GEOLOGICAL INSTITUTE RADIOCARBON DATES I*

V. V. CHERDYNTSEV, V. A. ALEKSEYEV, N. V. KIND,
V. S. FOROVA, and L. D. SULERZHITSKIY

Geological Institute, Academy of Sciences, USSR

INTRODUCTION

We used the scintillation variant of the radiocarbon method. The scintillator is prepared on the basis of ethylbenzol [benzene],** synthesized from acetylene according to the method of Kuchkarev and Kondratenko (1955). For radiocarbon dating we used materials both rich in carbon: wood and charcoal, and [those] poorer: also peat, buried soils, and fossil bones. In the first instance, the initial material for synthesis was [char]coal, which was treated as follows:

$$C \rightarrow CaC_2 \rightarrow C_2H_2.$$

In the second instance, the samples, after removal of foreign carbonaceous materials, were burned in a stream of O_2, and the carbon was then transformed into carbon dioxide; later into acetylene:

$$CO_2 \rightarrow (NH_4)_2CO_3 \rightarrow SrCO_3 \rightarrow C_2H_2.$$

In both cases acetylene served for the synthesis of $C_6H_5C_2H_5$.

The material was first treated with hydrochloric acid to remove carbonate, which reached up to 60 percent in fossil bone. Carbonate carbon we do not investigate for radiocarbon, since earlier studies (Kind and Alekseyev, 1964, p. 70) established that it commonly represents “dead” carbon, ultimately deriving from the carbonates of old bedrock. All samples other than soils and peat were also treated with alkali to remove humic substances introduced into the sample by secondary processes. In addition, samples (especially peat and soils) were mechanically cleaned of foreign inclusions: contemporary roots, etc. Treatment with acid and alkali can reduce the carbon content of a sample by as much as 85%. The yield of carbon in the synthesis of ethylbenzol [benzene] was not too high (about 20%), and the synthesis was laborious. Thus ethylbenzol should not be regarded as the best basis for scintillators in radiocarbon measurements. However, in starting the laboratory, we fixed upon it in view of the relative simplicity of the method.

The purity of the ethylbenzol was controlled by measurements of specific gravity and indices of refraction, as well as by the scintillation effectiveness of the reagent prepared. To the extracted ethylbenzol we added n-terphenyl (4g/l.) and POPOP (0.1g/l.). The resulting solution served as the scintillator.

Measurements were conducted on an apparatus with two scintillation counters (with photomultiplier FEU — IS), working in coincidence.

* Submitted as part of Radiocarbon Dates from Soviet laboratories, 1 January 1962–1 January 1966. See p. 417, this issue. Published as: Radiocarbon dates of the Laboratory of the Geological Institute, Academy of Sciences, USSR: Geokhimiya (Geochemistry), 1964, no. 4, p. 315-317.

** Information in brackets interpolated by translator (E.M.S.) and commentator (D.B.S.).

419
The scintillator was poured into a fluorine-plastic chamber with a standard volume of 15 cm3, geometrically enclosing the cathode of the photomultiplier. The apparatus uses standard units.

The counting system is surrounded by shielding of lead (20 cm), steel (3 cm), and mercury (2 cm). . . . The standard of accuracy of the apparatus ($n/\sqrt{n_0}$) varies from 5 to 6. Using a 3σ criterion on 48-hour determination of sample and background, we find that our apparatus can measure ages up to 35,000 yr.

Odessa Oblast series, Ukrainian SSR

GIN-4. Gradenitsa, Ukrainian SSR

Buried soil from Gradenitsa village, Belayevka Raion, Odessa Oblast, Ukrainian SSR [46° 30' N Lat, 30° 10' E Long]. Exposure 37; Stratum 2. Upper buried soil. Subm. 1960 by A. I. Moskvitin, Geol. Inst., Acad. of Sci., USSR; according to him, soil belongs to Mologo-Sheksnya Interglacial [Paudorf Interstadial], corresponding in age to ca. 40,000 yr. **Comment** (D.B.S.): Cf. Grichuk et al., 1966, p. 102; dates given are 25,000-35,000 yr.

GIN-5. Odessa Oblast, Ukrainian SSR

Molodova V site series, Ukrainian SSR

GIN-6. Molodova V site

Contemporary chernozem-type soil.

GIN-7. Molodova V site

Fossil bones from cultural Stratum 1a, depth 1.0 to 1.1 m. Grayish-yellow limy loam. Archaeologic date: early Mesolithic; geologic date: approx. Allerød to Upper [Younger] Dryas. Date corresponds to age of Mesolithic sites in W Europe. According to A. P. Vinogradov et al. (1963), age of Upper Dryas in Upper Volga region is 10,535 ± 330 yr.

GIN-8. Molodova V site

Fossil bones from cultural Stratum 2, depth 1.2 to 1.4 m. Light yellow loess-like loam. Archaeologic date: late Magdalenian, believed to be 11 to 13,000 yr old.
GIN-9. **Molodova V site**

13,370 ± 540

Charcoal from campfire in cultural Stratum 3, depth 1.6 to 1.8 m. Grayish-yellow loam, presumably Lower [Earlier] Dryas. Archaeologic date: late Magdalenian. Absolute age of Lower Dryas in W Europe is 14 to 16,000 yr.

GIN-10. **Molodova V site**

23,700 ± 320

Buried soil from cultural Stratum 7, depth 3.1 to 3.25 m. Humus-enriched loam from campfire area with charcoal inclusions. Archaeologic age: late Solutrean. For charcoal from identical stratum, A. A. Vinogradov et al. (1962) obtained date 23,000 ± 800 yr (Mo-11, Vernadsky Inst. I-IV).

GIN-3. **Moscow area, Moscow Oblast**

290 ± 80

Wood from beginning of our century from Moscow area [55° 45' N Lat, 37° 37' E Long]. Sample studied for clarifying Suess effect, . . . from 1860-1950, because of augmentation of “dead” [i.e., fossil] carbon dioxide through burning of mineral fuel in industrial installations. [Spurious] age . . . is of right order of magnitude [for effect].

Nerl’ River series, Vladimir Oblast

GIN-11. **Nerl’ River**

9750 ± 200

>22,000

GIN-12. **Nerl’ River**

27,000 ± 2700

Compact peat from middle of same layer. Coll. 1962 by N. V. Kind.

Sungir’ series, Vladimir Oblast

GIN-13. **Sungir’ Brook, Vladimir Oblast**

13,300 ± 300

Buried soil from high terrace, old hollow of channel on left bank, Sungir’ brook, Moscow–Gor’kiy road on E outskirts of Vladimir [56° 10' N Lat, 40° 35' E Long]. Podsol type soil at depth 2.2 to 3.4 m,

GIN-14. Sungir’ site

Bones from Paleolithic campsite of Sungir’ near Vladimir. Coll. 1963 by S. M. Tseytlin. Campsite excavated by O. N. Bader (1959; Bader and Gromov, 1963), according to whom date is latest Aurignacian.

GIN-15. Sungir’ site

Buried steppe soil from upper part of right-side slope of valley of Sungir’ brook. Coll. 1963 by S. M. Tseytlin. At campsite, soil is at depth 4.75 to 5.4 m (Bader and Gromov, 1963), and disturbed by solifluction. Above sampled horizon are bone remains and flint inventory of superimposed cultural stratum of campsite.

GIN-16. Ulovka River, Vladimir Oblast

GIN-17. Sungir’ flood plain

Wood from alluvium, lower horizon of cross section of high flood plain of Sungir’ brook (height, 4 to 5 m), at Suromna village [approx. 56° 10’ N Lat, 40° 35’ E Long]. Coll. 1963 by S. M. Tseytlin.

GIN-18. Klyaz’ma River flood plain, Vladimir Oblast

Wood from lower horizon of high flood plain of Klyaz’ma R. at Bogolyubova village below mouth of Sungir’ brook [approx. 56° 10’ N Lat, 41° 00’ E Long], Vladimir Oblast. [Coll. name and date not given. (E.M.S.)]

Vyatka River series, Kirov Oblast

GIN-19. Vas’kino village

Wood from Vas’kino village [probably near Karino village, see GIN-20. (D.B.S.)], Kirov Oblast. Peat in high terrace of Vyatka R. Sample taken from lower horizon of upper layer, separated from lower layer by sandy horizon. Geologic age is Holocene. Coll. 1962 by V. V. Cherdyntsev.
GIN-20. Karino village

Spruce from Karino village, [probably Karintorf: 58° 35' N Lat, 50° 15' E Long (D.B.S.)], Kirov Oblast, from peat deposit of high terrace of Vyatka R. Conditions of deposition are same as for GIN-19. Coll. 1962 by V. V. Cherdantsev. In other specimen from this stratum were detected following ratios of radioactive isotopes: $\frac{U^{234}}{U^{238}} = 1.55 \pm 0.03$; $\frac{Io}{U} = 0.10 \pm 0.01$ (units of activity), which by ionium accumulation method, dates wood at 8000 ± 1000 yr. For 6 samples of peat from same deposit, ionium method gives values of 5 to 16 millennia with a mean of 8900 ± 1700 yr.

GIN-1. Teysheb-baini, Armenian SSR

GIN-2. Lchashen, Armenian SSR

Wood remains of ritual chariot from burial, presumably 13th century b.c., from Lchashen [approx. 40° 20' N Lat, 45° 10' E Long], Lake Sevan, Armenian SSR. Sample received 1961 by T. S. Khachaturyan, State Hist. Mus. of Armenian SSR [Erevan]).

Ust' Port series, Krasnoyarsk Krai, Siberia

GIN-21. Yenisey River flood plain [A.D. 1730]

Large trunk from flood plain of Yenisey R. terrace, 7 m high, region of Ust'-Yenisey Port [correctly, Ust' Port: 69° 45' N Lat, 84° 34' E Long]. Flood plain composed of interlayered clays, loam, and alluvia with streaks of peat, with large tree boles along entire cross section. Samples GIN-21-24 coll. by N. V. Kind and S. L. Troitskiy, Inst. of Geol. and Geophysics, Siberian Branch, Acad. of Sci., USSR [Novosibirsk].

GIN-22. Yenisey River flood plain [A.D. 1185]

Wood from same cross section as GIN-21; depth 1.3 m.

GIN-23. Yenisey River flood plain [1750 b.c.]

Bits of slightly decomposed wood from same cross section as GIN-21 and 22, depth 3.5 m.

GIN-24. Yenisey River flood plain [2380 b.c.]

Large trunk from same cross section as GIN-21-23. Depth 6.8 m.
Malaya Kheta River series, Krasnoyarsk Krai, Siberia

GIN-25. Malaya Kheta River 6800 ± 200
[4850 B.C.]

GIN-26. Malaya Kheta River 8500 ± 250
[6550 B.C.]
Wood from same peat deposit at Malaya Kheta settlement [69° 35' N Lat, 84° 30' E Long] in same stratigraphic position as GIN-25, at depth ca. 3 m.

GIN-27. 17 km above mouth of Malaya Kheta R. 26,800 ± 1400
[24,850 B.C.]
Wood from lower horizon of same cross section of “Karginskoye” terrace, 17 km above mouth of river [69° 28' N Lat, 84° 30' E Long]. Sample at depth 19 m from surface, elev. 3.5 m above water level of Malaya Kheta R., from peat in loam, alluvium, and sand. Comment (N.V.K. and S.L.T.): these are flood-plain deposits of Karginskoye age.

GIN-28. Igarka Permafrost Station 21,350 ± 650
[19,400 B.C.]
Large tree trunk from depth 6 m in alluvium in shaft at Igarka Permafrost Station, Krasnoyarsk Krai [Igarka city: 67° 30' N Lat, 86° 30' E Long]. Alluvium is from “Karginskoye” terrace of Yenisey R. Mouth of shaft 22 to 23 m [elev.] above water level. Sample taken from accumulation of tree boles in alluvial deposits frozen for many yr. Alluvium unconformably overlies varved clay of last stage of Zyryanka [Early Würm (?) (Cherdyntsev, et al., 1964)] Glaciation, (Saks, 1951, Sheveleva, 1963). Vinogradov et al. (1959) dated another wood sample from same locality at >24,500 yr (Mo-4).

GIN-30. Bol'shaya Ercha River flood plain 3150 ± 100
[1200 B.C.]
GIN-29. **Amguyema River, Magadan Oblast** [7400 B.C.]

Wood from II terrace of Amguyema R. [approx. 68° 00' N Lat, 177° 30' W Long], Chukchi Peninsula. Sample from sand with layers of peat at depth 8.5 to 9 m. Subm. 1962 by O. M. Petrov.

REFERENCES appear on p. 443.