean high water. Coll 1979 by H Craig and S Jencius. *Comment*: Oscawana 2 date seems inexplicable for its depth.

QC-221B. Oscawana I. 3

 4570 ± 120

6.6 to 6.8m below mean high water.

QC-264. Oscawana I. 4

 4500 ± 100

6.8 to 7m below mean high water.

QC-221A. Oscawana I. 5

 5150 ± 210

7.3 to 7.5m below mean high water.

Cedar Pond series

This series was taken from Cedar Pond Brook Marsh. All samples are basal peat, at coordinates (41° 13′ 30″ N, 73° 58′ 00″ W); coll 1979.

QC-770. Cedar Pond 1

 800 ± 100

0.7 to 1m below mean high water. Coll by H Craig, S Jencius, F Ciapetti, and H Greenberg.

QC-772. Cedar Pond 2

 1740 ± 100

1.7 to 2m below mean high water. Coll by H Craig, S Jencius, F Ciapetti, and H Greenberg.

QC-712. Cedar Pond 3

 1940 ± 110

2.5 to 2.8m below mean high water. Coll by H Craig and S Jencius.

QC-773. Cedar Pond 4

 2650 ± 100

2.5 to 2.8m below mean high water. Coll by H Craig, S Jencius, F Ciapetti, and H Greenberg.

QC-771. Cedar Pond 5

 2890 ± 130

Wood and peat, 3.1 to 3.4m below mean high water. Coll by H Craig, S Jencius, F Ciapetti, and H Greenberg.

QC-810. Cedar Pond 6

 3030 ± 100

3.2 to 3.6m below mean high water. Coll by H Craig, S Jencius, J Gordon, F Ciapetti, and H Greenberg.

QC-709. Cedar Pond 7

 2220 ± 120

3.25 to 3.6m below mean high water. Coll by H Craig, S Jencius, and S Olgun.

QC-774. Cedar Pond 8

 3090 ± 110

3.4 to 3.7m below mean high water. Coll by H Craig, S Jencius, F Ciapetti, and H Greenberg.

QC-811. Cedar Pond 9

 2700 ± 120

3.5 to 3.9m below mean high water. Coll by H Craig, S Jencius, J Gordon, F Ciapetti, and H Greenberg.

QC-710. Cedar Pond 10

 3660 ± 110

3.85 to 4.2m below mean high water. Coll by H Craig and S Jencius.

OC-812. Cedar Pond 11

 3860 ± 150

4.2 to 4.6m below mean high water. Coll by H Craig, S Jencius, J Gordon, F Ciapetti, and H Greenberg.

QC-711. Cedar Pond 12

 3630 ± 110

5.1 to 5.5m below mean high water. Coll by H Craig and S Jencius.

QC-718. Cedar Pond 13

 4400 ± 130

6.6 to 7m below mean high water. Coll by H Craig and S Jencius.

QC-719. Cedar Pond 14

 5080 ± 130

6.7 to 7m below mean high water. Coll by H Craig and S Jencius.

Piermont series

This series was taken from Piermont Tidal Marsh, Tallman State Park. All samples are basal peat, at coordinates (41° 01′ 30″ N, 73° 54′ 00″ W); coll 1979 by H Craig and S Jencius except where noted.

QC-733. Piermont 1

<90

0.7 to 1m below mean high water.

QC-734. Piermont 2

 1420 ± 120

1.4 to 1.7m below mean high water.

QC-735. Piermont 3

 2000 ± 110

3 to 3.3m below mean high water.

QC-211. Piermont 4

 2300 ± 160

2.8 to 3m below mean high water. Coll 1976 by B Cirolli, M Drillings, J Gordon, and M Balarazo.

QC-736. Piermont 5

 2550 ± 140

4.5 to 4.8m below mean high water.

QC-732. Piermont 6

 2990 ± 100

4.5 to 4.8m below mean high water.

OC-730. Piermont 7

 3050 ± 100

5.2 to 5.5m below mean high water.

QC-738. Piermont 8

 3320 ± 140

6.65 to 7m below mean high water.

QC-262. Piermont 9

 3460 ± 100

4.85 to 5.05m below mean high water. Coll by L J Cinquemani.

QC-731. Piermont 10

 3530 ± 110

Wood hash, 5.1 to 5.2m below mean high water. *Comment*: samples are not basal peat above Piermont 7.

QC-737. Piermont 11

 3730 ± 200

5.6 to 5.9m below mean high water.

QC-739. Piermont 12

 3790 ± 90

7.6 to 8m below mean high water.

QC-261. Piermont 13

 4610 ± 110

8.34 to 8.54m below mean high water. Coll by L J Cinquemani.

QC-740. Piermont 14

 4300 ± 280

8.6 to 9m below mean sea level.

QC-741. Piermont 15

 4720 ± 120

9.6 to 10m below mean high water.

OC-742. Piermont 16

 5320 ± 170

11.1 to 11.4m below mean high water. Coll by H Craig, S Jencius, and F Ciapetti.

QC-808. Piermont 17

 5480 ± 140

11 to 11.5m below mean high water. Coll by H Craig, S Jencius, J Gordon, F Ciapetti, and H Greenberg.

QC-809. Piermont 18

 6840 ± 230

11.5 to 12m below mean high water. Coll by H Craig, S Jencius, J Gordon, and H Greenberg.

QC-295. Pelham Bay Park

 1800 ± 90

Basal peat, 2.05 to 2.25m below mean high water (40° 52′ 06″ N, 73° 47′ 36″ W), Pelham Bay Park, Bronx. Coll 1976 by W S Newman, L J Cinquemani, and H Craig.

East River series

This series consists of commercial borehole samples taken from East R. All samples are basal peat, at coordinates (40° 47′ 45″ N, 73° 49′ 50″ W) and coll 1976 by Mueser, Rutledge, Johnson, and DeSimone, Consulting Engineers except where noted.

QC-267. College Point Marsh, Core B-206B4, 5650 ± 170 Sample 3

12.7 to 13m below mean high water.

QC-306. Roosevelt Ave 1

 7980 ± 390

 7120 ± 240

15.5 to 15.7m below mean high water (40° 48′ N, 73° 48′ W). Coll by M Marty, Transit Authority.

QC-266. College Point Marsh, Core B-288, Sample 13

17.7 to 18m below mean high water.

QC-265. College Point Marsh, Core B-219, 6370 ± 100 Sample 15

18.1 to 18.3m below mean high water.

QC-269. College Point Marsh, Core B-227, Sample 15 8100 ± 100

19.7 to 20.1m below mean high water.

QC-268. College Point Marsh, Core B-218, $12,400 \pm 260$ Sample 13

20 to 20.3m below mean high water.

Westway series

This series was taken along lower W side of Manhattan I. All samples are organic-rich sediments overlying glacial gravels, sands, or rock. Coll 1979 by Mueser, Rutledge, Johnston, and DeSimone, Consulting Engineers except where noted.

QC-1399. Westway MJ0682-0012-057-BVB3 2700 \pm 150 Peat, 1.7 to 1.8m below mean high water (40° 27′ 20″ N, 74° 10′ 45″ W).

QC-1381. Westway Core TT-412, Sample 300 $10,700 \pm 180$ 13.7 to 14.3m below mean high water (40° 45′ 10″ N, 74° 00′ 18″ W).

QC-1382. Westway Core VT-209, Sample 4D 2030 ± 150 18.7 to 19.4m below mean high water (40° 43′ 28″ N, 74° 00′ 18″ W).

QC-1029. Westway Core HT-1270, Sample 130D 8190 \pm 130 Basal peat, 19.2 to 19.8m below mean high water (40° 43′ 31″ N, 74° 00′ 40″ W), from West Side Expressway-Holland Tunnel.

QC-1330. Westway Core VT-249, Sample 8D 490 \pm 110 Intrusive wood fragment probably from pier piling, 21.3 to 21.9m below mean high water (40° 43′ 50″ N, 74° 00′ 46″ W).

QC-1380. Westway Core VT-203, Sample 11D 8960 ± 270 21.3 to 21.9m below mean high water (40° 43′ 28″ N, 74° 00′ 56″ W).

QC-1028. Westway Core HV-21, Sample 60D 8750 \pm 170 Basal peat, 21.3 to 22m below mean high water (40° 43′ 23″ N, 74° 00′ 59″ W), from West Side Expressway-Chambers St.

QC-1389. Westway Core VT-214, Sample 9D 7650 ± 190 21.5 t o 22m below mean high water (40° 43′ 32″ N, 74° 00′ 57″ W).

QC-1027. Westway Core HV-13, Sample 11D $10,500 \pm 500$ Basal peat, 22 to 22.6m below mean high water (40° 43′ 26″ N, 74° 00′ 58″ W), from West Side Expressway-Chambers St.

QC-1026. Westway Core HT-120, Sample 13D 9170 \pm 230 Basal peat, 22.9 to 23.5m below mean high water (40° 43′ 34″ N, 74° 00′ 43″ W), from West Side Expressway-Holland Tunnel.

QC-1184. Westway Core HT-124, Sample 19D 5540 ± 160

Shell probably allochthonous, 23.2 to 23.5m below mean high water $(40^{\circ} 43' 33'' \text{ N}, 74^{\circ} 00' 40'' \text{ W})$, from along Holland Tunnel, right-of-way on E side of Hudson R.

- QC-1321. Westway Core TT-313, Sample 12D 7920 ± 200 24.4 to 25m below mean high water (40° 44′ 27″ N, 74° 00′ 40″ W).
- QC-1374. Westway Core VT-215, Sample 15D 8690 ± 190 Organic rich sediment just above bedrock, 24.4 to 25m below mean high water (40° 43′ 30″ N, 74° 00′ 59″ W).
- QC-1025. Westway Core HT-123U, Sample 27D $11,300 \pm 220$ Basal peat, 24.8 to 25.5m below mean high water (40° 43′ 32″ N, 74° 00′ 40″ W), from West Side Expressway-Holland Tunnel.
 - QC-1324. Westway Core TT-335, Sample 14D $11,100 \pm 250$ 27.4 to 28m below mean high water (40° 44′ 30″ N, 74° 00′ 36″ W).
 - QC-1322. Westway Core TT-314, Sample 15D $11,420 \pm 250$ 27.4 to 28m below mean high water (40° 44′ 27″ N, 74° 00′ 40″ W).
 - **QC-1329.** Westway Core TT-359, Sample 16D 11,990 ± 220 29 to 29.6m below mean high water (40° 44′ 36″ N, 74° 00′ 34″ W).
 - QC-1326. Westway Core TT-352, Sample 17D $11,620 \pm 200$ 30.5 to 31.1m below mean high water (40° 44′ 35″ N, 74° 00′ 36″ W).
- QC-1183. Westway Core RR-114, Sample 22D 9540 \pm 120 Organic silt, 36.6 to 37.2m below mean high water (40° 45′ 39″ N, 74° 00′ 47″ W), from Amtrak Tunnel-E shore Hudson R. *Comment*: not basal peat.
- QC-1182. Westway Core RR-126, Sample 27 $10,200 \pm 170$ Wood fragments overlying glacial gravel, 38.2 to 38.9m below mean high water (40° 45′ 36″ N, 74° 00′ 45″ W); coll 1978. Comment: probably allochonthonous sample.
- QC-1315. Westway Core WT-505, Sample 26D 12,280 \pm 260 Lowest organic material above glacial gravel, 42.7 to 43.3m below mean high water (40° 45′ 35″ N, 74° 00′ 45″ W).

Caumsett Marsh series

This series was taken from Caumsett Marsh. All samples are basal peat, at coordinates (40° 56′ 30″ N, 73° 28′ 50″ W); coll 1979 by D Habib, W S Newman, L J Cinquemani, H Craig, S Jencius, and J Wilson.

QC-689. Caumsett Marsh 1 0.9 to 1.1m below mean high water.

 780 ± 120

QC-687. Caumsett Marsh 2

 660 ± 120

2.05 to 2.35m below mean high water.

QC-688. Caumsett Marsh 3

 760 ± 140

2.06 to 2.36m below mean high water.

Eatons Neck series

This series are all basal peats from tidal marsh on Eatons Neck, at coordinates (40° 56′ 58″ N, 73° 23′ 43″ W). Coll 1979 by G Wisker.

QC-681. Eatons Neck 1

 370 ± 120

0.65 to 0.95m below mean high water.

QC-679. Eatons Neck 2

 1590 ± 11

1.4 to 1.55m below mean high water.

QC-682. Eatons Neck 3

 2520 ± 90

4.85 to 5.05m below mean high water.

OC-190. Mt Sinai

 2180 ± 100

Peat, 4.2 to 4.9m below surface (40° 56′ 55″ N, 73° 01′ 50″ W), from Mt Sinai Harbor. Coll 1976 by L J Cinquemani.

Shelter Island series

This series was taken from Bass Creek, Shelter I. All samples are at coordinates (41° 02′ 47″ N, 72° 18′ 50″ W); coll 1980 by W S Newman, M Newman, B Duffy, L Bruno, and J Isby.

QC-1084. Shelter I. 1

 850 ± 150

Salt marsh-sphagnum peat interface, 1.1 to 1.3m below mean high water.

OC-1083A&B. Shelter I. 2

 3590 ± 130

32,000

Base of *sphagnum* peat sec above glacial drift. Peat and wood, 6.6 to 6.75m below mean high water.

+3800

QC-1082. Queens Mall, Core 5, Sample 14B

-2600

Peat, 22.8 to 23.5m below mean high water (40° 44′ 05″ N, 73° 52′ 30″ W), from Queens Mall, Rego Park, near intersec of Queens Blvd and Woodhaven Blvd. Coll 1973 by Woodward Moorehouse Assoc. *Comment*: sample in Flushing Formation (see Newman, 1977).

New Jersey

Cheesequake series

This series was taken from salt marsh in Cheesequake State Park. All samples are basal peat except Cheesequake 6, at coordinates (40° 26′ 05″ N, 74° 17′ 20″ W); coll 1979 by W S Newman, H Craig, S Jencius, H Greenberg, and R Ortner except where noted. Cheesequake 4 through 6 appear anomalous in age and/or elev.

424	Richard R	Pardi. Lv	nn Tomecek,	and Walter	· S Newman
-----	-----------	-----------	-------------	------------	------------

QC-844.	Cheesequake 1	1210 ± 190
2.6 to 2.8n	n below mean high water.	

2.8 to 3.05m below mean high water.

QC-842. Cheesequake 3
$$2080 \pm 160$$

3.3 to 3.5m below mean high water.

4.5 to 4.8m below mean high water.

QC-846. Cheesequake 5
$$530 \pm 150$$

9.25 to 9.65m below mean high water.

QC-845. Cheesequake 6
$$4820 \pm 100$$

Peat, 10.9 to 11.15m below mean high water.

QC-896. Cheesequake 7 7230 ± 190

11.8 to 12.1m below mean high water. Coll by H Craig, S Jencius, H Greenberg, and K Tessmer.

Sea Island City series

This series was taken from Sea Island City. All samples are basal peat and coll 1979 by W S Newman, H Craig, S Jencius, H Greenberg, and R Ortner.

QC-849. Sea I. City 1 <160

0.7 to 0.9m below mean high water (39° 10′ 40″ N, 74° 43′ 45″ W). Comment: modern rootlet contamination.

QC-850. Sea I. City 2
$$920 \pm 160$$

1.3 to 1.5m below mean high water (39° 10′ 30″ N, 74° 43′ 35″ W).

QC-851. Sea I. City 3
$$2350 \pm 100$$
 From layer 2.8 to 3m below mean high water (39° 10′ 15″ N, 74° 43′

25" W).

QC-852. Sea I. City 4 2260
$$\pm$$
 100 3.5 to 3.7m below mean high water (39° 10′ 00″ N, 74° 43′ 15″ W).

4.75 to $4.95 \mathrm{m}$ below mean high water (39° 09′ 45″ N, 74° 43′ 05″ W).

QC-854. Sea I. City 6
$$3440 \pm 110$$
 5.45 to 5.75m below mean high water (39° 09′ 40″ N, 74° 42′ 45″ W).

QC-855. Sea I. City 7
$$3960 \pm 110$$
 7.3 to 7.6m below mean high water (39° 09′ 30″ N, 74° 42′ 25″ W).

Connecticut

Indian River series

This series was taken from Indian River, Milford. All samples are basal peat at coordinates (41° 13′ 10″ N, 73° 02′ 12″ W); coll 1980 by W S Newman, H Greenberg, L J Cinquemani, K Tessmer, J Schneller, and W Krulish.

QC-1017A&B.	Indian R	1
-------------	----------	---

 2970 ± 100

3.2 to 3.65m below mean high water.

 3500 ± 120

4.25 to 4.45m below mean high water.

QC-1010A&B. Indian R 3

 3650 ± 100

5.3 to 5.7m below mean high water.

QC-1016. Gulf Pond

 1520 ± 190

Basal peat, 2 to 2.2m below mean high water (41° 13′ 00″ N, 73° 12′ 00″ W), from Gulf Pond, Milford. Coll 1980 by W S Newman, L J Cinquemani, H Greenberg, K Tessmer, J Schneller, and W Krulish.

Oyster Creek series

This series was taken from Oyster Creek, Old Saybrook. All samples are basal peat at coordinates (41° 15′ 20″ N, 72° 21′ 00″ W); coll 1980 by W S Newman, L J Cinquemani, H Greenberg, K Tessmer, J Schneller, and W Krulish.

 3970 ± 390

3.87 to 3.97m below mean high water.

QC-1014. Oyster Creek 2

 4460 ± 160

6.53 to 6.83m below mean high water.

QC-1014B&C. Oyster Creek 3

 3850 ± 240

6.42 to 6.83m below mean high water.

QC-1013. Oyster Creek 4

 4780 ± 180

6.95 to 7.15m below mean high water.

QC-1011. Oyster Creek 5

 5510 ± 130

Shell in basal peat, 7.9 to 8.05m below mean high water.

Delaware

QC-807. Fowler Beach

 290 ± 200

Basal peat, 0.4 to 0.55m below mean high water (38° 53′ 00″ N, 74° 16′ 18″ W), from Fowler Beach. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

Maryland

Radcliffe Creek series

This series was taken from Radcliffe Creek Bridge. All samples are basal peat at coordinates (59° 12′ 00″ N, 76° 04′ 00″ W); coll 1979 by W S Newman, H Craig, S Jencius, H Greenberg, R Ortner, and G G Connally.

QC-859. Radcliffe Creek 1

 1230 ± 160

1.8 to 2m below mean high water.

QC-857. Radcliffe Creek 2

 3370 ± 150

Wood, small acorn, and basal peat, 5 to 5.3m below mean high water.

QC-856. Radcliffe Creek 3

 4510 ± 120

10.7 to 11m below mean high water.

Blackwater series

This series was taken from Blackwater Wildlife Refuge. All samples coll 1979 by W S Newman, H Craig, S Jencius, H Greenberg, and R Ortner.

QC-860. Blackwater 1

 2840 ± 140

Basal peat and some wood hash, 3.2 to 3.45m below mean high water (38° 23′ 32″ N, 76° 03′ 45″ W).

QC-861. Blackwater 2

 2490 ± 130

Basal peat and some wood, 3.5 to 3.7m below mean high water (38° 23′ 23″ N, 76° 03′ 50″ W).

QC-862. Blackwater 3

 2650 ± 180

Basal peat, 4 to 4.2m below mean high water (38° 23′ 15″ N, 76° 03′ 55″ W).

QC-863. Blackwater 4

 3750 ± 120

Basal peat and wood hash, 5.4 to 5.7m below mean high water (38° 23′ 00″ N, 76° 04′ 00″ W).

North Carolina

Roanoke Island series

This series was taken from Baumtown, Roanoke I. All samples are basal peat at coordinates (35° 52′ 30″ N, 75° 39′ 00″ W); coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-792. Roanoke I. 1

 760 ± 140

0.4 to 0.6m below mean high water.

QC-805. Roanoke I. 2

 2950 ± 280

1.1 to 1.3m below mean high water.

QC-804. Roanoke I. 3

 2630 ± 150

1.4 to 1.7m below mean high water.

Croatan National Forest series

This series was taken from Croatan Natl Forest. All samples are basal peat at coordinates (34° 42′ N, 77° 06′ W); coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-801. Croatan Forest 1	1180 ± 190
0.4 to 0.7m below mean high water.	
QC-802. Croatan Forest 2	1740 ± 110
1.6 to 1.9m below mean high water.	

Lilliput Creek series

This series was taken from Lilliput Creek, Rte 133 near Wilmington. All samples are at coordinates (34° 04′ 30″ N, 77° 57′ 27″ W); coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

VV D I VC WIII	(ii, 11 clas, 5 J, j	0
QC-798.	Lilliput Creek 1	1450 ± 150
Basal peat	, 0.6 to 0.8m below mean high water.	
OC-799.	Lilliput Creek 2	1390 ± 130
	, 1.25 to 1.45m below mean high water.	
QC-793A.	Lilliput Creek 3	3390 ± 110
Wood, 3.1	to 3.3m below mean high water.	
OC-793B.	Lilliput Creek 4	3400 ± 110
	, 3.5 to 3.8 m below mean high water.	
OC-794.	Lilliput Creek 5	3600 ± 120
	l peat, 4.2 to 4.5m below mean high water.	
QC-795.	Lilliput Creek 6	3260 ± 190
	, 4.5 to 4.9m below mean high water.	
QC-796.	Lilliput Creek 7	3870 ± 180
Basal peat	, 5.45 to 5.95m below mean high water.	
QC-797.	Lilliput Creek 8	5680 ± 250
Wood and	l basal peat, 8.1 to 8.36m below mean high wa	ter.

South Carolina

Pee Dee River series

QC-603. Pee Dee R 1 2630 ± 110 Woody peat, 2.6 to 2.8m below mean high water. Coll 1978 by W S

Woody peat, 2.6 to 2.8m below mean high water. Coll 1978 by W S Newman and F Stapor.

QC-602. Pee Dee R 2 3690 ± 150

Basal peat, 3.4 to 3.6m below mean high water. Coll 1978 by W S Newman and F Stapor.

QC-815. Pee Dee R 3 5300 ± 150

Wood, in basal peat, 3.5 to 3.9m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-604. Pee Dee R 4

 4680 ± 120

Wood, 4.8 to 5m below mean high water. Coll 1978 by W S Newman and F Stapor.

QC-813. Pee Dee R 5

 5630 ± 130

Peat, 6.58 to 6.8m below mean high water, 0.3m above sand stratum. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-814. Pee Dee R 6

 6140 ± 200

Basal peat, 6.65 to 7.1m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

Santee River series

This series was taken from Santee River Estuary near Rte 17. All samples are at coordinates (33° 11′ 36″ N, 79° 23′ 48″ W); coll 1978 by W S Newman and F Stapor.

QC-596-1. Santee R 1

 3110 ± 90

Basal peat, 3 to 3.2m below mean high water.

QC-596-2. Santee R 2

 3140 ± 140

Basal peat, 3 to 3.2m below mean high water. Repeat assay of Santee R 1.

QC-597. Santee R 3

 4550 ± 150

Wood and peat, 3.87 to 4.15m below mean high water.

QC-595. Santee R 4

 4420 ± 410

Basal peat, 4.05 to 4.35m below mean high water.

QC-598. Santee R 5

 3980 ± 280

Wood in paleosol, 5.3m below mean high water.

Cooper River series

This series was taken from Cooper River Estuary. All samples are basal peat and coll 1978 by W S Newman and D J Colquhoun except where noted.

QC-583. Cooper R 1

 2040 ± 110

Wood stump in basal peat on Cooper Marl, Im below mean high water (32° 55′ 30″ N, 79° 53′ 42″ W).

QC-611. Cooper R 2

 2150 ± 110

1.6 to 1.8m below mean high water (32° 58′ 30″ N, 79° 54′ 05″ W).

QC-585. Cooper R 3

 2700 ± 120

Stump in basal peat on Cooper Marl, 2m below mean high water (32° 58′ 31″ N, 79° 53′ 40″ W).

OC-613. Cooper R 4

 2330 ± 140

1.6 to 2.3m below mean high water (32° 58′ 30″ N, 79° 54′ 05″ W).

QC-584. Cooper R 5

 3100 ± 100

2.5 to 2.7m below mean high water (32° 58′ 30″ N, 79° 54′ 05″ W).

QC-588. Cooper R 6

 4140 ± 70

2.8 to 3.1m below mean high water (32° 59′ 50″ N, 79° 53′ 52″ W).

QC-587. Cooper R 7

 4290 ± 130

3.4 to 3.7m below mean high water (32° 59′ 05″ N, 79° 54′ 00″ W).

QC-586. Cooper R 8

 5010 ± 140

4.3 to 4.7m below mean high water (32° 58′ 45″ N, 79° 53′ 37″ W).

Wando River series

This series was taken from Hobcaw Creek, Wando River. All samples are at coordinates (32° 48′ 00″ N, 79° 53′ 00″ W) and coll 1979 by L J Cinquemani and H Craig.

QC-703. Wando R 1

 3100 ± 160

Basal peat, 2 to 2.2m below mean high water.

QC-702. Wando R 2

 4670 ± 130

Woody basal peat, 2.75 to 3.05m below mean high water.

QC-704. Wando R 3

 4760 ± 290

Basal peat and wood hash, 3.9 to 4.2m below mean high water.

Combahee River series

This series was taken from Combahee River. All samples are peat at coordinates (32° 39′ 12″ N, 80° 40′ 30″ W); coll 1978 by W S Newman and F W Stapor except where noted.

QC-609. Combahee R 1

 2880 ± 110

2.26 to 2.45m below mean high water.

QC-610. Combahee R 2

 3330 ± 130

Woody peat, 2.75 to 2.9m below mean high water.

QC-828. Combahee R 3

 4430 ± 170

Basal peat, 3.32 to 3.66m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-594. Combahee R 4

 5620 ± 140

3.65 to 3.8m below mean high water.

QC-593. Combahee R 5

 5280 ± 120

4 to 4.2m below mean high water.

QC-589. Combahee R 6

 5400 ± 120

4.15 to 4.35m below mean high water (32° 39′ 20″ N, 80° 40′ 14″ W).

Coosawatchie River series

This series was taken from Coosawatchie River. All samples are basal peat at coordinates (32° 35′ 00″ N, 80° 55′ 15″ W); coll 1979 by D Colquhoun, W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-827. Coosawatchie R 1

 730 ± 110

0.7 to 1m below mean high water.

OC-826. Coosawatchie R 2

 2130 ± 100

1.28 to 1.58m below mean high water.

Savannah River series

This series was taken from Savannah River Estuary. All samples are at coordinates (32° 08′ 00″ N, 80° 59′ 30″ W); coll 1978 by F Stapor and W S Newman except where noted.

QC-825. Savannah R 1

 3130 ± 130

Basal peat and some wood, 2 to 2.3m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-600. Savannah R 2

 2320 ± 110

Peat and some wood, 2.5 to 2.7m below mean high water.

QC-599. Savannah R 3

 3100 ± 100

Basal peat, 2.7 to 2.9m below mean high water.

QC-821. Savannah R 4

 2440 ± 130

Basal peat, 3.35 to 3.53m below mean high water. Coll 1979 by W S Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

QC-601. Savannah R 5

 3070 ± 190

Peat and roots in paleosol, 4m below mean high water.

OC-822. Savannah R 6

 2060 ± 130

Basal peat, 4.77 to 5.07m below mean high water. Coll 1979 by W Newman, H Craig, S Jencius, J Gordon, and H Greenberg.

REFERENCES

Newman, W S, 1977, Late Quaternary paleoenvironmental reconstruction; some contradictions from northwestern Long Island, in Newman, W S and Salwen, Bert, eds, Amerinds and their paleoenvironments in northeastern North America: Annals New York Acad Sci, v 288, p 545-570.

Pardi, R, and Newman, E R, 1980, Queens College radiocarbon measurements III: Radiocarbon, v 22, p 1073-1083.

SIMON FRASER UNIVERSITY RADIOCARBON DATES III

K A HOBSON and D E NELSON

Archaeology Department, Simon Fraser University, Burnaby, British Columbia V5A 186, Canada

This list reports measurements made on archaeologic and geologic samples by our laboratory from June 1982 to December 1983. Results of measurements made during that period which lack review by submitters will be reported in a subsequent date list. Sample preparation techniques and benzene synthesis remain as described previously (R, 1982, v 24, p 344-351). For low organic samples, such as sediments, we now use a combustion tube assembly. These samples are burned under oxygen flow in a quartz tube. To absorb sulfur and break up nitrous compounds, we pass combustion gases through a 50% mixture of MnO₂ and CuO wire heated to ca 500°C. The gas is then bubbled through a distilled water and KMnO₄ solution to remove chlorides before being introduced into our standard dry ice and CO₂ traps.

Benzene is now counted on an LKB-Wallac *Rackbeta* liquid scintillation spectrometer. For 5ml counting volumes our background level is 4.0 ± 0.03 cpm. The normalized oxalic activity (Aon) is 7.51 ± 0.03 cpm at a 14 C counting efficiency of 68%. Our laboratory standard continues to be ANU sucrose which is routinely calibrated against both oxalic standards. All dates are expressed in 14 C years relative to AD 1950 based on the Libby half-life for 14 C of 5568 yr. Unless otherwise stated, dates have been corrected for isotopic fractionation only when the δ^{13} C value is given. No corrections have been made for natural 14 C variations. The following descriptions of samples are based on information provided by submitters.

ACKNOWLEDGMENTS

We would like to thank Bob Drimmie and Tom Brown for their advice and assistance. C E Rees performed all δ^{13} C measurements quoted. Richard Shutler, Jr and Roy Carlson are members of the SFU Radiocarbon Laboratory Committee.

ARCHAEOLOGIC SAMPLES

Canada

British Columbia

Yale Series I

Charcoal from DjRi 7 site (49° 33′ 17″ N, 121° 26′ 0″ W) directly across river from Yale, British Columbia. Previous excavations (Borden, 1968; 1975) report basal date of 5240 ± 100 (I-8208). Samples coll and subm by Shawn Haley, Dept Archaeol, Simon Fraser Univ.

SFU-225. 4200 ± 380

Charcoal from 0.79 to 0.85m below surface. *Comment* (SH): sample dates Pebble Tool tradition component.

SFU-238. 5900 ± 130

Charcoal from 1.4m below surface. *Comment* (SH): sample dates base of microblade component in rock shelter.

SFU-248. 3130 ± 500

Charcoal from 0.97m below surface. *Comment*: sample too small for base rinse. *Comment* (SH): sample provides basal date for culture-bearing deposit.

Kitselas Canyon Series II

Charcoal excavated from GdTc-16 site (54° 36′ 28″ N, 128° 25′ 04″ W), E side of Skeena R, Kitselas Canyon, 16km NE of Terrace, British Columbia. Samples subm to continue study of village site (R, 1983, v 25, p 901); coll and subm by Gary Coupland, Dept Anthropol, Univ British Columbia for Natl Mus Man, Ottawa.

SFU-255. 4060 ± 120

Charcoal from 30cm below surface of housefloor excavation #1. Sample subm to date occupation of this floor. *Comment* (GC): result seems to be very early — may be re-deposited from earlier (microblade) component.

SFU-256. 4130 ± 90

Charcoal from 140cm below surface, housefloor excavation #1. Sample assoc with microblades and thought to date microblade component in this excavation area. *Comment* (GC): result as expected.

SFU-257. 4250 ± 100

Charcoal from 115cm below surface of housefloor excavation #2. Comment (GC): sample assoc with microblades; dates microblade component.

SFU-258. 4270 ± 200

Charcoal from 95cm below surface of housefloor excavation #2. Comment (GC): sample dates microblade component in this excavation area.

SFU-259. 5050 ± 140

Charcoal from 101cm below surface. Comment (GC): this is test midden excavation. Sample assoc with microblades. Result as expected.

SFU-260. 1330 ± 90

Charcoal from 30cm below surface in housefloor hearth feature. *Comment* (GC): sample dates occupation of housefloor. Result as expected.

SFU-261. 4350 ± 320

Charcoal from 205cm below surface housefloor excavation #3 from sterile beach deposit underlying cultural deposit. *Comment* (GC): result seems too late for beach deposit at this elev above river level.

Alexis Creek Series I

Charcoal from Sites FaRt 16 and FaRt 17, E side of Alexis Creek,

Chilcotin Plateau (52° 04′ 45″ N, 123° 18′ 10″ W). Samples coll and subm by Jean Bussey, Points West Heritage Consulting Ltd., Langley, British Columbia.

SFU-309. 700 ± 100

Charcoal from FaRt 16. Sample subm to date lowest cultural layer in roasting pit feature. *Comment*: sample heavily contaminated by roots. No base rinse possible due to small size.

SFU-310. 500 ± 80

Charcoal from FaRt 17. Sample subm to date circular cultural depression. *Comment*: heavy root contamination — no base rinse.

SFU-311. 620 ± 80

Charcoal from FaRt 16. Sample subm to date use of roasting pit. Comment: heavy root contamination — no base rinse.

Namu Series II

Human bone collagen from Namu; prehistoric shell midden site, ElSx 1, E side of Fitzhugh Sound (51° 51′ 32″ N, 127° 51′ 50″ W). For additional inf on burial excavations, see Hester and Nelson (1978). Samples subm by Joanne Curtin, Dept Archaeol, Simon Fraser Univ.

 2530 ± 160

SFU-341.

 $\delta^{13}C = -13.0\%$ from cairn burial

Collagen from long bone and rib fragments. Sample from cairn burial 10 to 70cm below surface excavated in 1978 by R Carlson. *Comment* (JC): probably one of most recent burials from Namu and may show different pattern of burial from earliest remains.

 4680 ± 160

SFU-342.

 $\delta^{13}C = -13.4\%$

Collagen from rib fragments and miscellaneous unid. bone. Sample from burial 7.5m below surface excavated by Hester in 1969 to 1970. Comment (JC): termination date for multiple internment involving at least 12 individuals.

 4390 ± 160

SFU-343.

 $\delta^{13}C = -13.0\%$

Collagen from rib fragments. Sample from burial 2m below surface excavated by Hester 1969 to 1970.

 5590 ± 100

SFU-344.

 $\delta^{13}C = -12.9\%$

Collagen from long bones sample from burial 1.5m below surface excavated by Hester 1969. *Comment* (JC): confirms stratigraphic evidence that this is 1 of 2 oldest burials from site.

Westbank Series I

Charcoal from DlQv 37 site (50° 53' 00" N, 119° 31' 00" W) on W

side of Okanagan Lake, British Columbia. Samples coll and subm by Mike Rousseau for Westbank Indian Council Heritage Proj.

SFU-302. 1080 ± 160

Charcoal subm to date main occupation horizon of site.

SFU-350. Modern

Charcoal from hearth feature 78 to 85cm below surface. *Comment* (MR): possible charred root.

SFU-351. 1900 ± 80

Charcoal assoc with main occupation horizon.

Alberta

Banff National Park Series I

Charcoal from EhPv 8 site in Bow Valley (51° 10′ 30″ N, 115° 38′ 40″ W). Samples coll and subm by Daryl Fedje for Parks Canada. *Comment*: all samples were heavily contaminated with carbonates; extensive acid treatment was used in their preparation.

SFU-314. $10,900 \pm 270$

Charcoal from lowest cultural component.

SFU-316. $11,500 \pm 300$

Charcoal from second lowest cultural component. *Comment*: sample indicates reversed stratigraphy compared to SFU-314.

SFU-317. 9400 ± 400

Charcoal from lower cultural component.

SFU-318. 9800 ± 400

Charcoal from lower cultural component.

SFU-346. $11,700 \pm 290$

Charcoal from second lowest cultural component. *Comment*: sample supports SFU-316.

Manitoba

Stott Site Series I

Bison bone from Stott site (DlMa-1) near Brandon (49° 48′ 45″ N, 100° 5′ 36″ W). Site is bison kill and processing sta occupied at various times of year by small hunting groups. Samples were taken from loci within Grand Valley Prov Park. Samples subm by Historic Resources Branch, Manitoba.

SFU-224. 1140 ± 240

Collagen extracted from *Bison bison* proximal left radius. Sample subm to date first exposed portion of major bone deposit.

SFU-229. 1100 ± 150

Collagen extracted from *Bison bison* distal right humerus. Sample subm to date adjacent hearth feature.

United States

Kentucky

Lower Cumberland Archaeol Proj Series I

Lower Cumberland Archaeol Proj is long-term, multidisciplinary investigation of prehistory of extreme W Kentucky with special emphases on Archaic period. From 1978 to present, wood, charcoal, and charred hickory and walnut shell samples have been recovered from five sites in lower Tennessee-Cumberland-Ohio Valleys region. Samples coll and subm by Jack Nance. Research has been supported by grants from Social Sciences and Humanities Research Council of Canada.

SFU-271. 8220 ± 100

Carbonized wood and hickory nut shell from Morrisroe site (37° 03′ 45″ N, 88° 24′ 30″ W), 165 to 185cm below surface. Site is Archaic midden on N bank of Tennessee R, Livingston Co. Cultural materials are incorporated in compact clay/silt floodplain sediments. Site represents first well-dated, stratified Archaic material reported for this part of Kentucky. Sample dates earliest known occupation of site. *Comment* (JN): date agrees with stratigraphy and with assoc cultural remains.

SFU-270. 7180 ± 130

Carbonized wood and hickory nut shell from Morrisroe site, 45 to 55cm below surface. Sample provides terminal date for middle Archaic occupation. *Comment* (JN): date agrees with stratigraphy and with assoc cultural remains.

SFU-121. 7110 ± 250

Charcoal from Morrisroe site, 94 to 108cm below surface. Sample provides terminal date for middle Archaic. *Comment* (JN): date agrees with stratigraphy; date agrees with SFU-270.

SFU-130. 7530 ± 150

Charcoal from Morrisroe site, 137 to 140cm below surface. Sample dates lower portion of middle Archaic stratum. *Comment* (JN): date agrees with stratigraphy and assoc cultural remains.

SFU-221. 8500 ± 460

Charcoal from Whalen site (37° 06′ 24″ N, 88° 12′ 56″ W), ca 300cm below surface. Site is Archaic deposit eroding from E bank of Cumberland R, Lyon Co. Three organic midden zones (lower, middle, and upper) are visible in cutbank. Stone artifacts, bone, and charred plant remains are present, as are human burials. Surface coll projectile points include Kirk, Eva, and variety of stemmed forms. Sample provides date for earliest

known occupation of site. *Comment* (JN): sample was coll with only approx control on depth measurement (see SFU-249).

SFU-249. 7670 ± 630

Charcoal from Whalen site, 300cm below surface. Sample establishes earliest occupation of site. Comment (JN): both SFU-221 and -249 agree with stratigraphy and cultural materials coll from eroding river bank; presumably, both date same occupation. However, estimated error of determination and cultural materials known from site suggest that SFU-221 is more accurate date.

SFU-252. 7100 ± 600

Charcoal from Whalen site 220cm below surface. Comment (JN): this date establishes date for middle zone and agrees with stratigraphy and with artifacts coll from cutbank.

SFU-253. Modern

Charcoal from Cox site (37° 11′ 24″ N, 88° 04′ 21″ W), large multi-component habitation site and aboriginal chert quarry around cave and resurgent stream in Karst uplands, Caldwell Co. Features and artifacts suggest occupations ranging from Paleo-Indian to Mississippian, with major Archaic and Woodland components. Sample from 110cm below surface and dates sediment accumulated in mouth of cave. Comment (IN): modern date agrees with expectations.

SFU-250. Modern

Charcoal from Cox site, 150cm below surface, dates sediment accumulation in mouth of cave. *Comment* (JN): modern date agrees with expectations.

SFU-254. 1300 ± 160

Carbonized wood and seed from Branstetter Shelter I site (37° 13′ 42″ N, 88° 19′ 02″ W), dense organic midden deposit >1m deep, in upland sandstone rockshelter N of Cumberland R, Livingston Co. Chipped stone and bone artifacts and ceramics suggest Woodland occupation. Sample from 80 to 90cm below surface. *Comment* (JN): date agrees with presence of limestone-tempered ceramics and suggests middle Woodland occupation (see SFU-251).

SFU-251. 4420 ± 280

Charcoal from Branstetter site, 40 to 50cm below surface. Comment (JN): sample provides first date for rockshelter occupation in Lower Tennessee-Cumberland Valleys. Compared with SFU-254 sample suggests site is multicomponent and earlier component is late Archaic. Deposits have been disturbed by pothunters. Stratigraphic reversal suggests that disturbance has resulted in deposition of Archaic materials over Woodland component. Artifactual evidence for Archaic component is slim.

SFU-306. 1060 ± 100

Charcoal from Gordon II site (37° 16′ 00" N, 88° 29′ 30" W), on

terrace of S bank of Ohio R, Livingston Co. Surface coll ceramics include Mississippian Plain, Bell Plain, Kummswick, and Tolu Fabric-Impressed, and Old Town Red. Sample 47 to 56cm below surface. *Comment* (JN): date agrees with Mississippian cultural assignment for site but appears to be 200 to 300 yr too early considering assoc ceramic assemblage.

GEOLOGIC SAMPLES

Canada

British Columbia

Stikine River Series I

Charcoal and carbonaceous silt from W side of Stikine R, 100m N of mouth of Ned Shears Creek (57° 58′ 23″ N, 131° 04′ 26″ W). Samples subm by Peter Read, Geotex Consultants Ltd, Vancouver, British Columbia, as part of hydroelectric feasibility studies for BC Hydro and Power Authority.

SFU-340. $25{,}100 \pm 1900$

Carbonaceous silt; subm to date lava flow.

SFU-345. >45,700

Charcoal underlying top of exhumed Quaternary lava flow. *Comment* (PR): we are uncertain of stratigraphic loc of sediments enclosing sample, and although age ca 10,000 yr is possible, age beyond limit of ¹⁴C dating is also possible because sediments as old as 0.45My are exposed in terraces along banks of Grand Canyon of Stikine R.

Iskut Project

SFU-246. 8730 ± 600

Wood from drill core taken in Iskut Valley 65km upstream from confluence of Stikine and Iskut Rivers (56° 42′ 00″ N, 130° 36′ 00″ W). Sample subm by BC Hydro and Power Authority to date lava flow. *Comment*: sample agrees with SFU-161 from same site.

Alberta

Boone Lake Series I

Gyttja from 5cm diam sediment core taken near center of Boone Lake (53° 34′ 30″ N, 119° 25′ 30″ W). Depths are below sediment surface. Samples subm as part of paleo-ecologic study of ice-free corridor in Peace R Dist, Alberta (see also White, Mathewes, & Mathewes, 1979). Samples coll and subm by James White and Rolf Mathewes, Dept Biol, Simon Fraser Univ.

 7400 ± 130

SFU-206.

 $\delta^{13}C = -22.0\%$

Gyttja from 3.7 to 3.8m level. Comment (JW): sample dates early postglacial birch peak.

 5700 ± 120

SFU-207.

 $\delta^{13}C = -23.5\%$

Gyttja from 2.43 to 2.5m level. Comment (JW): sample dates end of mid-Holocene pine max.

SFU-208. 3430 ± 360

Gyttja from 0.8 to 0.87m level. Comment (JW): sample provides chronologic control for influx pollen diagram.

 9250 ± 180

SFU-209.

 $\delta^{13}C = -29.0\%$

Gyttja from 4.79 to 4.9m level. *Comment* (JW): sample dates early postglacial transition from aspen dominated to spruce-pine-birch dominated forest.

Spring Lake Series I

Gyttja from 5cm diam sediment core taken near center of Spring Lake (55° 30′ 36″ N, 119° 35′ 00″ W), 835m asl. Depths are below sediment surface. Samples subm by White and Mathewes as part of Boone Lake series study, above.

 10.800 ± 180

SFU-210.

 $\delta^{13}C = -24.0\%$

Gyttja from 4.34 to 4.42m level. *Comment* (JW): sample dates early postglacial zonal change from aspen dominated to spruce-pine-birch dominated forest.

 2400 ± 200

SFU-211.

 $\delta^{13}C = -25.1\%$

Gyttja from 0.95 to 1.04m level. Comment (JW): sample provides chronologic control for influx pollen diagram.

SFU-212. 5700 ± 270

Gyttja from 2.93 to 3.01m level. Comment (JW): sample dates mid-Holocene pine max.

United States

Tennessee

Anderson Pond Series I

Sediment from two parallel cores, 76C and 76D, taken at Anderson Pond (36° 0′ 0″ N, 274° 30′ 0″ E) White Co. Depths are below sediment surface. Samples subm to determine ¹¹Be deposition rate during late Quaternary. Similar cores dated by Univ Arizona (Lund, 1981). Samples SFU-330, -333, and -336 were processed using wet oxidation. Samples subm, pretreated and combusted by Tom Brown, Dept Physics, Simon Fraser Univ.

SFU-320. 9200 ± 400

130 to 135.3cm sec, Core 76C#1.

Simon Fraser University Radiocarbon Dates	III 439
SFU-321. 140.6 to 145.9cm sec, Core 76C#1.	$11,600 \pm 440$
SFU-322. 151.2 to 156.6cm sec, Core 76C#1.	13,400 ± 400
SFU-323. 209.7 to 216.9cm sec, Core 76C#1.	13,900 ± 640
SFU-324. 237.4 to 286.8cm sec, Core 76C#2.	11,900 ± 220
SFU-325. 431.4 to 475.5cm sec, Core 76C#4.	18,600 ± 1100
SFU-326. 523.5 to 571.7cm sec, Core 76C#5.	18,840 ± 1000
SFU-327. 726.1 to 657.9cm sec, Core 76C#6 & 76C#7.	$19,400 \pm 400$
SFU-328. 59 to 66.7cm sec, Core 76D#1.	1160 ± 160
SFU-329. 92.4 to 97.6cm sec, Core 76D#1.	3300 ± 300
SFU-330. 101.2 to 106.3cm sec, Core 76D#1.	5600 ± 200
SFU-331. 106.3 to 114cm sec, Core 76D#1.	3000 ± 480
SFU-332. 114 to 122.9cm sec, Core 76D#2.	9300 ± 1300
SFU-333. 122.9 to 128.8cm sec, Core 76D#2.	8400 ± 630
SFU-334. 134.7 to 140.6cm sec, Core 76D#2.	$11,300 \pm 480$
SFU-335. 140.6 to 146.5cm sec, Core 76D#2.	$11,500 \pm 800$
SFU-336. 187.2 to 193.1cm sec, Core 76D#2.	12,600 ± 800

 $13,300 \pm 600$

SFU-337.

193.1 to 199cm sec, Core 76D#2.

SFU-338. $15,400 \pm 380$

339.1 to 383.2cm sec, Core 76D#3.

SFU-339. $12,900 \pm 250$

295.5 to 333.5cm sec, Cores 76C#2 & 76C#3.

REFERENCES

- Borden, C D, 1968, A late Pleistocene pebble tool industry in southwestern BC: Eastern New Mexico Univ contr in Anthropol 1, v 4, p 55-69.
- 1975, Origins and development of early Northwest Coast culture to about
- 300 BC: Mercury series paper no. 45. Hester, J J and Nelson, S M, eds, 1978, Bella Bella prehistory: Simon Fraser Univ Dept Archaeol pub no. 5.
- Hobson, K A and Nelson, D E, 1983, Simon Fraser University radiocarbon dates II: Radiocarbon, v 25, p 899-907.
- Lund, S P, ms, 1981, Late Quaternary secular variation of the earth's magnetic field, as recorded in the wet sediments of three North American lakes: PhD thesis, Univ Minnesota.
- Nelson, D E and Hobson, K A, 1982, Simon Fraser University radiocarbon dates I: Radiocarbon, v 24, p 344-351.
- White, S M, Mathewes, R W, and Mathewes, W H, 1979, Radiocarbon dates from Boone lake and their relation to the "Ice-free corridor" in the Peace River District of Alberta, Canada: Canadian Jour Earth Sci, v 16, no. 9, p 1870-1874.

VIENNA RADIUM INSTITUTE RADIOCARBON DATES XIV

HEINZ FELBER

Institut für Radiumforschung und Kernphysik der Österr Akademie der Wissenschaften, Vienna, Austria

Measurements have continued with the same proportional counter system, pretreatment procedure, methane preparation and measurement, and calculation, as described previously (R, 1970, v 12, p 298-318). Uncertainties quoted are single standard deviations. No ¹³C/¹²C ratios were measured. Sample descriptions have been prepared in cooperation with submitters.

ACKNOWLEDGMENTS

I express my thanks to Ing L Stein for excellent work in sample preparation and for careful operation of the dating equipment.

SAMPLE DESCRIPTIONS

GEOLOGIC AND BOTANIC SAMPLES

Austria

Hainburg series, NÖ

Wood from borings in Quaternary ballast of Danube R between Hainburg (48° 08′ N, 16° 57′ E) and Fischamend-Markt (48° 07′ N, 16° 37′ E), Lower Austria. Coll by Georg Gangl, Österr Donau-Kraftwerke AG, Vienna.

General Comment (GG): dated for chronology of fluvial ballast deposition.

VRI-644. Boring 51

<260

Boring 51 (48° 08′ 22″ N, 16° 53′ 04″ E) from -9 to -9.5m.

VRI-645. Boring 64

 3620 ± 80

-1950

Boring 64 (48° 08′ 35″ N, 16° 53′ 43″ E) from -10 to -11.5m.

 $+\,2200$

VRI-646. Boring 315

34,000

Boring 315 (48° 07′ 11″ N. 16° 41′ 27″ E) from -8.2 to -10.4m.

VRI-647. Boring 321

 4060 ± 90

Boring 321 (48° 08′ 03″ N, 16° 37′ 06″ E) from −7.8 to −8.4m.

VRI-648. Boring 370

 4730 ± 100

Boring 370 (48° 07′ 37″ N, 16° 37′ 25″ E) from −11.5m.

VRI-822. Boring 919

 $31,000 \pm 1500$

Boring 919 (48° 08′ 20″ N, 16° 52′ 20″ E) from -20m.

VRI-758. Pyhrnpaβ, OÖ

 1450 ± 80

Cyperaceae peat at -33 to -38cm of uppermost part of 6.5m long profile of bog Vorderes Filzmoos at Wurzeralm, Warscheneck (47° 38′ 57″

N, 14° 17′ 12″ E), 1360m asl, near Pyhrnpaβ, OÖ. Coll 1982 by Friedrich Kral and Michael Oberforster; subm by F Kral, Univ Bodenkultur, Vienna. *Comment* (FK): dates period immediately before clearing, when *Picea-Abies-Fagus* woods were not yet influenced by men.

Gasteiner Na β feld series, Salzburg

Peat from bog (47° 03′ 20″ N, 13° 03′ 45″ E), SH 1690m, Gasteiner Na β feld, Salzburg. Coll 1982 and subm by Friedrich Kral.

General Comments (FK): dates for pollen analysis; (HF): no pretreatment.

VRI-756. 65-75cm

 880 ± 80

Sandy wood peat with wood detritus at -65 to -75cm from layer, 12cm thick, below Cyperaceae peat, above coarse sand layer. *Comment* (FK): dates palynologically detected clearing at slopes for pasturing.

VRI-757. Base

 2230 ± 80

Sandy wood peat with wood detritus from base of bog at -100 to -110cm. *Comment* (FK): dates palynologically detected older and weaker local human influence on woods at slopes.

VRI-805. St Alban, Salzburg

 390 ± 70

Wood sample Q-1 from oak stem 2.8m long, 60cm thick, -3m below gravel at St Alban (47° 59′ N, 12° 59′ E) near Lamprechtshausen, 6km NNE Oberndorf bei Salzburg. Coll 1982 and subm by Gottfried Tichy, Univ Salzburg. Comment (GT & HF): date contradicts expected Middle Atlanticum.

VRI-806. Salzburg

 370 ± 80

Wood detritus, —Im below surface, sporadically dispersed in fossil soil below old landslide at periphery of city of Salzburg (47° 48′ N, 13° 05′ E). Coll 1983 and subm by Hans Angerer, Magistrat Salzburg. *Comments* (HA): date is max for landslide. (HF): sample prepared from 22kg soil material and cleaned from rootlets and seeds still capable of germinating. No pretreatment.

Salzburg series

Peat from different horizons at periphery of Salzburg (47° 48′ N, 13° 05′ E). Coll 1982 and subm by Hans Angerer.

General Comment (HA): individual peat horizons separated by overriding landslips give max age for these events.

VRI-807. ABF2

 2430 ± 90

Peat at -2m.

VRI-808. ABF3

 7800 ± 110

Peat at -2.5m.

VRI-570a. Ampass 1, Tirol

>37,000

Earthy peat from peat band, 3cm thick, in situ in sand layer ca 2m thick followed by 20m gravel overlain by 1 to 2m ground moraine and

recent soil. Coll 1976 near Ampass (47° 15′ 39″ N, 11° 27′ 28″ E), Inn Valley, Tyrol, 680m asl, and subm by Gernot Patzelt, Geog Inst, Univ Innsbruck. Repeat of VRI-570 (R, 1980, v 22, p 111) with new material. Comment (GP & HF): date is max age for gravel deposit in Inn Valley before last glaciation. No NaOH pretreatment.

Mieming series, Tirol

Peat from deposition on lacustrine sediments near Mieming (47° 17′ 13″ N, 10° 58′ 06″ E). Coll 1982 by Burgi Wahlmüller, subm by Sigmar Bortenschlager, Bot Inst, Univ Innsbruck.

General Comment (BW): dates palynologically detected events.

VRI-699. Mieming 1

 4430 ± 90

Peat, cleaned from roots, at -437 to -444cm. Comment (BW): beginning of peat growth and 1st appearance of grain pollen.

VRI-700. Mieming 2

 1190 ± 80

Radicella brown moss peat at -306 to -313cm. Comment (BW): beginning of clay deposition.

VRI-701. Mieming 3

 880 ± 80

Cyperaceae Radicella peat, cleaned from roots, at -240 to -244cm. Comment (BW): end of clay deposition.

Zillertal series, Tirol

Peat and wood from bog (47° 01′ 33″ N, 11° 48′ 19″ E), 1875m asl, Waxeckalm, Zillertal. Coll 1982 by H Hüttemann, subm by Sigmar Bortenschlager.

General Comment (HH): dates palynologically detected events.

VRI-702. 60-65

 760 ± 80

Detritus Radicella peat with charcoal pieces at -60 to -65cm. Comment (HH): dates burning horizon connected with intense cultural phase.

VRI-703. 95-100

 3450 ± 90

Brown moss Carex peat with detritus at -95 to -100cm. Comment (HH): dates Alnus climax.

VRI-704. 150-154

 3600 ± 210

Alnus root wood at -150 to -154cm.

VRI-706. 170-175

 5520 ± 100

Radicella peat at -170 to -175cm. Comment (HH): dates climatic oscillation.

Kühtai series, Tirol

Peat samples from different depths of bog near Dortmunder Hütte (47° 12′ 20″ N, 11° 00′ 38″ E), ca 1980m asl, Kühtai, Tirol. Coll 1982 by H Hüttemann, subm by Sigmar Bortenschlager.

General Comment (HH): dates for pollen diagram.

VRI-708. 55-60

 3910 ± 100

Carex-Eriophorum-Sphagnum peat at -55 to -60cm. Comment (HH): dates decreasing intensive cultural phase.

VRI-709. 75-80

 4170 ± 100

Carex-Eriophorum-Sphagnum peat at -75 to -80cm. Comment (HH): dates beginning cultural phase.

VRI-710. 110-115

 5290 ± 100

Cyperaceae peat at -110 to -115cm. Comment (HH): dates 1st appearance of beech.

VRI-711. 145-150

 6080 ± 100

Cyperaceae peat at -145 to -150cm. Comment (HH): dates 1st appearance of fir.

VRI-712. 180-185

 7600 ± 130

Detritus Radicella peat at -180 to -185cm. Comment (HH): dates initial spread of spruce.

Kufstein series, Tirol

Detritus gyttja from profile of Egelsee Lake (47° 37′ 29″ N, 12° 10′ 20″ E) near Kufstein. Coll 1982 by Burgi Wahlmüller, subm by Sigmar Bortenschlager.

General Comment (BW): dates for pollen diagram.

VRI-714. 165-175

 1820 ± 80

Sample at -165 to -175cm. Comment (BW): dates elm decrease.

VRI-715. 311-319

 3990 ± 90

Sample at -311 to -319cm. Comment (BW): dates 1st human influence.

VRI-786. 361-371

 5290 ± 100

Sample at -361 to -371cm. Comment (BW): dates spread of Abies.

VRI-787. 570-580

 10.280 ± 140

Sample at -570 to -580cm. Comment (BW): dates spread of warm phase plants.

Defereggental series, Osttirol

Peat (possibly contaminated by younger roots) from Jagdhausalm bog (46° 58′ 30″ N, 12° 09′ 30″ E), 2035m asl, upper Defereggental, East Tyrol. Coll 1982 and subm by Friedrich Kral.

General Comment (FK): dates for pollen diagram. No pretreatment.

VRI-799. Jagdhausalm II/52-58

 2220 ± 70

Cyperaceae peat with small amounts of wood peat from middle part of profile at -52 to -58cm. *Comment* (FK): dates forest development relatively undisturbed by men immediately before human influence.

VRI-800. Jagdhausalm II/82-88

 3280 ± 80

Cyperaceae wood peat from lower part of profile at -82 to -88cm. Comment (FK): dates completely undisturbed forest development immediately before 1st human influence.

CSSR

Spišska Kotlina series

Peat at different depths of Spišska Kotlina bog (49° 03′ N, 20° 18′ E), SH 670m, Hozelec near Poprad. Coll 1982 by Heinz Hüttemann, subm by Sigmar Bortenschlager.

General Comment (HH): dates for pollen diagram (Jankovska, 1972).

VRI-794. 75

 7500 ± 120

Peat with lake marl at -75cm. Comment (HH): dates Picea max.

VRI-795. 100

 9020 ± 120

Peat at -100cm. Comment (HH): dates sample rich in pollen of Larix sp and Picea abies.

VRI-796. 146-148

 $11,010 \pm 160$

Peat from base at -146 to -148cm. Comment (HH): dates beginning of bog development.

Vysoke Tatry series

Samples from bog near Trojhranne pleso lake (49° 13′ 15″ N, 20° 13′ 50″ E), 1650m asl, Vysoke Tatry. Coll 1982/83 by Heinz Hüttemann, subm by Sigmar Bortenschlager.

General Comment (HF): completes Vysoke Tatry series (R, 1982, v 24, p 225; R, 1983, v 25, p 939-940).

VRI-713. 157

 1750 ± 160

Wood (Salix sp) at -157cm.

VRI-821. 70-75

 1480 ± 80

Sphagnum peat at -70 to -75cm. Comments (HH): dated for evaluation of growth rate of bog, (HF): no NaOH pretreatment.

Greece

Archagelos-Aridea series

Clayey dy from bog near Archagelos-Aridea (41° 01′ N, 22° 17′ E), 1080m asl. Coll 1975 and subm by Nikolaos Athanasiadis, Inst Forstbot, Aristotelion Univ, Thessaloniki, Greece.

General Comment (NA): provides chronology for palynologic research. Extracted humic acids were used for dating.

VRI-753. 0.82-0.87

 1720 ± 80

Dy at -0.82 to -0.87m.

VRI-754. 1.37-1.42

 2530 ± 80

Dy at -1.37 to -1.42m.

VRI-755. 1.90-1.95

 2840 ± 120

Dy at -1.90 to -1.95m.

Italy

VRI-834. Kastelruth

 680 ± 70

Wood, fossil pine, excavated during road-building at ca —1m near Church of St Virgilius at Kastelruth (46° 34′ N, 11° 34′ E), Italy. Coll 1983 and subm by Ludwig Nössing, Prüfanstalt Baustoffe Geol Dienst, Kardaun, Alto Adige, Italy. *Comment* (LN): date is max for burial of sample.

Algeria

VRI-872.

 $(5.2 \pm 0.4)\%$ modern

Calcareous quartz sand encrustation in Algerian part of Sahara. Coll on surface by Eckhard Klenkler, Ettenheim, BRD. Comment (HF): $^{14}\mathrm{C}$ concentration in clearly marked light-colored outermost layer of encrustation provides date of last growth phase. Tentatively assumed recent concentration, 85% modern (Münnich & Vogel, 1959; Geyh & Schillat, 1966) yields model age, 22,500 \pm 600. Recent concentration, 100% modern, yields max age, 23,800 \pm 600.

Dominican Republic

VRI-819. Cotui

<250

Copal near surface in soil, near Cotui (19° 04′ N, 70° 11′ W), San Brano. Coll 1982 by local inhabitants, subm by Dieter Schlee, Mus Naturkunde, Stuttgart, BRD. No chemical pretreatment of hard yellowish transparent resin. *Comment* (HF): date reveals that resin is recent.

Colombia

VRI-820.

<220

Copal from unknown locality. Coll 1982 by local inhabitants, subm by Dieter Schlee. No chemical pretreatment of hard yellowish transparent resin. *Comment* (HF): date reveals that resin is recent.

Japan

+2000

VRI-830. Mitsunami

33,100

-1600

Fossil resin coll near Mitsunami ca 45km E of Gifu (35° 37′ N, 136° 46′ E), Honshu I. Details of colln unknown; subm by Dieter Schlee. *Comment* (DS): certain characteristics of Mitsunami amber suggest that its age is somewhere intermediate between copal and amber.

ARCHAEOLOGIC AND HISTORIC SAMPLES

Austria

VRI-804. Loitzendorf, NÖ

 2240 ± 80

Charcoal of old iron smelting site at -50cm, Loitzendorf (48° 18′ N, 12° 19′ E) near Maria Laach, Lower Austria. Coll 1982 and subm by Brigitte Cech, Inst mittelalterliche Realienkunde, Österr Akad Wiss. *Comment* (BC): dates smelting site.

Spital am Pyhrn series, Steiermark

Bones of cave bear at different depths in sediment of Bone Cave on Ramesch Mt, Warscheneck group, Totes Gebirge, 2000m asl, near Spital am Pyhrn (47° 40′ N, 14° 20′ E), Styria. Coll 1980/1982 and subm by G Rabeder and K Mais, Inst Paleontol, Univ Vienna.

General Comment (GR & HF): stone tools found in cave sediment. Collagen was extracted by method of Longin (1970). Dates verify uranium series dating on bones from strata of VRI-776 and -792: $36{,}100 + 3000 - 2800$, 38,900

 $^{+}$ 2300 , and 42,500 $^{+}$ 5300 , obtained by P Hille and E Wild (pers commun).

+ 1800 VRI-776. 90-100 34,900 - 1500 Sample RK 80/II/D7/3/14/51-70 at -90 to -100cm.

+ 1900 VRI-792. 110-120 37,200 - 1600

Sample RK82/I-T15/2 at -110 to -120cm.

VRI-793. 150-160 >40,700

Sample RK 82/I-T16/7 at -150 to -160cm.

Kindberg series, Stiermark

Wood remains from Georgibergkirche (47° 30′ 07″ N, 15° 25′ 34″ E), Kindberg, Styria. Subm by Herbert Stolla.

General Comments (HS): provides chronology for history of church. (HF): only HCl pretreatment.

VRI-797. I/1982

 210 ± 70

Wood of broken cross (?) in hole in top of stone altar. Coll 1982 by Thea Gladysz.

VRI-798. II/1976

 290 ± 130

Decayed wood remains in octagonal post hole excavated in middle of nave. Coll 1976 by H Stolla. *Comment* (HS): hole was closed when Gothic style was changed to Baroque.

Spain

Hierro series, Canary Is.

Shells from different shell heaps, Hierro I. Coll 1982 and subm by H Novak, Inst Canarium, Hallein, Austria.

General Comment (HN): Canarian Neolithic. Dates periods of settlement.

VRI-790. Restinga

 790 ± 70

Shells at -0.35m; Malpais above Restinga.

VRI-791. El Julan

 1820 ± 80

Shells at -1.15m; Tagoror, El Julan.

VRI-789. La Palma, Canary Is.

 1850 ± 100

Charcoal, Belcamo III, -2.8m below bottom of Belcamo cave, La Palma I. Coll 1982 and subm by H Novak. *Comment* (HN): Canarian Neolithic. Dates settlement.

Peru

VRI-811. Zaña

 3120 ± 80

Burned plant remains in combustion shaft below pyramid at Cerro de Purulen (6° 45′ S, 79° 45′ W), Valley of Zaña, Lambayeque. Coll 1978, subm by Ferdinand Anders, Inst Völkerkunde, Univ Vienna. *Comment* (FA): construction and sample belong to Formative period.

Chao series

Plant remains and wood at Salinas de Chao (8° 35′ S, 78° 43′ W), Valley of Chao, Trujillo. Subm by Ferdinand Anders.

General Comment (FA): stone buildings and samples belong to Formative period.

VRI-812. Chao 1

 3600 ± 90

Burned plant remains from bottom of stone structures, Cut 6, Unit C.

VRI-813. Chao 2

 3200 ± 90

Wood within platform fill, Cut 21, Unit C.

Chavin series

Human bones in Tello pyramid, interior galleries, Chavin (9° 35′ S, 77° 15′ W). Coll 1982 by Kaufmann-Doig, subm by Ferdinand Anders. General Comment (FA): burials may be contemporaneous.

VRI-814. Chavin 4

 2060 ± 90

Skull bones.

VRI-815. Chavin 5

 2290 ± 90

Skeleton.

REFERENCES

Felber, Heinz, 1980, Vienna Radium Institute radiocarbon dates X: Radiocarbon, v 22, p 108-114.

1982, Vienna Radium Institute radiocarbon dates XII: Radiocarbon, v 24, p 222-228.

1983, Vienna Radium Institute radiocarbon dates XIII: Radiocarbon, v 25, p 936-943.

Geyĥ, M and Schillat, B, 1966, Messungen der Kohlenstoff isotopenhäufigkeit von Kalksinterproben aus der Langenfelder Höhle: Aufschluβ, v 17, p 315-323. Jankovska, V, 1972, Pyloanalyticky príspevek ke složení původních lesů v severozápadní

Jankovska, V, 1972, Pyloanalyticky prispevek ke složení původních lesů v severozápadní Části Spišské kotliny: Biológia, v 27, no. 4, p 279-292.

Longin, R, 1971, New method of collagen extraction for radiocarbon dating: Nature, v 230, p 241-242.

Münnich, K O and Vogel, J, 1959, C-14-Altersbestimmung von Süβwasser-Kalkablagerungen: Naturwiss, v 46, p 168-169.

RUDJER BOŠKOVIĆ INSTITUTE RADIOCARBON MEASUREMENTS VIII

DUŠAN SRDOČ, BOGOMIL OBELIC, NADA HORVATINČIC, and INES KRAJCAR

Rudjer Bošković Institute, PO Box 1016, 41001 Zagreb, Yugoslavia

and

ADELA SLIEPČEVIC

Faculty of Veterinary Medicine, University of Zagreb

The following radiocarbon date list contains dates of samples measured since our previous list (R, 1982, v 24, p 352-371). As before, age calculations are based on the Libby half-life (5570 \pm 30) yr and reported in years before 1950. The modern standard is 0.95 of the NBS oxalic acid activity. Sample pretreatment, combustion, and counting technique are essentially the same as described in R, 1971, v 13, p 135-140, supplemented by new techniques for groundwater processing (R, 1979, v 21, p 131-137).

Statistical processing of data has been computerized (Obelić & Planinić, 1977; Obelić, 1980). Sample descriptions were prepared with collectors and submitters. The errors quoted correspond to 1σ variation of sample net counting rate and do not include the uncertainty in 14 C half-life.

Calculations of age of speleothems and groundwaters are based on the initial activity equal to 0.85 of the NBS oxalic acid activity multiplied by 0.95.

ACKNOWLEDGMENTS

We thank E Hernaus for preparation of samples and methane synthesis, A Turković for data processing, and P Hojski for technical assistance.

ARCHAEOLOGIC SAMPLES

Vindija series

Charcoal particles from Vindija cave, Gornja Voća near Ivanec (46° 20′ N, 16° 04′ E), NW Croatia. Coll and subm 1978 by M Malez, Yugoslav Acad Sci Arts, Zagreb (Malez & Ullrich, 1982).

Z-612. Vindija 1

 $24,000 \pm 3300$

Charcoal particles from Layer II/P-1.

Z-613. Vindija 2

 $29,700 \pm 2000$

Charcoal particles from Layer II/P-2.

Z-712. Ždrelo, Mitropolija

 900 ± 90

Charred wood from N part of apse of medieval metropolitan church Mala crkva, Zdrelo village (44° 18′ N, 21° 31′ E), central Serbia. Coll 1979 and subm by D Madas, Inst Preservation Cultural Monuments, Kragujevac.

Z-863. Hrustovača

 $12,000 \pm 200$

Speleothem deposited on cranium of cave bear (Ursus spelaeus) ca 700m from entrance of Hrustovača cave near Sanski Most, W Bosnia. Coll

and subm 1979 by M Malez. Comment (MM): expected age: Upper Pleistocene.

Z-864. Plavi Majdan

>37.000

Fragment of stratified bone breccia, 6m below ground from Plavi Majdan quarry at Duzluk near Slavonska Orahovica, NE Croatia. Coll and subm 1981 by M Malez. Sample dates cave bear occupation. *Comment* (MM): expected age: Middle Pleistocene.

Z-893. Pernice

 1970 ± 100

Charcoal from profile of forest soil; charcoal, layer 10 to 15cm thick, 40 to 50cm below ground mixed with soil near Pernice village (46° 38′ 12″ N, 15° 07′ 20″ E) at 1025m alt, N Slovenia. Date determines age of colluvium drift and human influence on forest. Coll and subm by B Anko, Inst Forestry Biol Fac, Ljubljana. *Comment* (BA): expected age: 400-500 BP.

Z-895. Pokrovnik

 6300 ± 150

Carbonized wheat (*Triticum monococum*), Layer P-I; Im below ground level, from cultivated field near Drniš, Dalmatia (43° 49′ N, 16° 04′ E) at 260m alt, S Croatia. Coll and subm 1981 by Z Brusić, Mus Šibenik. *Comment* (ZB): expected age: ca 2400 BC.

Z-978. Varaždin

 440 ± 100

Wood from log cabin 4m below surface, Varaždin (46° 18′ N, 16° 20′ E), NW Croatia. Assoc with pottery. Coll and subm 1980 by J Tomičić, Town Mus Varaždin. *Comment* (JT): expected age: 14th century.

Z-982. Parti

 4200 ± 110

Wooden fragments of pile-dwelling post buried in calcareous sediment (lake chalk) at Ig near Ljubljana (45° 57′ 20″ N, 14° 32′ 10″ E), Slovenia. Dates pile-dwelling settlements in Lj Barje area (R, 1979, v 21, p 131). Coll 1981 by T Bregant, Fac Arts Sci, Ljubljana; subm by A šercelj. *Comment* (Aš): expected period: Eneolithic.

Z-983. Šafarsko

 5050 ± 190

Wooden particles mixed with soil from hearth, 0.8m below surface, Tr 8, Quad 6, šafarsko near Ormož (46° 31′ 20″ N, 16° 16′ 45″ E), NE Slovenia. Coll 1981 by T Bregant; subm by A šercelj. Date determines absolute age of culture.

Z-984. Rudnik

 2950 ± 110

Fragments of log buried in lake chalk, Tr IV, Rudnik near Ljubljana (46° 13′ 20″ N, 14° 32′ 45″ E), Slovenia. Coll 1981 by T Bregant; subm by A šercelj.

Divje Babe series

Charcoal from Paleolithic site, Divje Babe cave near Šebrelje (46° 06′ 50″ N, 13° 54′ 50″ E) at 450m alt, SW Slovenia. Hearth in calcareous soil not affected by rootlets and groundwater. Coll and subm 1980 and 1981 by

451

M Brodar (1982), Archaeol Inst, Ljubljana. *Comment* (MB): expected period: end of Pleistocene.

Z-1032. Divje Babe A

 $17,500 \pm 850$

Hearth A. Comment (MB): expected age older than Sample B.

Z-1033. Divje Babe B

>37,000

Hearth B. Underlying layer: Mousterian.

Z-1036. Lukenjska jama

 $12,200 \pm 250$

Charcoal from hearth, depth 3m in gravel and clay sediment, entrance of Lukenjska jama cave at Prečna near Novo Mesto (45° 49′ 10″ N, 15° 06′ 20″ E) at 186m alt, Slovenia. Sample from systematic excavations of younger Paleolithic site (Osole, 1982). Coll and subm 1982 by F Osole, Quaternary Inst, Univ Ljubljana. *Comment* (FO): expected age: ca 12,000 BP (Epigravettian).

Z-1041. Zaton

 2130 ± 120

Wooden beam from sunken boat 1.8m below sea level, buried in mud, 60cm depth, Zaton near Nin, Dalmatia (44° 13′ 40″ N, 15° 09′ 50″ E), S Croatia. Coll and subm 1982 by L Domijan, Inst Preservation Cultural Monuments, Zadar. Archaeol excavations of Roman harbor. *Comment* (LD): expected age: ca 2000 BP.

Ajdovska jama series

Charred wheat (*Triticum monococum*) and charcoal from Ajdovska jama cave near Nemška vas, Krško, E Slovenia. Coll 1982 by A Bregant, and subm by A šercelj. Samples from systematic excavation of Neolithic site.

Z-1042. Ajdovska jama 1

 5120 ± 130

Charred wheat from Grave 1 near Skeleton D/E. Comment (AŠ): expected age: ca $4500 \, \text{BP}$.

Z-1043. Ajdovska jama 2

 5180 ± 150

Charred wheat from Grave 2, left entrance near Skeleton 2.

Z-1044. Ajdovska jama 3

 5620 ± 130

Charred wheat from Grave 1, left entrance near skeleton of child.

Z-1045. Ajdovska jama 4

 5340 ± 120

Charcoal from hearth near Grave 2, Skeleton 2.

Z-1089. Citadella Zadar

 420 ± 130

Splinter of beam from town fortress (citadel), Zadar (45° 07′ N, 15° 15′ E), S Croatia. Coll and subm 1982 by L Domijan.

Pod series

Samples from prehistoric fortress Pod near Bugojno (44° 03′ 40″ N, 17° 26′ 30″ E) at 632m alt, central Bosnia (Čović, 1975). Coll and subm 1982 by B Čović, State Mus Bosnia and Hercegovina, Sarajevo.

Z-1091. Pod 1

 2420 ± 140

Carbonized cereals from Horizon X, 1.09m depth between fortress walls. Cultural layer had no recent rootlets. *Comment* (BČ): expected age: ca 600 BC.

Z-1092. Pod 2

 2900 ± 140

Carbonized wood from Tr III-13, deepest layer of prehistoric settlement "B", from space between bldg and ramparts, 2.15m depth. Cultural layer had no recent rootlets. *Comment* (BČ): expected age: ca 1000 BC.

Z-1093. Velika Gradina

 3200 ± 140

Charcoal from base level of burned house, 1.85m below ground level, Velika Gradina near village Varvari (43° 49′ N, 17° 29′ E), central Bosnia. Coll and subm 1978 by V Čović. *Comment* (BČ): expected age: ca 1600 Bc. Layer out of reach of rootlets, but influence of groundwater is possible (Čović, 1978).

Z-1136. Ubli 1590 ± 130

Wheat grains found in Roman amphora, 1.5m below ground level, at site of farmhouse. Sample from Roman settlement near Ubli, i Lastovo, Adriatic Sea (44° 45′ N, 16° 50′ E), S Croatia. Coll and subm by J Jeličić, Regional Inst Preservation Cultural Monuments, Split. *Comment* (JJ): expected period: 1st to 4th century AD.

Sisak series

Parts of wooden boat (monoxyl) (*Quercus robur*), 9m long, buried in mud, from Kupa R near Sisak (45° 30′ N, 16° 23′ E), Croatia. Samples assoc with Roman artifacts, coins, and ceramics. Coll by B Kraguljac, Mus Sisak and subm by A Sliepčević. *Comment* (BK): dates help determine Celtic or Roman occupation of site.

Z-1147. Sisak 1

 2040 ± 130

Sample taken from outermost sec of trunk.

Z-1148. Sisak 2

 2330 ± 140

Sample from trunk core.

GEOLOGIC SAMPLES

Fossil wood samples

Z-892. Dobrepolje

 5800 ± 110

Alluvial wood (unid.) from Layer 2, depth 70cm in profile dug near Videm-Podpeč Rd (45° 51′ N, 14° 42′ E) at 438m alt, central Slovenia. Coll by A Kranjc and subm 1981 by R Gospodarič, Inst Karst Research, Slovenian Acad Sci Arts. *Comment* (RG): expected period: Holocene.

Petišovci series

Fossil oaks (Quercus robur) from dry riverbed under 6 to 8m of gravel, presently below water table, at Petišovci near Lendava (46° 32′ 30″ N, 16°

28' E) at 162m alt, NE Slovenia. Dendrochronologic measurements were made of fossil wood, Coll and subm 1981 by M Accetto, Inst Forestry Biol Fac, Ljubljana.

Z-896. Petišovci 1

 930 ± 100

Fossil oak log, depth 6 to 8m under alluvium.

Z-897. Petišovci 2

 1520 ± 100

Fossil oak log, 1.45m diam, depth 6 to 8m under alluvium.

Z-1086. Oroslavje

 1680 ± 140

Central tree rings of fossil oak (Quercus robur), 7m below present riverbed level, Krapina R near Oroslavje, Hrvatsko Zagorje (46° 00' N, 15° 55' E), NW Croatia. Coll and subm 1982 by A Gredičak, Oroslavje.

Ljutomer series

Fossil oaks buried in alluvium near Ljutomer (46° 31' N, 16° 15' E), NE Slovenia, exported to British timber import company TIMBMET, Oxford. Subm 1982 by J Burley, Univ Oxford.

Z-1015. Ljutomer 1

 4120 ± 120

10 to 20 tree rings below trunk surface.

Z-1016. Ljutomer 2

 4280 ± 110

70 to 87 tree rings below trunk surface.

Lipova greda series

Fossil oak (Quercus robur) found in Lipova greda gravel pit near Draksenić village at Bosanska Dubica (45° 12' N, 16° 53' E), NW Bosnia during low water level, Fall 1983. Coll by V Brežančić, Inst Preservation Cultural Monuments, Sarajevo and subm by A Sliepčević. Comments (VB): expected age: Holocene. (DS): trunks and stumps are scattered around pit. No records of original positions exist. Dates time span of wood growth.

Z-1154. Lipova greda 1

 270 ± 130

Oak trunk, 35cm diam, protruding from gravel during low water level.

Z-1155. Lipova greda 2

 3080 ± 130

Outer part of oak stump, 87cm diam, from gravel pit.

Z-1156. Lipova greda 3

 440 ± 130

Oak trunk, 9m long, 126cm diam, from gravel pit. Sample taken from surface, partially rotten.

Z-1149. Bednja

 1590 ± 130

Fossil oak (Quercus robur) from bed of Bednja R near Bednja village, Hrvatsko Zagorje (46° 10′ N, 16° 15′ E), NW Croatia. Coll and subm 1983 by I Popijač, Bednja.

Peat samples

Lovrenško barje series

Peat from bore hole in Lovrenško barje peat bog, Pohorje Mts (15° 18′ N, 46° 29′ E) at 1300m alt, N Slovenia. Coll and subm 1983 by A Sercelj, Slovenian Acad Sci Arts, Ljubljana. Depth in cm below surface. Comment (AŠ): expected age: Holocene.

Z-1157. Lovrenško barje 1

 2350 ± 130

Peat, 130 to 150cm.

Z-1158. Lovrenško barje 2

 3400 ± 140

Peat, 200 to 230cm.

Z-779. Oborovo 2

>37,000

Clay containing carbonized organic detritus from bore hole, Oborovo near Zagreb (45° 41′ N, 16° 15′ E), NW Croatia. Coll and subm 1980 by A Sokač, Fac Min Geol and Petrol Eng, Univ Zagreb. Comment (AS): dating Quaternary sediments to determine tectonic dislocations. Expected period: Late Pleistocene.

Speleothem and tufa samples

Z-1021. Kamniška jama

>37,000

Stratified speleothem from Kamniška jama cave, near Kamnik, Slovenia. Coll and subm 1982 by J Urban, Speleol Soc, Kamnik. Date determines periods of speleothem growth.

Slatina series

Tufa samples from Slatina near Banja Luka (44° 45′ N, 17° 15′ E), W Bosnia. Dated for geothermal investigations. Coll and subm by N Miošić, Geoinženjering, Sarajevo. *Comment* (DS): tufa is precipitated from geothermal springs, containing no ¹⁴C in dissolved bicarbonates. Low activity could be attributed to contamination with recent carbon.

+4000

Z-1046. Slatina **T-269**

34,400

-3600

Surface of massive tufa block overgrown with moss, lowermost point.

Z-1047. Slatina **T-270**

 $28,300 \pm 1800$

Surface of massive tufa block, uppermost point.

Z-1048. Slatina T-71

>37,000

Recently deposited tufa.

Z-1049. Slatina **T-85**

 22.200 ± 900

Surface layer of tufa surrounding extinct thermal spring.

Banja Luka series

Tufa from various thermal springs near Banja Luka (44° 45′ N, 17° 10′ E), NW Bosnia. Samples coll and subm by D Hrustanpašić, Geoinženjering, Sarajevo. Geothermal exploration near Banja Luka.

Z-1164. Slatina

 $20,700 \pm 900$

Stratified tufa 0.3 to 1m below ground level, thermal spring Slatina spa.

Z-1165. Priječani

 $17,800 \pm 600$

Tufa covered by humus, 0.5 to 1m below ground level, Priječani.

Z-1166. Gornji Šeher

 $15,400 \pm 500$

Porous tufa precipitated from thermal spring, Gornji šeher, 0.5m below humus layer.

+3800

Z-1167. Laktaši

32,000

-2900

Stratified tufa contaminated with soil and moss around thermal spring Laktaši.

Krčić series

Tufa beds near Krčić waterfall, Kninsko polje (44° 01′ N, 16° 18′ E) at 280m alt, S Croatia. Brook flows intermittently but had steady flow in past and formed tufa barrier Topoljski buk 400m long and 15m high. Below this barrier is spring of Krka R. Coll and subm by A Pavičić, Geol Inst, Zagreb. Series dated to determine age of tufa beds and ancient flow patterns of ground water. *Comment* (DS): chronology of tufa deposits in this region agrees with our findings reported previously (Srdoč *et al*, 1982), proving that tufa is deposited during warm periods. Tufa samples having ¹⁴C ages close to lower limit of measurement are probably much older (ca 100,000 yr) as shown by ²³⁰Th/²³⁴U analysis. Their ¹⁴C ages are influenced by slight contamination with recent carbonates.

Z-1189. Krčić 1

>37,000

Surface tufa coll from stream 1km upstream from Topoljski buk barrier.

Z-1191. Krčić 2

 25.500 ± 1300

Sample from entrance of cave, 3km upstream from Topoljski buk, 60m above stream bed.

Z-1192. Krčić 3

 $25,000 \pm 1200$

Tufa from dry barrier Krčić, 300m upstream from Topoljski buk barrier.

Z-1193. Krčić 4

 4570 ± 150

Compact tufa, core from bore hole, overlying bedrock, Topoljski buk.

Z-1194. Krčić 5

 $28,000 \pm 1600$

Surface tufa from river terrace, E part of Kninsko polje near Orašnica R, right tributary of Krka R.

Loess samples

East Slavonia series

Series dated Pleistocene and Holocene loess and loess concretions

(loess dolls) from profiles near Danube R, Vukovar (Gorjanović profile) and profiles near Vinkovci (Dilj I and Dilj II), Privlaka, Mikanovci, and Djakovo. Sediments were dated for drafting of geologic map of Yugoslavia. Coll and subm 1982 and 1983 by I Galović and M Šparica, Geol Inst, Zagreb. Loess concretions and calcareous fractions of loess dissolved in diluted hydrochloric acid.

Profile Dilj I

Samples of loess concretions from profile, ca 14m deep, rich in fauna (mollusks) found in Slavko Knežević brickyard, SW of Vinkovci (45° 16′ N, 18° 46′ E), E Croatia. Sediment corresponds to marine environment.

Z-1076. Dilj I/1

 $30,000 \pm 2600$

Irregular loess concretions, 10cm long, 1 to 5cm diam, from deepest part of profile in brown clayey layer of silt, 1m thick, 13.5m below ground level. Sediment contains macrofossil fauna.

Z-1077. Dilj I/5

 5200 ± 170

Tiny loess concretions of irregular shape in brownish-gray silt, 2.5m thick, depth to 3.7m. Assoc bones: Bos taurus trachicensis, Equus coballus.

Profile Dilj II

Samples of loess concretions and marl from profile, ca 15m deep, open in Slavonka brickyard, NE part of Vinkovci town.

Z-1078. Dilj II/1

+ **3400** 33,400

-1700

Loess concretions of irregular shape, 1 to 4cm diam, overlying layer of clayey silt, 1.5m thick, depth 13.1m.

+ 6000

Z-1096. Dilj II/2

34,700

-4600

Loess concretions in dark-brown silt, 1.7 to 2m thick, depth 11.5m.

+3300

Z-1099. Dilj II/3

32,000

-2400

Sandy silt, depth 8m.

Z-1110. Dilj II/27

 $27,000 \pm 1900$

Sandy silt under groundwater level, depth 7m.

Z-1097. Dilj II/4

 $15,600 \pm 500$

Loess concretions, 1 to 4cm diam, from layer, 3.5m thick, with vertical fissures and microfauna, depth 6.8m.

Z-1109. Dilj II/28

 $25,100 \pm 1400$

Terrestrial loess with fossils, depth 5.6m.

Z-1098. Dilj II/5

 $21,700 \pm 1000$

Loess concretions from layer, 0.5m thick, with vertical fissures and microfauna, depth 5.5m.

Z-1108. Dilj II/30

 $19,400 \pm 1000$

Typical terrestrial loess with vertical fissures and terrestrial macrofauna, depth 3m.

Z-1150. Dilj II/30c

 $16,200 \pm 500$

Typical terrestrial loess with vertical fissures and terrestrial microfauna, depth 2.5m.

Z-1079. Dilj II/6

 3550 ± 160

Loess concretions up to 10cm diam overlying layer of typical terrestrial loess, 2.5m thick, with vertical fissures and terrestrial microfauna, depth 1.8m.

Profile Gorjanović

Loess and loess concretions from various depths of profile, 18m deep, near Danube R at Vukovar (45° 20′ N, 19° 00′ E), E Croatia.

+3500

Z-1073. Gorjanović 1

32,000

-2800

Loess concretions of irregular shape, up to 10cm long and several cm thick overlying layer of silt, 1m thick, depth 17.4m.

Z-1074. Gorjanović 2

 $24,700 \pm 1300$

Loess concretions of irregular shape, more than 20cm long overlying layer of loess, 3m thick, depth 13.2m. Fossil flora and fauna from colder climate found in layer.

Z-1107. Gorjanović 6

 $22,200 \pm 3700$

Typical loess, 7.5m below surface.

Z-1075. Gorjanović 3

 $21,700 \pm 1000$

Loess concretions 10 to 15cm diam overlying layer of loess, 6m thick, depth 6.8m.

Z-1103. Gorjanović 4

 $18,800 \pm 600$

Loess from layer, 4 to 5m thick, depth 1m.

Other loess profiles

Z-1080. Privlaka

 6350 ± 200

Loess concretions taken during digging channel near Bosut R, 1m below ground in clayey silt, Privlaka (45° 12′ N, 18° 50′ E), E Croatia.

Z-1104. Djakovo

 7550 ± 200

Loess concretions in clayey silt, depth 2.5m, Djakovo, Slavonia (45° 19' N, 18° 25' E), E Croatia.

Z-1105. Mikanovci

 11.900 ± 300

Loess concretions in clayey silt, depth 3.5m, Mikanovci (46° 17′ N, 18° 33′ E), E Croatia. Coll 1983 by I Galović, Geol Inst, Zagreb.

Z-1142. Sigečak Mali

 5150 ± 170

Loess concretions, depth 1.2m, Sigečak Mali near Ludbreg (46° 14′ N, 16° 39′ E), NW Croatia. Coll and subm 1983 by M Malez.

HYDROGEOLOGIC SAMPLES

Croatia

Z-868. Šmidhen, SM-1

 $21.4 \pm 0.7\%$ modern 11.000 ± 300

Mineral water from artesian well 800m deep, Smidhen spa, near Samobor (43° 48′ N, 15° 43′ E), NW Croatia. Coll and subm July 1981 by INA Naftaplin staff, Zagreb. Dated to study hydrogeol properties of thermal waters.

Z-898. Šalata, SA-1

 $3.9 \pm 0.4\%$ modern $24,800 \pm 1200$

Groundwater from 950 to 1010m depth, šalata, Zagreb (45° 49′ N, 16° 00′ E), NW Croatia. Coll and subm Feb 1982 by INA Naftaplin staff.

$49.2 \pm 0.7\%$ modern 4350 ± 160

Z-1072. Križevci

Groundwater, occasionally artesian water, near Vratno village (44° 08′ N, 16° 32′ E) at 200m alt, central Croatia. Sample from pumping sta of potable water for Križevci town. Coll and subm 1983 by J Krznar, Geotehnika.

Z-973. Topusko, TP-1 $5.3 \pm 0.4\%$ modern $22,000 \pm 900$

Water from Topusko thermal spa (45° 18′ N, 15° 58′ E), central Croatia. Coll and subm Feb 1982 by Industroprojekt staff.

Water from Topusko thermal spa. Coll and subm by Industroprojekt staff.

Z-1137. Sutinske toplice $8.9 \pm 0.4\%$ modern $18,000 \pm 600$

Thermal water from main well, Sutinske toplice spa, NW Croatia (46° 03′ N, 16° 02′ E).

Slovenia

Z-962. Rogaška slatina, G-4

 $89.4 \pm 1.4\%$ modern

Water from Rogaška slatina spa, NE Slovenia (46° 14′ N, 15° 39′ E). Coll and subm Dec 1981 by Inst Jožef Štefan staff, Ljubljana.

 $14.1 \pm 0.5\%$ modern 14.400 ± 400

Z-1013. Leženj

Water from bore hole PT-22/82, 220 to 400m deep, near Velenje (46° 24′ N, 15° 01′ E), N Slovenia. Coll and subm May 1982 by M Veselič, Geol Inst, Ljubljana.

Z-1014. Topolšica

>37,000

Water from bore hole E-5 82, Topolšica spa near Velenje (46° 24′ N, 15° 01′ E), N Slovenia. Coll and subm May 1982 by M Veselič.

Bosnia

 $23.7 \pm 0.5\%$ modern

Z-878. Ribnica, RB-1

 10.200 ± 200

Mineral water from Ribnica near Kakanj (44° 07′ N, 18° 05′ E), Bosnia. Coll and subm by N Miošić.

 $8.1 \pm 0.4\%$ modern 20.000 ± 600

Z-974. Laktaši

Thermal artesian water from Laktaši near Banja Luka (44° 45′ 15″ N, 17° 09′ 35″ E), NW Bosnia. Coll and subm Feb 1982 by N Miošić.

 $9.5 \pm 0.4\%$ modern 17.600 ± 500

Z-975. Šaranovića haus

Thermal water at Gornji šeher near Banja Luka (44° 45′ 15″ N, 17° 45′ 15″ E) at 168m alt, NW Bosnia. Coll and subm Feb 1982 by D Hrustanpašić. Part of investigations of geothermal potential of Banja Luka

Z-976. Slatina, Kiseljak II

>37.000

Thermal artesian water at Slatina spa near Banja Luka (44° 49′ 35″ N, 17° 18′ 15″ E), NW Bosnia. Coll and subm Feb 1982 by N Miošić.

 $3.3 \pm 0.3\%$ modern 26.000 ± 1400

Z-977. Slatina

region.

Thermal artesian water from Slatina spa near Banja Luka (44° 49′ 45″ N, 17° 18′ 10″ E) at 210m alt, NW Bosnia. Coll and subm Feb 1982 by D Hrustanpašić.

 $3.3 \pm 0.4\%$ modern $24,000 \pm 1100$

Z-979. Omarska

Artesian water from bore hole Jezero 8 at Omarska near Prijedor (44° 53′ N, 16° 54′ E) at 155m alt. Coll and subm Feb 1982 by Geotehnika staff.

 $19.2 \pm 0.5\%$ modern $11,900 \pm 400$

Z-1182. Sanska Ilidža

Water from drilled hole, depth 200m, at Sanska Ilidža near Sanski Most spa (44° 41' N, 16° 46' E), W Bosnia.

Slatina series

Subartesian thermal water (43°C) at Slatina spa near Banja Luka (44° 49′ N, 17° 19′ E), NW Bosnia. Coll and subm by N Miošić.

 $1 \pm 0.3\%$ modern +4500Z-1184. Slatina Ilidža, SB-1 35,400 -3500 $1.2 \pm 0.3\%$ modern +3700Z-1185. Slatina Ilidža, Kiseljak 34,500 -3000

REFERENCES

Brodar, M, 1982, Varstvo spomenikov, Ljubljana: v 24, p 133-138.

Čović, B, 1975, Pod bei Bugojno: Posebna izdanja Akad nauka i umjetnosti BiH, v 24,

no. 6, p 121-129.

Čović, V, 1978, Velika Gradina u Varvari, I dio: Glasnik Zemaljskog muzeja, v 32, p 5-81. Malez, M and Ullrich, H, 1982, Neuere paläoanthropologische Untersuchungen am Material aus Holle Vindija (Kroatien, Jugoslawien): Paleont Jugoslavica, v 29, p 1-44.

Obelić, B, 1980, Computer analysis and interpretation of radiocarbon data: Fizika, v 12 (S2), p 139-161.

Obelić, B and Planinić, J, 1977, Computer processing of radiocarbon and tritium data, in Povinec, P and Usačev, S, eds, Internatl conf on low-radioactivity measurement and applications, Proc: The High Tatras, Slovenské pedagogické nakladatelstvo, Bratislava, p 117-120. Srdoč, Dušan, Breyer, Branko, and Sliepčević, Adela, 1971, Rudjer Bošković Institute

radiocarbon measurements I: Radiocarbon, v 13, p 135-140.

Srdoč, Dušan, Sliepčević, Adela, Obelić, Bogomil, and Horvatinčić, Nada, 1979, Rudjer Bošković Institute radiocarbon measurements V: Radiocarbon, v 21, p 131-137.

Srdoč, Dušan, Horvatinčić, Nada, Obelić, Bogomil, and Sliepčević, Adela, 1982, Rudjer Bošković Institute radiocarbon measurements VII: Radiocarbon, v 24, p 352-371.

LABORATORIES*

A ARIZONA

Dr Austin Long

Laboratory of Isotope Geochemistry

Geosciences Department University of Arizona Tucson, Arizona 85721

AC INGE'S

Dr Enrique Linares

Pabellón INGEIS, Ciudad Universitaria

1428 Buenos Aires, Argentina

ALG ALGIERS

Omar Rahmouni

Bd Frantz Fanon

BP 1147

Algiers, Algeria

ANL ARGONNE NATIONAL LABORATORY

Mr James Gray, Jr

Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439

ANTW ANTWERP UNIVERSITY

Prof R Vanhoorne

Dept of General Botany

State University Centre Antwerp

Groenenborgerlaan 171

B-2020 Antwerp, Belgium

ANU AUSTRALIAN NATIONAL UNIVERSITY

Henry A Polach

Radiocarbon Dating Research

Australian National University

PO Box 4, Canberra 2600

Australia

AU UNIVERSITY OF ALASKA

William S Reeburgh and M Springer Young

Institute of Marine Science

University of Alaska

Fairbanks, Alaska 99701

B BERN

Prof H Oeschger

Physikalisches Institut

Universität Bern

Sidlerstrasse 5 CH-3012 Bern, Switzerland

Ba BRATISLAVA

Prof S Usacev and Dr P Provinec

Department of Nuclear Physics

Comenius University

Mlynská dolina F1

816 31 Bratislava

Czechoslovakia

BC BROOKLYN COLLEGE

Prof Evan T Williams

Department of Chemistry

Brooklyn College

Brooklyn, New York 11210

^{*} Please notify the Managing Editor of staff or address changes.

BIRMINGHAM Birm

R E G Williams

Department of Geological Sciences, PO Box 363

University of Birmingham Birmingham B15 2TT, England

Bln BERLIN

Dr Günther Kohl

Akademie der Wissenschaften der DDR

Zentralinstitut für Alte Geschichte und Archäologie

1086 Berlin, Liepziger Str 3/4 German Democratic Republic

BM**BRITISH MUSEUM**

Richard Burleigh Research Laboratory

The British Museum

London WC1B 3DG, England

BS BIRBAL SAHNI INSTITUTE

Dr G Rajagopalan

Radiocarbon Laboratory

Birbal Sahni Institute Paleobotany

Post Box 106

Lucknow-226 007 India

CRCA **CAIRO**

Dr Shawki M Nakhla

Cairo Carbon-14 Dating Laboratory

Center of Research and Conservation of Antiquities

Organization of Egyptian Antiquities

Midan El Tahrir

Cairo, Egypt

CSM COSMOCHEMISTRY LABORATORY

A K Lavrukhina and V A Alexeev

VI Vernadsky Institute of

Geochemistry and Analytical Chemistry

USSR Academy of Sciences

Moscow, USSR

CUCHARLES UNIVERSITY

Department of Hydrogeology and Engineering Geology

Charles University

Albertov 6

CS-128 43 Praha 2, Czechoslovakia

Dak DAKAR

Dr Cheikh Anta Diop

Directeur du Laboratoire de

Radiocarbone IFAN

Université de Dakar

République du Sénégal

DAL DALHOUSIE UNIVERSITY

Prof J Gordon Ogden, III

Department of Biology

Dalhousie University

Halifax, Nova Scotia, Canada B3H 3J5

DE UNITED STATES GEOLOGICAL SURVEY

Dr I C Yang

U S Geological Survey WRD

Box 25046, Mail Stop 407

Denver Federal Center

Denver, Colorado 80225

Deb DEBRECEN

Eva Csongor

Institute of Nuclear Research

Hungarian Academy of Sciences (ATOMKI)

Bem tér 18/c, Pf 51 Debrecen, Hungary

DIC DICARB RADIOISOTOPE COMPANY

Irene C Stehli

DICARB Radioisotope Company

4912 Stonehenge Lane Norman, Oklahoma 73071

F FLORENCE

Dr C M Azzi, L Bigliocca, and F Gulisano

Radiocarbon Dating Laboratory

Radiocarbon Dating Lai Istituto di Antropologia Università di Firenze Via del Proconsolo 12 50122, Florence, Italy

Fr FREIBERG

Dr Klaus Fröhlich Sektion Physik Bergakademie Freiberg DDR 92 Freiberg

Fra FRANKFURT

Prof Dr Reiner Protsch Radiocarbon Laboratory J W Goethe-Universität Siesmayerstrasse 70 6000 Frankfurt am Main West Germany

FZ FORTALEZA

Prof M F Santiago Departamento de Fisica UFCe, Cx Postal 12 62 60,000 Fortaleza/CE, Brazil

GaK GAKUSHUIN UNIVERSITY

Prof Kunihiko Kigoshi Gakushuin University Mejiro, Toshima-ku Tokyo, Japan

Gd GLIWICE

Mieczystaw F Pazdur and Andrzej Zastawny Radiocarbon Laboratory Silesian Technical University Institute of Physics, C-14 Laboratory ul Bolestawa Krzywoustego 2 Pl-44-100 Gliwice, Poland

Gif GIF-SUR-YVETTE

Dr J Labeyrie or Mme G Delibrias Centre des Faibles Radioactivités Laboratoire mixte CNRS-CEA 91190-Gif-sur-Yvette, France

GrN GRONINGEN

Prof W G Mook Isotopes Physics Laboratory University of Groningen Westersingel 34 9718 CM Groningen, Netherlands

GSC **OTTAWA**

Dr Roger N McNeely

Radiocarbon Dating Laboratory Geological Survey of Canada

601 Booth Street

Ottawa, Ontario K1A OE8, Canada

GLASGOW UNIVERSITY Dr M S Baxter GU

Department of Chemistry

The University

Glasgow G12 8OO, Scotland

GEOCHRON LABORATORIES GX

Harold W Krueger

Division Krueger Enterprises, Inc

24 Blackstone Street

Cambridge, Mass 02139

UNIVERSITY OF HAMBURG HAM

Prof Dr H W Scharpenseel and H Schiffmann Ordinariat für Bodenkunde

University of Hamburg Von Melle Park 10 D-2000 Hamburg 13 West Germany

HAR HARWELL

R L Otlet

Isotope Measurements Laboratory Nuclear Applications Centre Bldg 10.46 AERE, Harwell Oxfordshire OX11 ORA, England

Hd HEIDELBERG

Prof K O Münnich, D Berdau, and Marianne Münnich

Institut für Umweltphysik Universität Heidelberg Im Neuenheimer Feld 366 D-69 Heidelberg, West Germany

Hel HELSINKI

Högne Jungner

Radiocarbon Dating Laboratory

University of Helsinki Snellmaninkatu 5

SF-00170 Helsinki 17, Finland

HIG HAWAII INSTITUTE OF GEOPHYSICS

Robert W Buddemeier

Hawaii Institute of Geophysics

University of Hawaii 2525 Correa Road Honolulu, Hawaii 96822

Hv HANNOVER

Dr M A Geyh

Niedersächsisches Landesamt

für Bodenforschung

D-3000 Hannover-Buchholz, Postf 510153

West Germany

I TELEDYNE ISOTOPES

James Buckley Teledyne Isotopes 50 Van Buren Avenue Westwood, New Jersey 07675 IRPA INSTITUT ROYAL DU PATRIMOINE ARTISTIQUE
M Dauchot-Dehon, J Heylen, and M Van Strydonck
Institut Royal du Patrimoine Artistique
1 Parc du Cinquantenaire
Brussels 4, Belgium

ISGS ILLINOIS STATE GEOLOGICAL SURVEY Dr Dennis D Coleman and Chao-li Liu Section of Analytical Chemistry Illinois State Geological Survey Natural Resources Building

JGS GEOLOGICAL SURVEY OF JAPAN
Dr Shigeko Togashi
Geochemical Section
Geological Survey of Japan
1-1-3, Higashi, Yatabe
Tsukuba, Ibaraki 305, Japan

Urbana, Illinois 61801

K COPENHAGEN

Dr Henrik Tauber Geological Survey of Denmark and National Museum DKK-1220 Copenhagen K, Denmark

KAERI KOREA ATOMIC ENERGY RESEARCH INSTITUTE Dr Kyung Rin Yang

Radioanalytical Division Korea Advanced Energy Research Institute PO Box 7, Cheong Ryang Seoul, Korea

KI KIEL

Dr Horst Willkomm and Dr H Erlenkeuser Institut für Reine und Angewandte Kernphysik Universität Kiel Olshausenstrasse 40-60 23 Kiel, Germany

KN KÖLN

Dr J C Freundlich Universität Köln, Institut für Ur-und Frühgeschichte C¹¹-Laboratorium Köln-Lindenthal Weyertal 125, W Germany

L LAMONT

Dr Tsung-Hung Peng Lamont-Doherty Geological Observatory of Columbia University Palisades, New York 10964

LAR LIEGE STATE UNIVERSITY

Prof Dr Jean Govaerts Lab d'application des radioéléments Chimie B6, Sart Tilman Liège, Belgium

LE LENINGRAD

Radiocarbon Laboratory Institute of Archaeology (Leningrad Section) Dvortsovaya Nab 18 Leningrad 192041, USSR

LJ UNIVERSITY OF CALIFORNIA, SAN DIEGO

Prof H E Suess Mt Soledad Radiocarbon Laboratory S-003 University of California, San Diego La Jolla, California 92093

LOD LODZ

Andrzej Kanwiszer and Pawet Trzeciak Radiochemical Laboratory Archaeological and Ethnographical Museum in Lódz pl Wolności 14 91-415 Lódz, Poland

LP LA PLATA

Prof Anibal Juan Figini Laboratorio de Tritio y Radiocarbono Facultad de Ciencias Naturales y Museo Paseo del Bosque 1900 La Plata, Argentina

Lu LUND

Prof Björn Berglund and Mr Sören Håkansson Radiocarbon Dating Laboratory University of Lund Tunavägen 29 S-223 63 Lund, Sweden

Lv LOUVAIN LA NEUVE

Mr Etienne Gilot Laboratoire de Carbone 14 Chemin du Cyclotron 2 1348 Louvain la Neuve, Belgium

Ly UNIVERSITY OF LYON

Mr Jacques Evin Laboratoire de Radiocarbone Centre de datations et d'Analyses Isotopiques Université Claude Bernard—Lyon I 43, Boulevard du 11 Novembre 1918 69621, Villeurbanne-Lyon France

MC MONACO

Dr Jean Thommeret and Dr Y Thommeret Laboratoire de Radioactivité Appliquée Centre Scientifique de Monaco Avenue Saint Martin Monaco

MGU MOSCOW

Prof P Kaplin and Dr A Schulkov Laboratory of Recent Deposits and Pleistocene Paleogeography Geographical Faculty Moscow State University Moscow 117234, USSR

ML MIAMI

Dr H G Östlund Rosenstiel School of Marine and Atmospheric Science University of Miami Miami, Florida 33149

Mo VERNADSKI INSTITUTE OF GEOCHEMISTRY Vernadski Institute of Geochemistry

Academy of Sciences of the USSR Moscow, USSR Address: Prof V L Barsukov Vorobevskoye shosse,d47-A Moscow, USSR

MOC MOST

E F Neustupny Archaeological Institute Czechoslovak Academy of Sciences Letenská 4 Prague 1, Czechoslovakia 118 01 Laboratories 467

MRRI MARINE RESOURCES RESEARCH INSTITUTE

Thomas D Mathews

Marine Resources Research Institute

P O Box 12559

Charleston, South Carolina 29412

N NISHINA MEMORIAL (TOKYO)

Dr Fumio Yamasaki

The Japan Radioisotope Association

2-28-45 Honkomagome, Bunkyo-ku, Tokyo

Japan 113

NSTF NUCLEAR SCIENCE AND TECHNOLOGY FACILITY

C C Thomas, Jr, Director Radiocarbon Laboratory

Nuclear Science and Technology Facility State University of New York at Buffalo

Rotary Road

Buffalo, New York 14214

NSW NEW SOUTH WALES

D J Carswell, Assoc Prof or Mr V Djohadze

Department of Nuclear and Radiation Chemistry

University of New South Wales

PO Box 1

Kensington, New South Wales, 2033, Australia

NTU NATIONAL TAIWAN UNIVERSITY

Yuin-Chi Hsu

Department of Physics National Taiwan University

Taipei, Taiwan, China

Ny NANCY

Pr René Coppens et Dr Pierre Richard

Laboratoire de Radiogéologie

ENS de Géologie Appliquée et de Prospection Minière

Institut National Polytechnique de Lorraine

BP 452

54001 Nancy Cedex, France

NZ NEW ZEALAND

Dr B J O'Brien

Institute of Nuclear Sciences

DSIR, Private Bag

Lower Hutt, New Zealand

P PENNSYLVANIA

Barbara Lawn

Radiocarbon Laboratory

University of Pennsylvania

Department of Physics, DRL/E1

Philadelphia, Pennsylvania 19104

Pi PISA

Prof E Tongiorgi

Laboratorio di Geologia Nucleare dell'Università

Via S Maria, 22

Pisa, Italy

Pr PRAGUE

Alois Dubansky

Laboratory for Isotopes

Geochemistry and Geochronology

Geological Institute

Czechoslovak Academy of Sciences

Prague-8

Na Hrazi 26

PRL PHYSICAL RESEARCH LABORATORY

Devendra Lal and D P Agrawal Physical Research Laboratory Navrangpura Ahmedabad-380009, India

Pta PRETORIA

Dr J C Vogel Natural Isotopes Division National Physical Research Laboratory CSIR PO Box 395 Pretoria, South Africa

Q CAMBRIDGE

Dr V R Switsur University of Cambridge Godwin Laboratory Free School Lane Cambridge, England CB2 3RS

QC QUEENS COLLEGE

Dr Richard R Pardi Radiocarbon Laboratory Queens College, CUNY Flushing, New York 11367

QL QUATERNARY ISOTOPE LABORATORY

Prof Minze Stuiver Quaternary Isotope Laboratory AJ-20 Department of Geological Sciences University of Washington Seattle, Washington 98195

QU QUEBEC

Dr Louis Barrette and Claude Samson Centre de Recherches Minérales Complexe Scientifique du Québec 2700 rue Einstein Ste-Foy, Québec Canada, GIP 3W8

R ROME

Dr Francesco Bella, Istituto di Fisica and Dr Cesarina Cortesi, Istituto di Geochimica Radiocarbon Dating Laboratory University of Rome Città Universitaria 00100-Rome, Italy

RL RADIOCARBON, LTD

Charles S Tucek Radiocarbon, Ltd Route 2, Box 21E Lampasas, Texas 76550

RT REHOVOT GEOISOTOPE LABORATORY

Dr Aaron Kaufman and Mr I Carmi Geoisotope Laboratory Department of Isotope Research Weizmann Institute of Science Rehovot, Israel

RU RICE UNIVERSITY

J A S Adams Department of Geology Rice University Houston, Texas 77001

S SASKATCHEWAN

Mr A Rutherford

Saskatchewan Research Council University of Saskatchewan Saskatoon, Saskatchewan, Canada

SFU SIMON FRASER UNIVERSITY

Dr Erle Nelson Archaeology Department Simon Fraser University Burnaby, British Columbia

Canada V5A 1S6

SI SMITHSONIAN INSTITUTION

Dr W H Klein, Director Radiation Biology Laboratory Dr Robert Stuckenrath C¹⁴ Laboratory 12441 Parklawn Drive Rockville, Maryland 20852

SMU SOUTHERN METHODIST UNIVERSITY

Dr Herbert Haas Institute for the Study of Earth and Man Southern Methodist University Dallas, Texas 75275

SRR SCOTTISH UNIVERSITIES RESEARCH AND REACTOR CENTRE

Dr D D Harkness NERC Radiocarbon Laboratory Scottish Universities Research and Reactor Centre East Kilbride Glasgow G75 0QU, Scotland

St STOCKHOLM

Dr Eric Welin Laboratory for Isotope Geology Swedish Museum of Natural History S-104 05 Stockholm 50, Sweden

Su FINLAND

Tuovi Kankainen Geological Survey of Finland SF-02150 Espoo 15, Finland

SUA SYDNEY UNIVERSITY, AUSTRALIA

Dr Mike Barbetti Macintosh Centre Madsen Building F09 University of Sydney Sydney NSW 2006, Australia

T TRONDHEIM

Dr Reidar Nydal, Steinar Gulliksen, and Knut Lövseth Radiological Dating Laboratory The Norwegian Institute of Technology 7034 Trondheim, Norway

TA TARTU

Evald Ilves and A Liiva Radiocarbon Laboratory Institute of Zoology and Botany Academy of Sciences of the Estonian SSR Vanemuise St 21 Tartu, Estonia, USSR

TAM TEXAS A & M UNIVERSITY

Dr David Schink Dept of Oceanography Texas A & M University College Station, Texas 77843

TB TBILISI

Dr A A Burchuladze Radiocarbon Laboratory Tbilisi University I Chavchavadze Avenue Tbilisi, USSR 380028

TK UNIVERSITY OF TOKYO

Dr Naotune Watanabe C-14 Dating Laboratory University Museum (Shiryokan) University of Tokyo 3-1 Hongo 7-chome Bunkyo-ku, Tokyo 113 Japan

Tln TALLINN

J M Punning Institute of Geology Academy of Sciences of the Estonian SSR Tallinn, Estonia puiestee 7 ESSR

TUNC TEHRAN UNIVERSITY NUCLEAR CENTRE

Dr A Mahdavi Tehran University Nuclear Centre PO Box 2989 Tehran, Iran

Tx TEXAS

Mr S Valastro, Jr or Dr E Mott Davis Radiocarbon Laboratory University of Texas at Austin Balcones Research Center 10,100 Burnet Road Austin, Texas 78758

U UPPSALA

Dr Ingrid U Olsson Institute of Physics University of Uppsala Box 530 S-751 21 Uppsala, Sweden

UB BELFAST

Gordon W Pearson Palacoccology Laboratory The Queen's University Belfast, BT7 1NN Northern Ireland

UCLA UNIVERSITY OF CALIFORNIA, LOS ANGELES

Prof Rainer Berger Institute of Geophysics University of California Los Angeles, California 90024

UCR UNIVERSITY OF CALIFORNIA, RIVERSIDE

Dr R E Taylor Department of Anthropology Institute of Geophysics and Planetary Physics University of California Riverside, California 92512 Laboratories 471

UD UDINE

Dr Valerio Barbina, Prof Franco Calligaris, Dr Adriano Del Fabbro, and Dr Alessandro Turello Centro di Ricerca Applicata e Documentazione Viale Leonardo da Vinci 16 33100 Udine, Italy

UGa THE UNIVERSITY OF GEORGIA

John E Noakes and Betty Lee Brandau Center for Applied Isotope Studies The University of Georgia 110 Riverbend Road Athens, Georgia 30602

UGRA UNIVERSITY OF GRANADA

Dr Cecilio González-Gómez Laboratorio de Datación por Carbono-14 Sección de Radioquímica Facultad de Ciencias Universidad de Granada Granada, Spain

UM UNIVERSITY OF MIAMI

Dr J J Stipp, G Treadgold, and D Hood Radiocarbon Dating Laboratory Department of Geology University of Miami Coral Gables, Florida 33124

USGS US GEOLOGICAL SURVEY

MENLO PARK, CALIFORNIA Dr Stephen W Robinson US Geological Survey 345 Middlefield Road Menlo Park, California 94025

UW UNIVERSITY OF WASHINGTON

Dr A W Fairhall Department of Chemistry University of Washington Seattle, Washington 98195

VRI VIENNA RADIUM INSTITUTE

Dr Heinz Felber Institut für Radiumforschung und Kernphysik Boltzmanngasse 3 A-1090 Vienna, Austria

W US GEOLOGICAL SURVEY

Dr Meyer Rubin US Geological Survey National Center, 971 Reston, Virginia 22092

WAT UNIVERSITY OF WATERLOO

Dr Peter Fritz Department of Earth Sciences Isotopes Laboratory University of Waterloo Waterloo, Ontario, Canada N2L 3G1

WIS WISCONSIN

Raymond L Steventon IES Center for Climatic Research University of Wisconsin 1225 W Dayton St Madison, Wisconsin 53706

WRD US GEOLOGICAL SURVEY, WATER RESOURCES DIVISION

Dr F J Pearson, Jr US Geological Survey, Water Resources Division Isotope Hydrology Laboratory National Center, MS 432 Reston, Virginia 22092

WSU

WASHINGTON STATE UNIVERSITY
Dr John C Sheppard
Department of Chemical and Nuclear Engineering
Washington State University
Pullman, Washington 99164

X WHITWORTH COLLEGE

Dr Edwin A Olson

Department of Earth Science

Whitworth College

Spokane, Washington 99218

Ya YALE

Prof Karl K Turekian Department of Geology and Geophysics

Yale University

New Haven, Connecticut 06520

Z

Dr Adela Sliepcevic and Dr Dušan Srdoc

Institute "Ruder Boškovic"

41001 Zagreb, POB 1016, Yugoslavia

INDEX Volume 26, Nos. 1 to 3, 1984 ARCHAEOLOGIC SAMPLES

Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No. I	١٥.	Page
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AALAND				1	BRITISH ISLES (contin	iued)		
		. 21/0	2	400			BM-2071	.1	6.2
2850 ± 50 2790 ± 50	Bronze age	Lu-2160 -2159	3	409	4670 ± 60 3400 ± 50	Neolithic Bronze age	-2026	1	61
2770 - 50					3090 ± 60	"	-2088	"	63
	ALGERIA				2610 ± 60 2315 ± 35	Molluscan zonation	-2123 -2137		64
1080±130	Islamic	BM-2129	1	59	1760 ± 70	Misassoc	-2091	"	63
460 ± 50	"	-2130	"	"	1750 ± 50 1525 ± 30	Early Medieval	-2096A -2072		60
65 ± 40 45 ± 35		-2132 -2133	11	11	1500 ± 60	Freshwater shell Early Medieval	-2096		6.3
Modern	n	-2134	"	"	1480 ± 50	Freshwater shell	-2135	"	6 0 6 2
	ARGENTINA				950 ± 50 900 ± 150	Medieval	-2048 -2054		
	ARGENTINA				890 ± 100	n .	-2155		"
9280 ± 310	Guanaco hunters	LP-62 -53	1	132	790 ± 70 750 ± 180	" Freshwater shell	-2047 -2073	"	60
8390 ± 50 7850 + 70 1	raful Cave Indian		"	96	740 ± 70	Medieval	-2047A	**	62
6240 ± 60	**	5132		"	730 ± 180	Freshwater shell	-2136	"	60
2620 ± 40	"	5131 5130	"	17	525 ± 30 Modern	Medieval Freshwater shell	-2150 -1801		64
2330 ± 40		3130			Modern	"	-1802	"	ii i
	AUSTRIA					CANADA			
0,700		VRI-793	3	447	33,000		S-1845	2	275
7,200+1900		-792	"	**	12,980±3190 11,700± 290		-2028 SFU-346	3	286 434
4,900+1800		-776	11		11,500± 300		-316	"	
2240 ± 80	La Tène	-804	"	446	10,900± 270 9800± 400		-270 -318	"	
290 ± 130 210 ± 70	Historic	-798 -797		447	9400± 400		-317	**	"
210 - 70		,,,			8550± 120	Early Archaic	S-1737	2	27
					8030± 1970 7980± 140	0	-1842 - 702		27
	BELGIUM				7600± 270	Early Archaic	-1841		27
					7580± 420		-2013	"	28 28
	Neolithic/Megalithi	c Fra-98 IRPA-526	2	190 389	7470± 970 6550± 100		-1837 -1253	11	26
480 ± 60 110 ± 60	Bronze age	-511	"	390	6420± 110		-1281	"	"
430 ± 50	Bronze/Early Iron	age -476	"	389	6230± 160		-1932	"	28 28
410 ± 50 230 ± 70	Bronze/Late Iron a	ge -4// -505	"	11	6080± 160 6070± 200	Early Plains Archaid	-1971 -1488	"	26
740 ± 80		-509	**	390	6010± 80		- 885	"	26
740 ± 60		-296	"	391	5920± 130 5910± 170	Early Plains Archai	ic -1970 -2036B	"	28
600 ± 60 440 ± 50		-496 -510	0	390	5900± 130		SFU-238	3	43
420 ± 70		-503	**	**	5890± 90		-889	2	26
390 ± 50 220 ± 70		-522 -508	"	"	5740± 100 5670± 110	Early Plains Archa	-1994 ic -2037		28
220 ± 70 010 ± 50		-507	0		5590 ± 100	Dally Flains micha	SFU-344	3	43
870 ± 50		-497	"	391	5590± 980		S -645	2	25
610 ± 50 530 ± 50		-606 -490		390 391	5430 ± 170 5330 ± 1310		S-1218 S-1929	**	26 28
Modern		-523	**	390	5210± 90		S-1682	"	2.7
Modern		-525	"		5080 ± 150	Early Plains Archa:	ic -2036A SFU-259	3	28 43
	BELIZE				5050± 140 4970± 100		S-294	2	26
					4890± 80		S-1672	"	2.7
	rly Formative (III)	LJ-4922 -4923	1	94	4790± 340 4720± 160		S-1217 S-906		26 25
510± 60 490± 70	n n	-4919	"	93	4680± 160		SFU-342	3	43
470 ± 70	" (II)	-4918	"	94	4610 ± 60		-1671 -1859	2	27 28
420± 60 420± 70 M	" " iddle Formative (IV	-4917 -4920		93	4540 ± 140 4500 ± 640		-1847	***	27
180± 70 H	Late Formative	-4916	**		4460 ± 70		-1816	**	28
160± 60	"	-4921	"	"	4460 ± 120		-927	3	26 43
300± 40 Te	rminal Classic/Earl Postclassic	P-3077	2	235	4390 ± 160 4370 ± 70		SFU-343 S-287	2	26
880±190	Late Postclassic	-3076	11	234	4370 = 90	Pre-Laurentian Arch	aic -900	"	26
740± 50	"	-3073 -3075	11	235	4530 ± 320 4290 ± 80		SFU-261 S-789	3	43
700± 50 650± 40	"	-3075	11	234	4280 ± 80		-700	ñ	2.5
					4270 ± 200		SFU-258 -257	3	4.3
	BRITISH ISLES				4250 ± 100 4220 ± 130	McKean	S-1210	2	26
,540±2400	Palaeolithic	BM-2117	1	6.5	4210 ± 60	Archaic	-1708	"	2.7
,500± 650	Devensian fauna	-2074C -2126	11	61 65	4200 ± 380 4190 ± 110		SFU-225 -788	3 2	43 26
,300±1500 ,800± 770		-2126	**	6 l	4130 ± 90		SFU-256	3	43
,400±1500		-2118	"	6.5	4110 ± 60		S-1624	2	27
,930 ± 310	Upper palaeolithi	ic -2127 -2102	"	66 65	4100 ± 140 4080 ± 60		-1408 -1707		2 6 2 7
8890 ± 340 5230 ± 45	Holocene	-2102		61	4060 ± 270		-2034	- 11	2.8
5120 ± 120	Neolithic	-2098	"	62	4060 ± 120		SFU-255	3	43
4910 ± 110	17	-2097 -2099	"	"	3990 ± 120 3950 ± 950		S -696 -1933	11	28
4820+ 70					1 2220 730				
4820 ± 70 4800 ± 170	n n	-2124	**	"	3800 ± 90 3780 ± 50		-899	11	26

473

Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Pag
	CANADA (continued)					CANADA /			
3740 ± 100) McKean	S-1209	2	265		CANADA (continued	,		
630 ± 70)	-1946	**	268	1800 ± 60 1780 ± 40		S-1670	2	273
620 ± 120 540 ± 70		-1860 - 701	"	283 256	1770 ± 100		-1637 -1445		27: 26:
510 ± 90) Archaic	-1077	"	259	1760 ± 270	Early Taltheile:	-2005	"	28
480 ± 70 470 ± 120		- 773	"	258	1750 ± 210 1750 ± 70		- 853 -1651	"	258 273
420 ± 80	Late Copper Archai	-2063 c -1370	0	290 267	1750 ± 70		-1835	"	28
410 ± 320)	S-1844	"	275	1740 ± 130 1710 ± 50	Bonant	-1614	"	26
550 ± 70 440 ± 70		- 888 - 967	"	261 259	1710 ± 290	Besant	-1641 -1927	11	27 28
300 ± 160)	-2002	**	287	1700 ± 70		-1679	"	27
280 ± 120 180 ± 80		- 898	"	261	1700 ± 120 1690 ± 80		-1935 -1832	"	28 28
180 ± 80 170 ± 70		-1626 - 780	ü	271 259	1680 ± 70		-1638	**	27
160 ± 70)	- 886		260	1670 ± 70		-1952	11	28
130 ± 500 130 ± 50		SFU-248 S-1709	3	432	1650 ± 200 1650 ± 70	Laurel	- 959 -1675		26 27
100 ± 60		-2054	2	277 290	1640 ± 310		-1256	**	2.5
980 ± 80)	-1654	"	273	1630 ± 200 1620 ± 110	Avonlea	-1764	"	27
960 ± 180 950 ± 80		S-697 -1655	"	256 272	1610 ± 60		-1833 -1825	11	28 27
870 ± 490		-1930	**	284	1600 ± 110	Avonlea	-1318	11	26
860 ± 60 820 ± 90		-1814		280	1600 ± 80 1590 ± 120		-1998 - 946	"	28 26
820 ± 90 720 ± 20		- 699 -1932		256 284	1570 ± 60		- 704	"	25
710 ± 200	Avonlea	-1766	11	279	1560 ± 160 1550 ± 60		-2053	"	29
700 ± 70 700 ± 600		-1716	"	277	1520 ± 160	Kamloops	-1454 -2001	"	26 28
670 ± 50		- 779 -1635		259 271	1510 ± 200		- 939	11	26
660 ± 90		-1826	11	272	1510 ± 70 1480 ±110		-1443	"	26
630 ± 50 600 ± 60		-1634	"	271	1480 ±120		- 622 -1252		25 26
580 ± 80		-1653 -1531	11	273 270	1470 ±120	Late Woodland	- 772	**	25
530 ± 160		SFU-341	3	433	1460 ± 50 1460 ±100		-1713 -1995	11	27
530 ± 120 500 ± 120		S-1843 -1811	2	275	1440 ± 90		-1940		28 26
490 ± 60		-1657	**	279 271	1400 ±160		-2016	"	289
480 ± 110		-1805		273	1390 ± 40 1380 ± 200	Avonlea	-1684 -1762	"	276
470 ± 240 460 ± 70		- 644 -1680	**	255 274	1380 ±190	HVOIITEA	-1762	"	279
430 = 60		-1831	11	281	1380 ± 70		-2014	"	288
420 ± 70 400 ± 110		S-1938	"	285	1340 ±190 1350 ± 70		-1761 -2007	"	279
360 ± 60		-1939 -1677		285 274	1330 ± 90	Laurel	-1248	11	266
360 ± 250		-1846	**	275	1330 ± 90 1320 ± 90		SFU-260	3	432
350 ± 60 340 ± 120	Marpole/Lacarno Beach	-1656	"	271	1320 ± 90		S- 892 -1941	2	258 269
320 ± 50	narpore/Lacarno seacr	-1613	11	260 269	1320 ± 190	Prairie Side-notch	-1760	11	279
300 ± 70	Marpole/Lacarno Beach	n - 787	0	260	1290 ± 259 1290 ± 60		-1852	"	275
300 ± 60 280 ± 150		-1677 - 890	11	274 258	1280 ± 100		-1995 -1854	11	279 283
260 ± 130		-1834	11	282	1280 ± 70		-2023	"	290
250 ± 50 240 ± 170		-1642	"	269	1250 ± 100 1220 ± 70	Middle Nesikep	-1934 -1455	"	285
210 ± 120		- 695 -1673		256 274	1210 ± 60	middle wesikep	-1813	11	269 280
150± 140		- 798	**	256	1200 ± 130	Laurel	- 746	"	257
130 ± 750 120 ± 70		-1247		265	1200 ± 80 1190 ± 170	Pre-Kamloops Avonlea/Prairie	- 761	"	"
120 ± 70		-1453 -1652		269 273		Side-notch	- 641	**	255
090 ± 70		-1456	"	269	1190 ± 160 1180 ± 90	Terminal Woodland	-1996	"	280
080 ± 50 080 ± 60	Middle Woodland	-1639 -1806	"	272	1170 ± 60	rerminal woodland	-1839 -2022		282 290
060± 100		-1804	11	2/3	1160 ± 100		-1830	11	281
040 ± 70 040 ± 50	Middle Woodland	- 895	"	261	1150 ± 60 1140 ± 240		- 891 SFU-224	3	258
)40± 200		-1669 -2017		273 289	1140 ± 70	Laurel	S-1079	2	434 264
30 ± 50		-1580	**	271	1100 ± 150 1090 ± 70	5	SFU-229	3	435
020 ± 230 000 ± 50		-1838	"	282	1080 ± 160		S-2021 SFU-302	2	290 434
00± 60		-1636 -1668		273	1080 ± 90	•	S-1823	2	273
90 ± 100		- 896		261	1070 ± 70 1070 ± 110	Prairie Side-notch	- 640	"	255
60 ± 70 50 ± 80	Saugeen	-1824 - 776		272	1070 ± 60	Late Woodland	-1948 -2020	"	285 289
20 ± 90	Laurel	- 776 - 956	11	258 263	1050 ± 330		-2064	17	288
20 ± 130	Beothuk	-1853	0	284	1030 ± 70 1020 ±110		-2025	"	289
10 ± 70 10 ± 70	Besant	-1640 -2032	"	272	1010 ± 100	Clearwater Lake	1850 966	"	275 259
00 ± 80	S	FU-351	3	287 434	1010 ±230		-1931		284
90 ± 70		S- 926	2	262	1000 ± 50 990 ±170		-1685	"	276
70 ± 270 70 ± 110	Beothuk	-1821 -1862		280	990 ± 170		-1950 -1688	.,	
60± 120		-1444	11	268	990 ±120		-2033	"	287
60 ± 200 50 ± 50	Avonlea	-1765	0	279	980 ±140 980 ± 60	Arctic Small Tool	- 778 -1812	"	259
50 ± 120		-1715 -1836	11	277	980 ± 80		-1812 -2008	ÿ	280 288
40 ± 280		-2000	0	282	970 ± 60		-1579		271
20 ± 60		-1861		283	970 ± 70		-1937	"	285
10 [±] 200		-1853	"		950 ± 190		-1759		278

			111101	ME OLOGI.	. SAMPLES				475
Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Page
	CANADA (continued)					CANADA (continued)			
0/0: /0	, , , , , , , , , , , , , , , , , , , ,	-1679	2	274	240 ± 70		S-1078	2	25
940 ± 40 940 ± 60		-1678 -1681	11	274	240 ± 70		-1818	"	28
920 ± 150	Laurel	- 744	**	257	220 ± 50		-1742	"	2.7
920 ± 70		S-1711	2	277	220 ± 60		-1815	"	28
910 ± 110 900 ± 60		-1718 -1686	"	278 276	210 ± 100 180 ± 140	Clearwater Lake	-1807 - 774	"	27 25
900 - 60 900 ± 40		-1714	11	277	180 ± 70	Athapaskan	-1945	11	26
900 ± 60	Late Woodland	-1840	"	282	160 ± 70	Blackduck	-1394	"	26
900 ± 80		-2015	"	288	140 ± 50		-1582	"	27
890 ± 130 890 ± 70		- 851 -1687		258 276	> 100 > 100		-1848 -2003		27 28
870 ± 360	Saugeen	- 621	"	255	> 100		-1936		28
870 ± 110	Terminal Woodland	-1396	"	267	90 ± 50	Clearwater Lake	- 968	"	25
860 ± 80	Kamloops	- 759	"	257	90 ± 50	Huron	-1719	"	27
840 ± 60 840 ± 60	Thule	-2027 -2026	11	290	Modern Modern		- 958 -1476	11	26 26
830 ± 150		- 643	11	255	Modern		SFU-350	3	43
830 ± 70		-1676	"	274					
820 ± 80	Thule	-2024	"	289		CHILE			
800 ± 110 800 ± 180	Pre-Kamloops	- 762 - 957		258 263	9400 ± 160		P-2702	2	23
800 ± 70	Laurel	-1943	"	268	2300 ± 50		-2588	ű	23
800 ± 40		-1712	11	277	1720 ± 50		-2587	"	"
790 ± 60		-1720	"	278					
780 ± 70 780 ± 120		- 942 -1717		263 277		CYPRUS			
770 ± 70		-1820	11	280	9240 ± 130	Acermaic Neolithi	c P-2972	2	21
770 ± 110		-1828	"	281	8870 ± 500	"	-2976	"	"
760 ± 130		-1219	"	265	8720 ± 400	"	-2785	"	21
760 ± 60 750 ± 150		-1849 -2019		275 289	8020 ± 400 8010 ± 360	"	-2974 -2973		21
730 ± 190		-1758	11	278	7600 ± 100	n .	-2781	"	21
730 ± 510		-1928	11	284	7400 ± 260	"	-2978	11	"
720 ± 60		-2029	11	286	7380 ± 100	"	-2784	11	"
710 [±] 40 700 [±] 100	Huron-Petrun	-1710 SFU-309	3	277 433	7130 ± 410 7120 ± 90	"	-2783 -2779		
690 ± 170		S-1949	2	276	6970 ± 310		-2975	**	21
670 ± 110	Terminal Woodlan		**	267	6570 ± 290		-2977	"	"
670 ± 50	Late Thule	-1615	"	268	6300 ± 80	"	-2781	11	
660 ± 70	Late Woodland	- 775	"	258	5830 ± 60	Ceramic Neolithi		"	2 1 2 1
650 ± 100 630 ± 60	Late Thule	-1254 -1545		265 270	4330 ± 80	Middle Bronze	-2980		2.1
620 - 100	bate inuie	- 925	11	262		DENMARK			
620 ± 120		-1851	11	275					
620 ± 150		-2018	11	289	170 ± 70 150 ± 45	Modern	Lu-2017 -2163	3	41
620 ± 80 610 ± 60	Huron	SFU-311 S-1133	3	433 264	130 = 43		-2103		
600 ± 40	1141511	-1581	0	271		EGYPT			
590 ± 70	Kamloops	- 760	11	257			- 101		
580 ± 190 580 ± 160		-1757 - 903		278 256	4110 ± 100 3860 ± 100	6th Dynasty(?)	Fra-104 - 70	2	19 19
570 ± 70		-1829	"	281	3850 ± 100		-100	11	19
560 ± 70	Kamloops	- 757		257	3730 ± 100	"	- 92	"	11
550 ± 80	Athapaskan	-1942	11	267	3680 ± 115	7th Dynasty	UD- 73	"	29
550 ± 70 540 ± 120	Kamloops	- 758 -1255		257 256	3550 ± 100 3450 ± 100	6th Dynasty (?)	Fra- 8/		19
530 ± 80		-2012	***	288	2920 ± 60	Mummy	LJ-4995	1	9
510 ± 110		- 943	"	263	2860 ± 40	Kushite-Saite	P-3112	2	2 1
500 ± 80		SFU-310	3	433	2590 ± 60	"	-3113	"	2 1
490 ± 90 490 ± 120	Blackduck	S-1080 -1134	2	264	2550 ± 50 2550 ± 50	"	-3111 -3114	"	21
490 ± 120	Huron	-1134		276	2430 ± 100	n .	Fra-80	"	19
480 [±] 70		-1999	11	280	2290 ± 40	Mummy	LJ-4915	1	9
480 [±] 50		-1822	"	281	2210 ± 59	Kushite-Saite	P-3115	2	21
480 [±] 70 470 [±] 170	Iroquois Late Woodland	-2006 - 745		288 257	2130 ± 60	Mummy	LJ-4996	1	9
470 ± 70	Blackduck	-1076	11	264		FRANCE.			
470 ± 60		-1395		267					
460 [±] 100	Clearwater Lake		"	259	2490 ± 50	Iron age	BM-2050	1	6
440 ± 40	Blackduck	-1246 - 940		265 263	2480 ± 72 2370 ± 60	"	-2051 -2055		
430 [±] 100 430 [±] 50		-1819		281	2310 ± 50	"	-2058	**	6
430 ± 80	Iroquois	-2010	"	288	2300 ± 110	"	-2056		6
430 ± 70	"	-2011	"	0.70	2235 ± 40	"	-2057	"	"
410 [±] 60 410 [±] 100	Late Thule	-1546 -2009	"	270 288	2220 ± 140 2130 ± 130	0	-2054 -2052		
410 - 100 400 ± 100	Iroquois	- 897	**	261	1710 ± 360	II.	-2052	**	**
390 ± 90	Athapaskan	-1944	"	268	490 ± 100	Medieval	-2100	***	6
380 ± 80		- 225	"	255	340 ± 100	Ü	-2101	"	"
380 ± 220	m	- 705	"	257		CDDMAND			
380 ± 50 330 ± 80	Terminal Woodlan	d -1249 -2030		266 278		GERMANY			
330 - 80 320 ± 90		- 642	11	255	+2500				
320 - 90		- 852	**	258	30,300+2500	Upper Pleistocen			19
320 = 90		-1827		278	5700 ± 130	Bronze age (?) Middle Neolithic	-69a -96		18
320 ± 90 310 ± 50									18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1951		286	5640 ± 100				
320 ± 90 310 ± 50	Clearwater Lake	-1951 - 965 -1817	"	264 280	5640 ± 100 5630 ± 100 5340 ± 130	Neolithic	-97 -67	"	18

476			ARC	HAEOLOG	IC SAMPLES				
Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Page
	GERMANY (continue	d)				IRAN			
4040± 100	Late Neolithic	-86		189	>27,970				
1970 ± 100	LaTène	-75	"	188	>27,610	Upper Paleolithic	P-2862 -2861	2	218
1970± 100 1720± 100		-69c	"		>27,260	"	-2866	"	
1450 ± 100	Urnfield culture Medieval	(?) -74 -55		187	0+3010	,,			
1350 ± 100	Early Medieval	-94	**	189	24,240+3010		-2863	"	"
1180 ± 100	Medieval	-72	11	187	19,230+1590		-2865	11	11
1130 ± 100 1100 ± 100		-54	"	11					
1080 ± 100		-64 -90		189	18,020+1630	"	-2864	"	
400 ± 100		-78		188	5750 ± 60	Period I	-2864	11	220
					5200 ± 70	n n	-2774		220 221
	GREECE				5060 ± 320	11	-2623		220
5810 ± 410	Early Helladic	P-2846	2	215	5020 ± 70 4910 ± 70	11	-2765	"	222
4970 ± 270	"	-2854	**		4870 ± 70	11	-2764 -2763		"
4810 ± 280 4360 ± 350	"	-2848	"	"	4830 ± 60	"	-2619	**	
4200 ± 240	Late Minoan	-2850	0	"	4790 ± 60	Period II	-2759	"	**
4150 ± 50	Middle Helladic	-3046 -2790	11	217 216	4700 ± 50 4570 ± 60	"	-2766	"	"
4100 ± 230	11	-2966	11	-10	3440 ± 70	II .	-2711 -2621-		220
4090 ± 260 4080 ± 60	Early Helladic	-2853	11	215	4540 ± 60	n .	-2709	11	
4040 ± 210	Middle Helladic	-2961 -2958	"	217	4530 ± 60	"	-2707	**	
4010 ± 230	n n	-2958	11	216	4530 ± 50 4500 ± 50	"	-2760	"	200
4000 ± 280	Early Helladic	-2852	"	215	4550 ± 60	"	-2773 -2715		222
3930 ± 50 3900 ± 250	Middle Helladic	-2967	"	216	4440 ± 50	п	-2708	11	219
3870 ± 210		-2962	"	217	4420 ± 50	H .	-2617	**	221
3770 ± 210		-2570 -2968		216	4410 ± 60 4410 ± 60	"	-2767	"	222
3720 ± 250	"	-2959	11	- 110	4380 ± 70	II .	-2699 -2710	11	221
3620 ± 60 3550 ± 220	"	-2963		217	4370 ± 70	11	-2700	11	221
3510 ± 50		-2571 -2969		216	4350 ± 50	H H	-2615	"	"
3470 ± 240	"	-2969	11	216	4340 ± 60 4280 ± 70	0	-2704		"
3420 ± 60	n .	-2855	n	215	4270 ± 60	11	-2698 -2703	11	220
3160 ± 60	Middle Minoan	-2568	n		4240 ± 70	11	-2706	**	221
3070 ± 240	Middle Helladic	-2569	"		3950 ± 60	11 11	-2618	"	219
	GUATEMALA				3860 ± 60 3610 ± 70	"	-2701 -2620	"	220 219
2880 ± 190	Preclassic	P-3208	2	237		IRAQ			
2660 = 190	AD 500	-3105	11	"		IKAY			
1970 ± 50 1970 ± 50	6th century AD	-3100	"	236	3650 ± 40	01d Babylonian	BM-2110	1	68
1970 ± 170	AD 500 6th century AD	-3089 -3101		237	3640 ± 40	Ur/Agade	-2112	"	
1920 ± 40	Late Classic	-3062	11		3370 ± 40 3110± 200	Agade	-2109 -2113		"
1910 ± 60 1830 ± 170	AD 500	-3102	**	"			2113		
1830 ± 50	5th-6th century AD	-3085 -3098	"	235		IRELAND			
1800 ± 50	AD 737-775	-3095	11	236	3090 + 100 N	eolithic/Megalithi		2	101
1730 ± 50	< AD 724	-3096	11	237	3000 ± 100 M	eorrenic/megarithi	-65	2	191
1640 ± 50 1540 ± 210	7th-9th century AD	-3108	"	"	2470 ± 100	"	-63	"	
1450 ± 50	8th century AD AD 737-810	-3106 -3086	"	225	1240 ± 100	11	- 5 3	"	"
1440 ± 40	AD 724-737	-3087	11	235 236		TOBARI			
1310 ± 40	7th-8th century AD	-3084	11	235		ISRAEL			
1290 ± 40 420 ± 40	AD 737-810	-3088	"	236	2650 ± 110	1200 BC	P-3099	2	222
420 - 40	9th century AD	-3097	"	**	2550 ± 110	"	-3226	"	**
5970 ± 100	HUNGARY Neolithic F	ra-108	2			ITALY			
5970 ± 100	n n	- 95	11	192	11,040± 190	Upper Palaeolithic Mesolithic		,	100
5670 ± 100	11 11	- 77	0		10,790± 210	**	-4979	1	100
5650 ±110		- 76	"	"	9560± 140	11	-4982		11
	ICELAND				9030± 120 6720± 100	Nooliber	-5098	"	"
					6530± 260	Neolithic "	-4649 -4981	"	99 100
360 ± 40 330 ± 40		S-1577	2	270	6490± 140	0	-4650	11	99
330 = 40 Modern			"	"	6410± 150	11	-4980	"	100
		15/0			6400± 80 6330± 90	"	-5095	"	99
	INDIA				6290± 80	n	-4651 -5096		"
2580 ±200	No o 1 / · · · ·	n 2122			6290± 90	n	-5097	0	100
2120 ± 60	Early metallurgy E	2 M = 2 1 / 8	2	225 67	6120± 80		-4983	**	99
1920 ± 50	under the carry metallurgy E	-2149	11	68	2900± 400 2700± 100	Late Bronze age	UD-16 -58	2	293
1530 ±180	medieval	P-3124	2	225	2250± 100	m .	-58 -57	11	294
1390 ±200 1300 ±180	Neolithic-Iron Age	3122	n n	"	340± 30	Middle age	-33	**	"
750 ±370	Medieval Giant tortoise B	2122	1	68					
1odern	corcorse n	-2017	ñ	68 67		JORDAN			
fodern		-2065	"	67	3770 ± 70	Bronze age	P-3217	2	223
					3580 ± 70	"	-3219	ñ.	223
					3440 ± 60	11	-3216	"	"
					3350 ± 70	"	-3210	"	"
				1	3200 ± 60 250 ± 50	0.55.	-3209	"	"
				1	250 - 50	Ottoman	-3218	"	

477 ARCHAEOLOGIC SAMPLES

					IC SAMPLES	0.11	Camella		477
Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No. N	0.	Page
	LEBANON					POLAND (continue	d)		
2020 - 250	Late Bronze age	P-2859	2	224	2110 ± 110	Middle LaTène	LOD-132	1	118
3030 ± 250 2950 + 40	Late Bronze age	-2860	11	"	2070 ± 110		-136 -82	"	117
2950 ± 40 2930 ± 50 2480 ± 40	11	-2858	"	"	1920 ± 110 1920 ± 110	Roman	-70	11	116
2480 ± 40	He'llenistic	-2857			1860 ± 110	"	-76	"	113
	LYBIA			Ì	1860 ± 120 1830 ± 100	"	-3 -79	11	112
		UD 17	2	293	1800 ± 100	n .	-66	**	113
7630 ± 250 6500 ± 350	Neolithic	UD-17 -1	11	293	1780 ± 100	n n	-68	"	"
0300 330					1760 ± 100 1750 ± 120	"	-75 -67	11	
	MEXICO				1740 ± 120	**	-6	17	"
860 ± 40		LJ-5301	1	92	1720 ± 110	u u	-65 -7	11	"
000 10					1710 ±120 1690 ±110	"	-64		- 11
	PALESTINE				1670 ± 90	ii	- 4	11	"
8150 ± 300	Early equid	BM-2114	1	69	1640 ±120	"	-80	"	11
0130 - 300	Barry equi-				920 ± 90 920 ±100	Early Medieval	-124 -51	0	11 11
	PAPUA NEW GUINEA				900 ±110	II .	-56	"	"
Modern		BM-2093	1	69	870 ± 90	0 11	-125	"	11
Modern		-2094	**	"	860 ±120	11	-54 -59	0	11
Modern		-2138	"	"	840 ±110 840 ±120	11	-52	0	"
	DFDII				830 ± 80	11	- 5	11	
	PERU				800 ± 90	11	-126 -57	"	11
3600 ± 90	Formative period	VRI-812	3	448	770 ±110 760 ±110	u u	-57 -58	11	
3200 ± 90	11 11	-813 -811	"		760 ± 90	11	- 9	"	
3120 ± 80 2530 ± 80	Amazon/Secoya Indian	LJ-4653	1	95	740 ± 70	1) 11	-72 -55	11	11
2430 ± 40	"	-4652	"	"	730 ±120 660 ± 90	II .	-73	***	1.1
2290 ± 90	. /0	VRI-815	3	448 95	650 ± 90	II .	-74	"	,
2140 ± 50 2060 ± 90	Amazon/Secoya Indian	VRI-814	3	448	150 ± 45	Historic	- 2 - 1 4 1	"	1 1
1920 ± 60	Amazon/Secova Indian	LJ-4868	1	95	140 ± 90 140 ± 60	"	-71		1
1890 ± 40		-4787	"	"	130 ± 60	"	-81	**	,
1250 ± 60 1180 ± 60		-4871 -4870	11	"					
	odern Misassoc	-4872	"	"		ROMANIA			
	POLAND				4710 ± 110 4160 ± 90	Early Bronze age	LJ-5232 -5233	1	10
2,680± 230) Late Palaeolithic	LOD-111	1	117	4030 ± 90	Proper con/Otto	-5231	11	,
1,290 ± 280	"	-107	"	"	3500 ± 90	Bronze age/Ottoman	- 5202		
1,180 ± 220) "	-144 -148		119		SARDINIA			
),380 ± 220),320 ± 220		-142	11	**	7500 . 00	n 1	BM-2139	1	
0,260 ± 21) "	-143	"	11.7	7530 ± 80	Faunal survival	BM-2137		
9650 ± 22		-92 -149	11	117 119		SOUTH AFRICA			
9150 ± 21 8070 ± 18	0 Mesolithic	-150	0	"	1/10 + 100	Early Iron age	Fra-82	2	13
6560 ± 19	O Early Mesolithic	- 39	"	115	1410 ± 100 1360 ± 100	naily lion age	-85	ii.	1
6230 ± 17		-38 -151		120	1320 ± 100	"	-88	11	1
5870 ± 18 5850 ± 17	U	-127	11	117	290 ± 100	Late Iron age	-84 -83		1
5530± 22	0 Middle Mesolithic	-93			260 ± 100		-03		
5490 ± 14		-69 -145	"	113 119		SRI LANKA			
5430 ± 19 5400 ± 24	·	-61	**	116			Fra-91	2	1
5380 ± 18	0 "	-146	"	119	11,780 ± 220 8700 ± 220	Mesolithic "	-93	11	1
5170 ± 18		-60 -110	"	116 119	0,00-220				
5160 ± 18 4670 ± 38	U .	-110	п	112		SPAIN			
4630 ± 16	0 "	-147	"	119	3150 ± 300	Beaker	BM-1988	1	
4360 ± 21	0 "	-63 -20	"	116 112	2820 ± 40		-2140	**	
4320 ± 18 4250 ± 18		-62		116	2440 ± 50		-2064	3	4
2480 ± 10	0	BM-2130	***	7.0	1850 ± 100 1820 ± 80	Canarian Neolithic	-791	**	4
		-2104	, "	70 115	790 ± 70	"	-790	***	
2450 ± 13 2440 ± 13	O Early Iron age-LaT	:0-01 ans	3 "	1117	175 ± 30	Olive wood	BM-2001	1	
2420 ± 13	0 "	-48	3 "	11		SWEDEN			
2400 ± 13		-46 -90	,						
2390 ± 11 2390 ± 11	.0	-41	2 "	11	7480 ± 70		Lu-2202	3	4
2200 4 13	10. 11	BM-210	7 "	70	7030 ± 70 6910 ± 70	" Early Erteb∮lle	-2110 -2114		
2380 ± 11	O Farly Iron age-LaT.	ène LOD-4	5 "	115	6589 ± 70	Early Efterwire	-2113	"	
	10 "	-5: -5:			6430 ± 70	Mesolithic	-2111		
2340 ± 9	00 "	-13	3 "	118	6380 ± 70	Early Ertebølle Mesolithic	-2115 -2112	11	
2320 ± 12	0.0	BM-210		70	6370 ± 70 6270 ± 70	Early Ertebølle	-2109	- 11	4
2320 ± 12 2240 ± 10 2230 ± 20		LOD-13.	,	118	5990 ± 70	Ertebølle	-2116	11	4
2320 ± 12 2240 ± 10 2230 ± 20 2190 ± 1	10 Middle LaTène	-13			5850 ± 90		-2156		
2320 ± 12 2240 ± 10 2230 ± 20 2190 ± 11 2190 ± 10	10 Middle LaTène 00 "	-13 -13	4 "	11			_2100	11	
2320 ± 12 2240 ± 10 2230 ± 20 2190 ± 1	10 Middle LaTène 20 " 20 " 20 "	-13 -13	4 '' 0 ''	11	5390 ± 110	" Early Neolithic	-2198 -2212	**	4
2320 ± 12 2240 ± 10 2230 ± 20 2190 ± 11 2160 ± 10 2160 ± 10 2160 ± 1	10 Middle LaTène 00 " 00 " 00 " 10 "	-13 -13 -12	4 " 0 " 8 "	11	5390 ± 110 4960 ± 70 4560 ± 70	Early Neolithic Neolithic	-2212 -2101	11	4
2320 ± 12 2240 ± 10 2230 ± 20 2190 ± 11 2190 ± 10 2160 ± 10	10 Middle LaTène 10 " 10 " 10 " 10 " 10 "	-13 -13	4 " 0 " 8 " 7 "	11	5390 ± 110 4960 ± 70	Early Neolithic Neolithic	-2212 -2101	**	4

478			ARCI	HAEOLOG	IC SAMPLES				
Date	Culture or Period	Sample No.	No.	Page	Date	Culture or Period	Sample No.	No.	Page
	SWEDEN (continued)					THAILAND (contin	ued)		
4170 ± 76) Pitted Ware culture	111-2162	3	407	0700 . 50				
3880 ± 110	"	-2141	ü	**	2780 ± 50 2760 ± 170		P-2634 -2445	2	229
3880 ± 70 2440 ± 70		-2142	"	"	2680 ± 210	Iron age?	-2939	"	231
2020 ± 60		-2140 -2218	"	409	2670 ± 170 2600 ± 60	n - 2	-2723	"	234
1660 ± 50) " ""	-2205	"	408	2520 ± 50	Bronze age? Iron age	-2633 -2665		230 228
1640 ± 50 1630 ± 50		-2203	"		2680 ± 240	Bronze age?	-2398	"	230
1280 ± 70		-2204 -2135		406	2460 ± 210 2460 ± 170	Iron age Neolithic?/Bronze	-2941	"	232
1030 ± 45		-2213		409	2440 ± 50	Iron age	-2938	**	231
950 ± 60 950 ± 45		-2214 -2215	"	"	2440 ± 50	Bronze age?/Iron ag		"	233
630 ± 45	Historic	-2063	**	405	2410 ± 210 2340 ± 230	Iron age	-2450 -2940	"	230 232
620 ± 45 560 ± 45		-2061	"	"	2300 ± 50	"	-2664	"	228
440 ± 40	n n	-2060 -2058	11	404	2210 ± 190 2140 ± 60	"	-2944 -2416	**	231 233
410 ± 45		-2064	**	405	2110 ± 40	II .	-2244		228
320 ± 45 320 ± 45		-2062 -2066	"	"	2090 ±230 2090 ± 40	"	-2262	"	226
50 ± 45		-2059	***	404	2070 ± 40 2070 ±170	"	-2241 -2945		232
	SWITZERLAND				2040 ± 50	U U	-2694	11	233
	SWITZERLAND				1980 ±180 1920 ± 50	"	-2943 -2675	"	231
7890 ± 170		Fra-106	2	190	1900 ± 200	11	-2448		
3620 = 140	Medieval (contaminat	ed)-107	"	191	1870 ± 190 1720 ± 190	"	-2417	"	
	SYRIA				1720 : 190	TURKEY	-2406		226
28,800±1300 27,700±1400	Terqa/early 3rd m B(LJ-5031	1	97					
5700±1400		-5362 -4823	"	98	4280 ± 120 4250 ± 40	Early Bronze age	LJ-5234	1	101
4870 ± 90	11	-4822	**	97	4230 ± 60		-5237 -5238	"	
4660 ± 80 4220 ± 120	II.	-5053	"	"	4190 ± 80		-5235	"	11
4210 ± 80	"	BM-2036 LJ-4821		72 97	3910 ± 90	"	-5236	"	"
4180 ± 90	"	BM-2039	"	72		UNITED STATES			
4110 ± 70 3510 ± 80	Terqa/18th-17th	LJ-5052	"	97	California				
	century BC	-5055		98					
3460 ± 70 3420 ± 100	"	-4824	"		13,900 ± 500	Misassoc or contam		1	78
3310 ± 35		-5054 BM-2029	0	7.2	8650 ± 110 8600 ± 110	LaJolla Indian "	-4609 -4614	11	81
3140 ± 60 3000 ± 35		-2040		"	8450 1 180	H	-4610		0
3000 ± 35 2925 ± 45		-2035 -2032	"	"	8420 ± 100 8290 ± 100	11 11	-4613	"	
2720 + 230		-2037	11	11	8030 ± 100	u u	-4607 -4611	"	8 2 8 1
2700 ± 40 2415 ± 40		-2030 -2034	"		7720 ± 100 7400 ± 100	" "	-4615	"	82
2390 ± 45		-2034	**		7230 ± 70	Early Milling	-4612 -5159	"	81 86
2200 ± 50		-203	"	"	7110 * 70	"	-5158	"	"
	THAILAND				6820 ± 100 6770 ± 90	n n	-5029	"	85
7100 . 70					6770 ± 90	Early Milling/	-5161		
4830 ± 310	Mesolithic?/Neolithi Neolithic?	c P-2423 -2265	2	230	6650 ± 40	Late Prehistoric		**	84
4360 ± 240	"	-2419	11	226	6570 - 110		-5485 -4875	"	90
4750 ± 240 4590 ± 300	"	-2452	"	229	6520 [±] 70	Early Milling	-5157	0	86
4250 ± 290	**	-2266 -2263		227	6490 ± 110 6460 ± 80	LaJolla Indian	-4616 -5028	.,	82
3900 ± 70 3790 ± 240	Bronze age?	-2407		232	6400 ± 70	Early Milling	-5156	11	85
3650 ± 220	Neolithic/Bronze ag Bronze age	e? -2242 -2456		226	6280 ± 100 6270 ± 70	" Early Milling/	-5030		"
3610 ± 230	Iron age	-2247	"	228		Late Prehistoric	-5299	"	83
3580 ± 240 3570 ± 230	Neolithic/Bronze ag	e? -2451 -2245	11	230	6200 ± 70 6200 ± 70	Early Milling	-5155	11	8.5
3570 ± 230	TI .	-2271		228	6160 ± 50		-5160 -5665	"	88
3510 ± 210 3360 ± 200	Bronze age?	-2726	"	232	6040 ± 40		= 5668	n	11
3270 ± 230	**	-2727 -2261		234	6000 ± 70	Early Milling/ Late Prehistoric	-5483		84
3270 ± 180 3240 ± 50	n n	-2454		229	5580 ± 80	Laguna Beach India	n -5292	11	84
3240 ± 210	" "	-2732 -2405	"	233	5460 ± 100 5390 ± 90		-4875	11	90
3240 ± 50	"	-2457	n	"	5360 ± 100		-4877 -4876		
3220 ± 200 3170 ± 300	11	-2724	11	234	5140 ± 60	Laguna Beach India	n -5293		80
3130 ± 50	11	-2731 -2691	n .	232	5090 ± 100 5090 ± 100	Laguna Beach India	-5002 n -5294	"	78
3130 ± 210 3120 ± 220	"	-2264	11	227	5040 ± 90	"	-4879	n	"
3090 ± 50	"	-2240 -2686	"	226	5040 ± 60 4620 ± 60	"	-5295	"	"
3080 ± 180	"	-2725		234	4530 ± 40		-5297 -5298	"	80 81
3050 ± 60 3040 ± 190	n n	-2446 -2730	"	232	4500 ± 400	San Clemente I. Indi:	an-4172	"	86
3040 ± 50	**	-2246	п	234	3930 ± 80	Laguna Beach India: LaJolla Indian	n -4878 -4608	"	80
3020 ± 40 3000 ± 200	"	-2243	11	11	3600 ± 110	"	-4565		8 1 9 1
2950 ± 210	11	-2404 -2272	"	229	3600 ± 110	San Clemente I Indi	-4566	"	"
2860 ± 250	Neolithic?/Bronze ag		n	233	2730 [±] 90	San Clemente I. India	an-5411 -5037		86 87
2830 ± 50 2800 ± 50	Iron age?	-2455		229	2640 ± 70		-4811	0	77
2000 30	Bronze age	-2668	"	230					

ARCHAEOLOGIC SAMPLES 479

1500 = 70	Date	Culture or Period	Sample No.		Page	Date	Culture or Period	Sample No.	No.	Page
100 70 Lagune Reach Findian LL-5196 80 2140 210 5an Clemente I. indian-5303 80 180 Late Prentstoric 5267 81 220 230	Ū	NITED STATES (continu	ed)			<u>u</u>	NITED STATES (conti	nued)		
2240 270 Sam Clemente I. Indian-S00 Act 10	California	(continued)				Oregon				
2340 70 San Clemente I. Indian-3006 " 200 10 10 10 10 10 10 1	2540 ±21	O San Clemente I. Ind	ian-5303		87		Late Prehistoric/			76
2201 70 San Clemente I. Indian-3306 1 1 2 2 2 2 2 2 2 2						300 ± 30			u	**
1440 1.00	2340 ± 7	O San Clemente I. Ind						-5300	"	"
1000 2-0				11	87	South Dakota				
1000 70						1750 + 70	Late Archaic	WIS-1496	1	136
1400 70	1600 ± 7	0 Luiseno Indian	-5427		83	1560 ± 70	11	-1495	11	"
1410 70							"			"
1200 # 00	1410 ± 7	0	-4569		84					
1280 0						Wisconsin				
1000 2 60 San Clemente I. Indian-5640 87 880 120	1280 ± 6	O San Clemente I. Ind			88					136
1000 1							Oneota		2	260
900 ± 50	1000 ± 6	O San Clemente I. Ind			87	840 ±120		-799		
Second S										"
Second S						500 ± 70	Late Woodland	WIS-1479		137
820 ± 50										
Record Page Page				11						11
## Standard		0	-4867			< 200	"	-1478	"	"
600 ± 80 Late Prehistoric				11			USSR			
Section Sect						2210 + 160		1.00=4.9	1	116
Section Sect				**		3310 3140	Bronze age	LUD-49	1	110
Second S							TURKMENIA			
## 460 : 40				0	0.3	6140 ± 80	Early Neolithic			
100 2 50						10(0 + 60			2	225
380 ± 60						4860 ± 60				224
330 1 100							Early Neolithic			225 224
310 ± 50 Kumeyaay Indian				"			11			225
300 - 4.00	310 ± 5	0 Kumeyaay Indian	-4648		92					
280 ± 60							TUGUSLAVIA			
250	280 ± 6	O Kumeyaay Indian	-5134		92	> 37,000				450
240 ± 50									11	451 449
230 ± 60 Late Prehistoric -4998 " 79	240 ± 5	0 "	-4997			24,000±3300	"			451
220 ± 50	240 ÷ 4 230 ± 6	0 Late Prehistoric				17,500± 850 12.200± 250				431
180 ± 30 San Clemente L Indian=5641 88 5620 ± 130	220 ± 5	0	-5499		7.7	12,000± 200	Late Glacial	- 863		449
110 ± 70										450 451
111 11 11 11 11 11 11	110 ± 7	0 Late Archaic	-4852			5340 ± 120		-1045		"
111inois	90 ± 7	0 "	-4853	"						11
1670 ± 70	Illinois					5050 ± 190		- 983		450
970 ± 70 Effigy Mound Culture -1493 " 136	1670 + 7	O Middle Woodland	WTS=1/492	1	135		Eneolithic			452
Section Sect						2950 ± 110		- 984		450
S 500 ± 460	Kontucky									452
8200: 460						2330 ± 140		n -1148	"	(= 1
7570 ± 630										451 452
730 t 150 " -130 " 435 1590 t 130	7670 ± 63	30 "	-249		436	1970 ± 100		- 893		450
7110±250 " -121 " 440±100 " -978 " 7110±250 " -252 " 436 440±100 " -978 " 7100±600 " -252 " 436 440±130 " -1089 " 1300±160 Woodland -254 " " 1060±100 Mississippian -306 " " Modern Woodland -250 " " Modern Woodland -253 " " Minnesota 390±70 Kathio Phase WIS-1502 1 136 New York 200±35 Iroquois BM-2121 1 73		10						-1136 - 712	"	452 449
100 100	7110 ± 25	0 "	-121	11	11	440 ± 100	**	- 978	"	450
1300 ± 160		10				420 ± 130	11	-1089	"	451
1060 : 100	1300 ± 16	0 Woodland	-254	11		1				
Minnesota 390 ± 70 Kathio Phase WIS-1502 1 136 New York 200 ± 35 Iroquois BM-2121 1 73	1060 ± 10	00 Mississippian								
390 ± 70 Kathio Phase WIS-1502 1 136 New York 200 ± 35 Iroquois BM-2121 1 73		woodland								
New York 200 ± 35	Minnesota									
200 ± 35 Iroquois BM-2121 1 73	390 ± 7	0 Kathio Phase	WIS-1502	1	136					
	New York									
	200 ± 3	35 Iroquois								
125 ± 40	125 ± 4	10 "	-2122	"	"					

Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Pag
вм	0.6.1.		BONN			DE			DE		
-2115 -2661	26/1	73	-2447	26/2	197	- 119	26/2	171	- 202	26/2	178
-2001			-2448 -2449			- 120	"	"	- 203	"	
BONN			-2450	11		- 121 - 122			- 204 - 205	0	11
-2255	26/2	197	-2459	**	"	- 123			- 205 - 206		
-2256		"	-2460	11	**	- 124	11	**	- 207	**	
-2257	"	"	-2461	**	"	- 125		0	- 208	11	
-2258	11		-2463		"	- 126	11	11	- 209	**	- 11
-2259		"	-2467	.,	"	- 127	11	tr.	- 210	**	179
-2260 -2261			-2468		"	- 128		"	- 211		
-2262		"	-2469 -2475	11		- 129 - 130		172	- 212		"
-2263	11	11	-2476	**	.,	- 130 - 131		"	- 213 - 214	"	"
-2264		"	-2477	**	11	- 132			- 214 - 215		
-2265	11	"	-2478	11	u u	- 133		11	- 216	.,	
-2266	0	"	-2483	11	"	- 134	11		- 217	11	
-2267	"	"	-2484	11		- 135	"		- 218	**	
-2268	"	"	-2485	0	0	- 136	11		- 219	11	
-2269 -2270			-2486 -2487	"	"	- 137	"	**	- 220	"	**
-2270		11	-2487			- 138		"	- 221	"	180
-2272	**		-2489		**	- 139 - 140	0	"	- 222	"	"
-2275			-2490			- 140 - 141			- 223	"	"
-2276	11		-2491			- 141		173	- 224 - 225	"	
-2277	11		-2492	**		- 143	11	**	- 225 - 226		
2278	0	11	-2499		**	- 144	"	11	- 226		
-2279			-2500	"	11	- 145	11		- 228		
-2280	"	11	-2501	11	"	- 146	11		- 229	**	**
2281	"	"	-2502	"	"	- 147		11	- 230	11	
2282	"	.,	-2503			- 148	11		- 231	**	"
-2283 -2287			-2504	"	"	- 149	11		- 232		"
-2288	11		D.II			- 150	"	11	- 233		181
2289			DE - 69	26/2	166	- 151 - 152			- 234	"	"
2367	u	199	- 70	20/2	100	- 152 - 153		174	- 235	"	"
2368	u u	111	- 71			- 154		1/4	нам		
2370	**	11	- 72	**	167	- 155	**	11	- 635	26/2	198
2372	11	"	- 73	"		- 156	11	11	- 636	20/2	170
2372	"	m .	- 74	II .	**	- 157	11	0	- 637	11	11
2375	11	11	- 75	11	"	- 158	"	0	- 638	0	**
2376		"	- 76	11		- 159	**	**	- 639		"
2378		200	- 77 - 78		"	- 160		11	- 640	"	**
2380	11	200	- 78 - 79			- 161 - 162			- 641	"	11
2381			- 80	11		- 162 - 163			- 642 - 643	"	
2382	11	**	- 81			- 164	**	175	- 643 - 644		
2383	0	**	- 82	11	168	- 165	11	1/3	- 645	11	
2384	**		- 83	**	n	- 166	11		- 646		**
2385	"	11	- 84	"		- 167	"	**	- 647	11	**
2400		197	- 85	"	11	- 168		**	- 648		***
2401		"	- 86 - 87		"	- 169			- 649	11	
2402	0		- 87 - 88	"		- 170		"	- 650	11	"
2404	**		- 89	0		- 171 - 172		"	- 651	"	"
2405		**	- 90	17		- 172 - 173			- 652	"	"
2406	11	"	- 91	0	11	- 174			- 653 - 654		
2407	11	11	- 92	**		- 175		11	- 654 - 655		
2408	"		- 93	"	169	- 176		176	- 656		199
2409		"	- 94		11	- 177			- 657		111
2411	"	"	- 95		"	- 178		"	- 658	11	
2412		11	- 96	"	0	- 179	"	н	- 659	11	
2413	**	"	- 97 - 98			- 180	"	"	- 660		"
2415			- 98 - 99			- 181 - 182			- 661		"
2416	"	11	- 100		11	- 182 - 183			- 662 - 663	"	"
2417			- 101	11		- 184	**				"
2419	11	"	- 102		"	- 185	**	n n	- 664 - 665		- 11
2420	"	11	- 103		"	- 186	0	**	- 666	n	
2421	**	11	- 104	"	н	- 187	0		- 667	11	"
2422	0	"	- 105	"	170	- 188	11	177	- 666		
2423 2425	"	"	- 106	11 ()		- 189		n .	- 667		"
2425		"	- 107 - 108	"	"	- 190	"	0	- 668	"	**
2420			- 108 - 109		,,	- 191	"		- 669	"	
2428	"		- 110		**	- 192 - 193	"	"	- 670 - 671	0 0	"
2929		11	- 111			- 193 - 194		"	0,1	"	
2433	"		- 112	"	11	- 194 - 195			- 672 - 674	"	
2438	0		- 113	11	**	- 196			- 674 - 675		202
2439			- 114	"		- 197	**	**	- 676		
2441	"	"	- 115		u .	- 198			- 677	0	**
2442	"	"	- 116	"		- 199	**	178	- 678		11
2443		"	- 117 - 118	"	171	- 200	"	11	- 679	"	**
2445						- 201			- 680		11

Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Pag no
HAM			HAM			нам			HAM	24.40	
- 681 - 682	26/2	202	-1035	26/3	368	-1329	26/3	371	-1443	26/3	378
		"	-1178		381	-1330			-1445	"	"
- 684 - 685			-1179 -1180			-1333 -1334	11		-1446 -1447		
- 686		11	-1204			-1335	11	**	-1447		**
- 687	11	11	-1205			-1336	11	н	-1451	**	"
- 690		11	-1206		"	-1337	11	372	-1453		"
- 692		n n	-1207	"	11	-1338	"	"	-1454		
- 694		"	-1208	"	"	-1339	"		-1455		
- 696 - 697			-1209 -1210		382	-1340 -1341			-1456 -1457		
- 697 - 698	11	**	-1210		302	-1341	11	**	-1458	0	11
- 699			-1211			-1343	11	11	-1459		- 11
- 700	11	"	-1213	**		-1346	11	11	-1461	0	- 11
701		"	-1214	"		-1347	11	**	-1463	"	11
702	11	11	-1222	"	368	-1348	"	"	-1464		**
703		204	-1223		"	-1349	"	"	-1473		"
704	"	"	-1224	"	"	-1350	.,		-1474	"	
705 706		"	-1225			-1351			-1475		
- 706 - 707			-1226 -1227			-1352 -1358			-1476 -1477		
- 708	11	**	-1229			-1360		11	-1478	11	- 11
- 709		11	-1233	11	11	-1361		**	-1479	0	- 11
711	0	н	-1234		"	-1362	11		-1480	**	11
719		203	-1235		u u	-1363	"	**	-1481	17	37
720	11	11	-1236		11	-1364	11	11	-1486		11
722		"	-1237		369	-1365		"	-1487		"
· 723 · 724	"	"	-1239	"	"	-1366 -1367	"	373	-1488 -1489	.,	"
			-1240					3/3		0	
725 726			-1247 -1248		0	-1369 -1371		11	-1490 -1492	11	11
731		204	-1249			-1372	11	11	-1493	0	
734	**	203	-1251	**	11	-1373	0		-1494	**	"
735	0	"	-1261	11		-1374	**	"	-1495		н
736		"	-1264	11		-1375	"	"	-1497	11	**
737	· ·	11	-1265	"		-1376	11	"	-1500		11
739		n 11	-1266	11		-1375		"	-1501		
- 740 - 741		"	-1267	"		-1378			-1502 -1503		
741 742		11	-1268 -1270			-1379 -1380		11	-1503		11
- 742	11	"	-1271	**	0	-1393		201	-1505		
- 744		11	-1272	"	11	-1394	26/2		-1506	11	**
- 745	0	"	-1274	**		-1396	11		-1511	11	11
746	**	**	-1275		**	-1397	"		-1512		"
747	17	11	-1276	"	370	-1398		"	-1513		"
748	11	"	-1277	"	"	-1390	"	"	-1514	"	
749		"	-1278			-1400			-1500 -1515		,,,
750 751			-1279 -1283			-1401 -1402			-1515		
755		**	-1285	11	11	-1402	11	11	-1522		
758	11	н	-1286		11	-1404			-1523	**	3.8
759	11		-1287	**		-1405	"		-1524	**	11
826		200	-1289	11		-1406	0		-1530	"	"
827	**	"	-1290	"	"	-1407	26/3	374	-1535	11	"
828		0	-1292	"	"	-1408	"	11	-1537		
829	"	"	-1295	"	"	-1409	"	"	-1538		
830			-1296 -1298			-1410 -1411	"		-1539 -1540		
832	11		-1298	"		-1411	11	11	-1541		"
833	**	"	-1302	**	11	-1412		n .	-1542		"
834	**	"	-1303	***		-1413	"	"	-1543		"
835		11	-1304	"	"	-1414	"	"	-1544	"	
836	**		-1305	"	"	-1415	"	375	-1545		"
837	**		-1306	"	"	-1416	"		-1546	"	"
838	"	"	-1307 -1308	"		-1417 -1418	"	u u	-1547 -1540		38
839	**	201	-1308 -1310			-1418	"		-1540 -1550		20
841		201	-1310	11		-1419			-1551		***
1012	26/3	380	-1312		371	-1421	"	**	-1552	"	***
1013		11	-1313	"		-1422	"	"	-1553	"	"
1014			-1314	11	"	-1423	"	11	-1554	"	
1015	"		-1315	11	"	-1424	"		-1556	"	"
1016	"	"	-1316	11	"	-1425	"	376	-1666		.,
-1017 -1018	"	"	-1317 -1318	"	"	-1426 -1427			IRPA		
-1018 -1020			-1318 -1319			-1427			- 451	26/3	38
-1020			-1319	11	"	-1429		"	- 454		
1021		367	-1320	11	11	-1430	11	"	- 455	11	38
-1030			-1321		11	-1433	11	n	- 456		"
-1031		"	-1323		"	-1434	11	u .	- 457	0	"
-1032	"	н	-1324	11	"	-1440	11	378	- 458		
-1033			-1326		"	-1441 -1442	"	"	- 459	"	38
-1034	***	**	-1327	11	11	1 1 4 4 2	**	**	- 460	**	**

Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Pag no
IRPA			LJ			LOD			LP		
- 461	26/3	388	-4965	26/1	105	- 44	26/1	123	- 57A	26/1	131
- 462		"	-4696	"	"	- 47	"	122	- 57B	"	
463	"	"	-4729	11	"	- 77	11	123	- 58		
464	"	11	-4730	**	"	- 78	"	"	- 59	"	"
465		0	-4745	11	11	- 83	"	0	- 60	"	
- 466 - 467	,,		-4746			- 84	"	"	- 61		
407	"	389	-4747		"	- 85	"		- 63	"	132
468			-4748 -4749			- 86 - 87		124	- 64 - 66A		
- 469 - 470			-4749	11	108	- 87 - 91	"		- 66A - 66B		130
- 470		n	-4750	**	100	- 91 - 94		0	- 67A		
- 487		384	-4751	11		- 95	11	11	- 67B		
- 488	11	385	-4970	**	105	- 96	**	11	- 68A	**	131
- 489	11	"	-4972	11	"	- 98	11	122	- 68B	11	10.
- 506		386	-4973	**		- 99	11	121	000		
- 512	11	387	-4974	11	17	- 103	**	124	Lu		
- 524	11	385	-4975	11		- 104	**	11	-2069	26/3	402
- 527		386	-5059	"	106	- 105	11		-2070	"	
- 528		387	-5060			- 106	11	11	-2071	11	
- 529		385	-5061	u u	"	- 108		11	-2072		401
- 530	"	"	-5067	"	105	- 109	"	125	-2073	"	403
- 531		11	-5068	"	"	- 115	**	"	-2074		402
- 532	"	11	-5069	"	"	- 116	"	"	-2075	11	403
- 533		386	-5091		107	- 117	"	н	-2076	"	402
- 534		"	-5092	"		- 118		**	-2077		. "
- 535		11	-5093			- 119		121	-2078	11	403
536		"	-5140	"	106	- 120	"	125	-2079		"
537			-5182	"		- 121	"	"	-2080	11	"
- 538 - 539		385	-5193		109	- 122			-2081	"	"
,,,	"	386	-5194	"	108	- 139		121	-2082	"	
		"	-5195		109	- 140			-2083	"	404
- 541 - 542			-5196 -5197		108	- 152		126	-2084	0	
- 542 - 543		388	-5197 -5198		109	- 153 - 154			-2085		403
- 544	11	387	-5209	11	106 109	- 154 - 155		11	-2086 -2087	,,	404
- 545		307	-5210	0	109	- 156	0	11	-2087	**	403
- 546			-5213	11	0	- 136			-2089	11	403
547	11		-5288		105	LP			-2090	**	
- 548	11	11	-5289	n	103	- 3	26/1	133	-2093	11	402
549	11	11	-5290			- 4	20/1	133	-2094		401
- 550	11	**	-5362		107	- 5			-2095	**	701
551	**	0	-5363	11	11	- 6	11	11	-2096	**	- 11
- 552		"	-5364	11	0	- 7	11	128	-2097	**	402
- 554	"	388	-5517		108	- 8	11	129	-2098	**	"
556	11	**	-5518	11	0	- 9			-2099	11	"
555	11	"	-5584		104	- 10	11	133	-2101		398
- 567		385	-5585	"	u u	- 11	0	"	-2103	"	393
- 568	11	"	-5586			- 12	**	11	-2104	"	
			-5587	"		- 13	"	**	-2105	"	"
GS			-5602	11		- 14	11		-2106	"	
16	26/2	207	-5603	"		- 15			-2107	"	394
2.7	11	208	-5613		0	- 16	11	"	-2108		11
36		207	-5614	11		- 17			-2119		
· 37	"		-5615	"		- 20	.,	"	-2120	11	"
		208	-5616			- 21	.,		-2121		
46 51	11		-5633 -5634			- 22 - 23	.,		-2122		
55		211	-5634 -5635	11		- 23 - 24	11		-2123 -2124	11	11
62		210	-5636	11		- 24	11	0	-2124		- 11
63	11	209	-5669	11	102	- 26	11	11	-2126	11	395
64	"	210	-5670	11	102	- 27			-2127	н	400
6.5		**				- 28	11	0	-2128	"	
66	u	"	LOD			- 29	11	0	-2129	н	- 11
6.7	11	п	- 21	26/1	120	- 30	11	11	-2130	"	- 11
7.2	11	208	- 22	"	"	- 31	***		-2131	"	395
7.3	"	210	- 23	n		- 33	11	129	-2132	11	**
74	"		- 24	u	**	- 35	11	0	-2133		"
7.5	"	209	- 25		121	- 36	11	11	-2136	"	399
76	"		- 26	"		- 39		0	-2137	11	
7.7	"		- 27	0	11	- 40	"	11	-2138	"	
7.8	"		- 28		"	- 41	**		-2139	"	"
79			- 29	"	122	- 42		0	-2157	"	395
80	"	"	- 30			- 43	"	"	-2158		
81	"	"	- 31	11	11	- 44	"	129	-2161	"	397
82			- 32			- 45	"	**	-2161A		"
8.5	"	208	- 33		"	- 46	"	130	-2162	"	"
89	"	210	- 34	11	11	- 47	"		-2164	"	393
96		210	- 35		123	- 48		133	-2165	"	"
97			- 36			- 49	"	130	-2166	"	
. 98		211 208	- 37 - 40		122	- 50		**	-2167	"	401
100		208	- 40 - 41			- 50 - 51 - 52			-2168	"	
100			- 41	n	123	- 52 - 54	u u		-2169 -2170		
			4.0								

Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.
Lu			QC .			QC			QC -1389	26/3	421
-2182	26/3	396	- 586	26/3	429	- 797	26/3	427	-1399	20/3	421
-2183		"	- 587	"	**	- 798 - 799		"			
-2183A -2184		403	- 588 - 593	"		- 801			S		
-2185	11	403	- 593 - 594	ï.	"	- 802	"	"	- 224 - 226	26/2	241
-2186	11		- 595	11	428	- 804	"	426	- 226 - 230	ii.	
-2187	"	402	- 596-1			- 805		"	- 231	**	
-2188	11	11	- 596-2	"	"	- 807 - 808		425 430	- 446	**	
-2189 -2191		403	- 597	"	"	- 809	n	430	- 482	"	242
-2191	11	398	- 598 - 599			- 810	"	418	- 483	"	"
-2193		3,0	- 599 - 600		430	- 811		"	- 498 - 499		
-2194	11	"	- 601			- 812 - 813	"	419	- 579	11	
-2194	"	**	- 602	0	427	- 813 - 814	,,	428	- 914	11	**
-2196	"	399	- 603		"	- 815	"	427	- 915	"	"
-2197 -2199		400	- 604 - 609	.,	428	- 821		430	- 916	"	
-2200	**	400	- 610	11	429	- 822		"	- 949 -1046	"	243
-2201	"	404	- 611		428	- 825		0	-1045		244
-2206	"	398	- 613		429	- 826 - 827			-1070	"	- 11
-2207	"	396	- 679		423	- 828	**	429	-1223	11	"
-2208	"		- 681	11	"	- 842	"	424	-1227	"	244
-2211 -2216		397	- 682 - 686	.,		- 844		"	-1332	"	243
-2216A	"	11	- 687		412 423	- 845	"		-1369 -1375	"	244
-2217	"	"	- 688	11	423	- 846		11	-1376		245
– 2 2 1 7 A	"	"	- 689	"	422	- 847 - 848		n	-1377	11	246
D			- 690	"	413	- 849	"	0	-1378	"	**
P -2587	26/2	238	- 691 - 692			- 850	11		-1379	"	"
-2588	20/2	230	- 693	11	414	- 851	11		-1380	"	
-2970		**	- 694	11	413	- 852		"	-1381 -1382		245 246
-3128			- 695	**	11	- 853 - 854	"	11	-1383		244
-3129			- 696	11	11	- 854 - 855		u u	-1384	11	245
-3131	"	"	- 702	"	429	- 856		426	-1385	"	**
QC			- 703 - 704	"		- 857		120	-1386	"	"
- 186	26/3	416	- 704 - 705		412	- 859	"		-1387		
- 187	11	415	- 706	11	412	- 860	"		-1388 -1389		246
- 189	11	414	- 709	11	418	- 861	11	0	-1390		244
- 190	11	423	- 710	"	11	- 862 - 863			-1391		244
- 211	"	419	- 711	"	419	- 896		424	-1392		245
- 221A - 221B		418	- 712	"	418	-1010A&	в "	425	-1393	"	"
- 221B		413	- 718 - 719		419	-1011	"	"	-1459	"	246
- 227	n	113	- 721	**	416	-1012A&	В "	11	-1460 -1461	0	
- 228	"	417	- 722	"	"	-1013		11	-1462		247
- 261	11	420	- 723		"	-1014 -1014B&			-1463A	**	
- 262 - 264	"	419	- 729 - 730	"	417	-1015A		11	-1463B	"	"
- 265	11	418 420	- 731		419	-1016	**		-1464	"	"
- 266		420	- 732	11		-1017A&		"	-1465 -1466		
- 267			- 733			-1019		415	-1467	11	248
- 268		421	- 734	"	"	-1020 -1021			-1468	**	
- 269	"		- 735	"	"	-1021		414	-1969	11	248
- 274 - 276		415	- 736		"	-1023		415	-1470	11	"
- 295		413 420	- 737 - 738			-1024		11	-1471		"
- 306	n	420	- 736 - 739		420	-1025	11	422	-1472 -1473	"	249
- 340		412	- 740	**	11	-1026	"	421	-1473 -1474	11	249
- 341			- 741	**	"	-1027 -1028	"	"	-1475	11	"
- 342	"	11	- 742	"	"	-1028		"	-1479	0	
- 343 - 469	,,		- 763 - 764	"	414	-1039	**	413	-1480	"	"
- 469 - 505	11	417	- 764 - 765			-1040	п	414	-1481	11	11
- 506	11	11	- 766		415	-1042	**	413	-1485 -1486	"	250
- 509	TT .	11	- 767	н	"	-1043	11	417	-1486		243
- 510	**	416	- 768	"	"	-1082 -1083 A&		423	-1489	11	250
- 511 - 512	11	() 7	- 770	"	418	-1083 Au		**	-1490		
- 512 - 565		417	- 771 - 772	"	"	-1182	11	422	-1491	"	"
- 566	11		- 772 - 773			-1183	0	"	-1492	"	"
- 567		416	- 774	**		-1184		н	-1494 -1496	"	"
- 568	"	**	- 775	11	415	-1315	11	11	-1497	0	0
- 569	"	**	- 776	"	11	-1321 -1322	"	422	-1498		11
- 573	"	417	- 177		0	-1322 -1324		"	-1499	11	"
- 574		414	- 778	11 11	416	-1324	п		-1500		11
- 575 - 576	"	0	- 792 - 793A	.,	426	-1329	11		-1501	11	
- 577	11	415	- 793A - 793B		427	-1330	"	421	-1502	"	251
- 583	n	428	- 794	11	"	-1374	"	422	-1503 -1504		
- 584	11	429	- 795	**	11	-1380 -1381	"	421	-1505	**	11
- 585		428	- 796		**						11

Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.	Sample no.	No.	Page no.
					***************************************	117.2			7		
S	26.62	251	UD	0 ((0	205	WIS	27.71	140	Z	26/3	454
-1555 -1556	26/2	251	- 60 - 63	26/2	295	-1438 -1439	26/1		-1049 -1072	26/3	454
								144		**	457
-1503					296	-1440	0		-1073		45/
-1557			- 65			-1441		142	-1074		
-1558	,,		- 68			-1442	11	144	-1075	**	
-1559	11					-1443	11	142	-1076	0	456
-1561		250	VRI			-1444		145	-1077		
1561			- 570a	26/3	442	-1445		144	-1078		
1563		251	- 644		441	-1446			-1079		457
-1564	",		- 645	"	"	-1447		143	-1080	"	
1565		251	- 646			-1448		144	-1086	"	453
1566	11	"	- 647	"	"	-1449		143	-1096	"	456
1567			- 648	11		-1450	0	139	-1097	"	
1568	11		- 699	"	443	-1451	11	143	-1098		457
1570		252	- 700	11	**	-1452		137	-1099	"	456
1571		247	- 701 - 702	**	"	-1453	11		-1103	"	457
-1572	**	246	- 702		**	-1454		143	-1104	"	
1588	"	252	- 703	11	**	-1455			-1105	"	458
-1616		253	- 704	11	11	-1456		11	-1107	11	457
1658		252	- 706	0	11	-1457	0	11	-1108	11	**
-1659	0	243	- 708	11	444	-1458	11	**	-1109		456
-1660			- 709		11	-1459	11	"	-1110		
-1743		**	- 710	***	0	-1460	**	141	-1137	11	458
1744	11	"	- 711	11	11	-1461		171	-1142	"	430
1745	0	**	- 711			-1461	**	138	-1142	**	453
1746	. 0	11	- 713		445	-1463		130	-1149	11	457
-1772		253	- 714	11	444	-1464		140	-1154	**	453
1773		233	- 714 - 715	11	444	-1465	11	140	-1154		433
1774	**	**			445	-1466				11	11
	11	254	- 753		443	-1466	"		-1156		
-1782 -1801			- 754 - 755			-1467		138	-1157		454
-1801		253		"	446	-1468		141	-1158	.,	
1802			- 756	"	442	-1469		1 4 4	-1164	.,	455
1803			- 757			-1470		139	-1165	"	
-1808	"	254	- 758	**	441	-1471			-1166		
-1809			- 786	11	444	-1472	"		-1167		"
-1885		11	- 787	"		-1473	**		-1182	11	459
-2035		0	- 794	**	445	-1474			-1184	**	460
-2055		243	- 795	"	11	-1475	0	"	-1185	**	
-2166	"	244	- 796	11		-1481		140	-1189		455
-2183		254	- 799	11	444	-1482	0	11	-1191	0	
-2184	"		- 800	**	445	-1483	**	137	-1192		
-2229	10	11	- 805	11	442	-1484	"	138	-1193		***
-2234	- 11	**	- 806		**	-1485	**	11			
			- 807	**	**	-1486	**	139			
SFU			- 808		**	-1487					
- 206	26/3	437	- 819		446	-1488	"				
- 207	11	438	- 819 - 820		440	-1489		0			
- 208		750	- 821	.,	445	-1490		140			
- 209		**		11	441	-1491		141			
- 210		**	- 822	.,			"	145			
- 211		11	- 830 - 834	**	446	-1498		145			
- 211			- 834			-1499	"				
			- 872		446	-1500					
- 246 - 321		437				-1501	"	146			
		439	WIS			-1503	"				
322	"	"	-1408	26/1	146	-1504	"	145			
323	"	"	-1409			-1505					
324		"	-1410	"	11	-1506		11			
325		"	-1411		н	-1507	11	11			
326			-1412	"	u u	1					
327		н	-1413		11	Z					
328	"	"	-1414	"		- 779	26/3	454			
329			-1415	**	"	- 868	11	458			
330	"	11	-1416	"	"	- 878	"	459			
331		11	-1417	**	140	- 892	**	452			
332	"		-1418	**	141	- 896	"	453			
333	11	11	-1419	**	11	- 897	11	n			
334	"	11	-1420	"		- 898	11	458			
335	o o	**	-1421		138	- 962	11	750			
336	11		-1421	"	144	- 973		**			
337	17	11	-1422	11	144	- 974	**	459			
338	11	440	-1423		141	- 975	11	439			
339		440			142	- 975 - 976					
- 339		437	-1425	,,	142			ü			
3.0		43/	-1426	"		- 977					
- 345			-1427		145	- 979	"				
			-1428	"		- 981		458			
I D			-1429	"	142	-1013		459			
- 10	26/2	295	-1430		**	-1014		11			
- 41		294	-1431	"	143	-1015	**	453			
- 42	"	17	-1432	"	142	-1016					
- 43		295	-1433		144	-1021	11	454			
- 44	"		-1434		142	-1046	0				
- 45	11	**	-1435	11	144	-1047	10	**			
4.3											
- 45 - 54			-1436	**	142	-1048		11			

American Journal of Science

PUBLICATIONS

SPECIAL VOLUMES

- Studies in Metamorphism and Metasomatism (Orville v.) contains 24 papers by outstanding petrologists, 625 p., v. 283-A, \$50.00 per copy prepaid
- The Jackson Volume in 2 pts: Part 1 contains Cumulus processes and layered intrusions (5 articles) and Ophiolites and related rocks (10 articles). Part 2 contains Mantle xenoliths and their host magmas (11 articles) and Hawaiian and other oceanic volcanism (8 articles). 34 articles (868 p.), v. 280-A, 1980. \$50.00 per copy prepaid

Summary and critique of the thermodynamic properties of

- rock-forming minerals by Harold C. Helgeson, Joan M. Delany, H. Wayne Nesbitt, and Dennis K. Bird v. 278-A, 1978 \$25.00 per copy prepaid
- Tectonics and Mountain Ranges (Rodgers v.) Contains 16 papers, from authors all over the world, discussing mountain ranges and tectonic belts throughout the world. 16 articles (516 p.), v. 275-A, 1975. \$25.00 per copy prepaid
- The Byron N. Cooper Volume The papers reflect the status of research into problems of Appalachian regional geology at the time of publication. 29 articles (566 p.), v. 273-A, 1973. \$15.00 per copy prepaid
- The Schairer Volume 28 articles devoted to experimental petrology. V. 267-A (582 p.), 1969. \$15.00 per copy prepaid
- The Bradley Volume Covers the entire breadth of geology. 37 articles, v. 258-A (434 p.), 1960. \$15.00 per copy prepaid
- Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures Parts I through
- IV by Harold C. Helgeson, David H. Kirkham, and George C. Flowers A limited number of bound reprints (585 pages in all) plus Subject Index (39 pages) is available from the office of the American Journal of Science at \$65.00 per copy prepaid.

SPECIAL ISSUES April 1982

Four Articles on Geochemical Cycles of Nutrient Elements

by Michel Meybeck; Robert A. Berner; P. N. Froelich, M. L. Bender, N. A. Luedtke, G. R. Heath, and T. DeVries; and G. Billen \$10.00 per copy prepaid

April/May 1984

Mafic and Ultramafic rocks of the Appalachian Orogen (12 articles) — edited by K. C. Misra and Harry Y. McSween, Jr. \$20.00 per copy prepaid.

GENERAL INDEX

A general index for the years 1976-1980 (volumes 276-280 and including volumes 278-A and 280-A) is available at \$10.00 per copy prepaid.

order from

American Journal of Science, Kline Geology Laboratory, Yale University, P.O. Box 6666, New Haven, Connecticut 06511

CONTENTS

	Radiocarbon Dating in the Southern Levant James M Weinstein	297
	DATE LISTS	
HAM	H W Scharpenseel, Heinrich Schiffmann, and Peter Becker Hamburg University Radiocarbon Dates IV	367
IRPA	Michèle Dauchot-Dehon, Mark Van Strydonck, and Jos Heylen Institut Royal du Patrimoine Artistique Radiocar- bon Dates X	384
Lu	Sören Håkansson University of Lund Radiocarbon Dates XVII	392
QC	Richard R Pardi, Lynn Tomecek, and Walter S Newman Queens College Radiocarbon Measurements IV	412
SFU	K A Hobson and D E Nelson Simon Fraser University Radiocarbon Dates III	431
VRI	Heinz Felber Vienna Radium Institute Radiocarbon Dates XIV	441
Z	Dušan Srdoč, Bogomil Obelic, Nada Horvatinčic, Ines Krajcar, and Adela Sliepčevic Rudjer Boskovic Institute Radiocarbon Measure- ments VIII	449
	List of Laboratories	461
	Index to Volume 26	473