RADIOCARBON AGES OF ANNUAL RINGS FROM JAPANESE WOOD: EVIDENT AGE OFFSET BASED ON INTCAL09

Toshio Nakamura^{1,2} • Kimiaki Masuda³ • Fusa Miyake³ • Kentaro Nagaya³ • Takahiro Yoshimitsu⁴

ABSTRACT. To investigate the radiocarbon concentration of atmospheric CO_2 over the past few millennia in Japan, we measured the ¹⁴C age of annual rings from 3 Japanese trees with calendar dates ranging from ~2000 yr old to present, and we compared the tree-ring ¹⁴C age with the corresponding ¹⁴C age from IntCal09. In some instances, the ¹⁴C ages of the annual rings of Japanese trees are not consistent with the IntCal09 data sets. Often, the ¹⁴C ages of tree rings are older than those from IntCal09, but younger than those from the SHCal04 data sets. The average shifts in the Nagoya ¹⁴C age from IntCal09 data sets and 1 σ errors were determined to be +26 ± 36, +24 ± 30, +16 ± 22, +5 ± 21, and +14 ± 22 ¹⁴C yr for the intervals AD 72–382, 589–1072, 1413–1615, 1617–1739, and 1790–1860, respectively. The Japanese Archipelago is situated near the boundary of the Intertropical Convergence Zone in summer, and the ¹⁴C concentration of atmospheric CO₂ over Japan can be influenced by air masses of the Southern Hemisphere with lower ¹⁴C concentrations during periods of higher solar activity and heightened East Asian summer monsoons. Our results suggest that the Japanese Archipelago is located in a critical zone where it is difficult to calibrate the ¹⁴C age of tree-ring samples using existing calibration data sets. It should be noted that calibration of the ¹⁴C dates of Japanese samples with IntCal09 may induce additional systematic shifts of calibrated ages toward older ages by about 30 yr compared with the sample optimum calendar ages.

INTRODUCTION

Radiocarbon dating is widely applied to archaeological materials and cultural assets that are sometimes closely related with historical events. In particular, ¹⁴C dating is used to determine whether sample materials are actually related to historical events. If the materials turn out to be imitations with no relation to historical events, further scientific investigations on them would be pointless. Thus, highly accurate dating of samples is required to distinguish genuine artifacts from the fake ones. The accuracy of ¹⁴C dating results is determined largely by the appropriateness of sample preparation and measurements of ¹⁴C abundance of the prepared targets. However, it is also related to the procedures used to obtain reliable calendar ages when calibrating conventional ¹⁴C ages. For ¹⁴C age calibration, IntCal09 (Reimer et al. 2009) data sets are normally used for terrestrial samples whose carbonaceous fractions were synthesized from atmospheric CO_2 in the Northern Hemisphere, while SHCal04 (McCormac et al. 2004) data sets are used for those from the Southern Hemisphere.

The accuracy of a calendar age obtained by calibration with the IntCal09 data sets is, however, sometimes questioned because of the possibility that the ¹⁴C concentration in atmospheric CO₂ may vary spatially (McCormac et al. 1995; Manning et al. 2001, 2010; Imamura et al. 2007). The IntCal09 calibration data sets are based on ¹⁴C data for rings from trees grown in North America and Europe, but do not include data for rings from trees grown in other areas such as Japan. To address this shortcoming, ¹⁴C data from bored cores sampled at Lake Suigetsu, Fukui Prefecture, Japan, will be incorporated in the age range of 11.2–52.8 ka BP in the latest calibration data sets (Bronk Ramsey et al. 2012). The Japanese Archipelago is located on the eastern margin of the Asian continent in the middle to lower latitudes, and the ¹⁴C concentration in atmospheric CO₂ over Japan may be lower than that over inland areas and northern locations such as North America or Europe. This lower ¹⁴C concentration, or from air mass flow over the Pacific Ocean delivered by East Asian monsoons during the summer, when plants grow rapidly. Therefore, the ¹⁴C concentration of atmo-

¹Center for Chronological Research, Nagoya University, Furo-cho, Chikusa ward, Nagoya 464-8602, Japan.

²Corresponding author, Email: nakamura@nendai.nagoya-u.ac.jp.

³Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa ward, Nagoya 464-8602, Japan.
⁴Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa ward, Nagoya 464-8602, Japan.

^{© 2013} by the Arizona Board of Regents on behalf of the University of Arizona

Proceedings of the 21st International Radiocarbon Conference edited by A J T Jull & C Hatté RADIOCARBON, Vol 55, Nr 2–3, 2013, p 763–770

spheric CO_2 over Japan was investigated by measuring the ¹⁴C ages of annual rings from Japanese trees whose calendar ages ranged from 2000 yr old to the present.

In this experiment, the ¹⁴C concentration in tree rings was measured on an annual basis, as opposed to a multi-year basis, to be used for the analysis of solar activity with a resolution of 1 yr. Using the ¹⁴C measurement results from Nagoya University, shortening of the duration of the Schwabe cycle has been revealed during periods of weaker solar activity. In addition, a large and rapid increase in ¹⁴C concentration has been observed in tree rings grown in the timespan AD 774–775. The details of this research have been described elsewhere (Miyahara et al. 2006; Miyake et al. 2012; Nagaya et al. 2012).

EXPERIMENTAL

To compare tree-ring ¹⁴C data for Japanese trees with those of IntCal09, we have measured ¹⁴C ages of annual rings from 3 Japanese cedar trees grown on the Japanese Archipelago (Figure 1 and Table 1). The first tree, named Murouji-sugi, with a total of 382 annual rings, was collected from the Murouji Temple in Nara Prefecture, central Japan (34°N, 136°E). The second tree, named Yakushima-sugi, with 712 annual rings, was collected from Yaku-shima Island in Kagoshima Prefecture, southern Kyushu, Japan (30.2°N, 130.3°E). The third and largest tree, named Yakusugi, with 1480 annual rings, was collected from the central part of Yaku-shima Island at an altitude of around 1000 m (30.3°N, 130.5°E).

Figure 1 Collection locations of sample trees: Murouji-sugi tree from Nara Prefecture (34°N, 136°E), Yakushima-sugi tree (30.2°N, 130.3°E), and Yakusugi tree (30.3°N, 130.5°E) from Yaku-shima Island.

Tree name	Tree species	Range of full annual rings	Age range of analyzed annual rings (nr of ana- lyzed rings)
Murouji-sugi	Japanese cedar,	AD 1607–1998,	AD 1790–1860 (54)
	Cryptomeria japonica	tot. 392 rings	AD 1617–1739 (61)
Yakushima-sugi	Japanese cedar,	AD 1280–1991,	AD 1413–1615 (173)
	C. japonica	tot. 712 rings	
Yakusugi	Yaku cedar,	AD 72–1551,	AD 589–1072 (353)
-	C. japonica	tot. 1480 rings	AD 330–382 (27)
		-	AD 72–202 (66)

TC 1 1 1	T • .	<u>.</u>	•	1	1
Table I	I ict o	t troo	ringe	anal	UZAC
	LISCO	I UCC	THIES	anar	y ZCU.

Calendar ages of the annual rings of all 3 trees were determined by dendrochronology, by assessing the ring-width patterns by means of a *t* value test against the respective master chronologies developed by Prof K Kimura and others (Miyake et al. 2012). For Murouji-sugi and Yakushima-sugi, the bomb peak values of ¹⁴C concentration were also assessed in the annual rings to detect the calendar age of AD 1964, the year when the bomb ¹⁴C peak appeared in trees grown in the middle to northern latitudes of the Northern Hemisphere. The latter assignments were consistent with the former. We separated tree rings grown in AD 72–202, 330–382, 589–1072, 1413–1615, 1617–1739, and 1790–1860, and have measured ¹⁴C concentrations up to now for 66, 27, 353, 173, 61, and 54 annual rings from the respective trees, on a single annual-ring basis (see Table 1 for details).

The individual annual rings were separated carefully from a core sample of the wood from an area of about 50 \times 50 mm², and the alpha-cellulose fraction, which does not move between distinct annual rings, was extracted as follows: 1) samples were rinsed with ethanol followed with distilled water in an ultrasonic bath; 2) samples were treated successively with 1.2M HCl, 1.2M NaOH, and again with 1.2M HCl solutions at 80 °C for several hours each (an acid-alkali-acid treatment); and 3) samples were bleached with hot NaClO₂/HCl to remove lignin, and the resulting cellulose fraction was rinsed with boiling distilled water. The alpha-cellulose fraction thus separated was combusted to CO₂, and the CO₂ that evolved was purified with cold traps and graphitized with an iron catalyst by hydrogen reduction. The graphite targets were prepared at the Solar Terrestrial Laboratory, Nagoya University, and ¹⁴C/¹²C and ¹³C/¹²C ratios were measured at the Center for Chronological Research, Nagoya University (Nakamura et al. 2004, 2007).

We used the HOx-II standard (NIST new oxalic acid standard, SRM-4990C) as a reference for carbon isotope ratios and commercial oxalic acid containing no ¹⁴C (oxalic acid dihydrates produced from Wako Pure Chemical Industries Ltd., Japan) for ¹⁴C blank subtraction in the subsequent data analysis. Graphite targets were prepared from ancient wood (~90 ka BP) and ¹⁴C results compared with those of the commercial oxalic acid standard, and detected no clear differences. We also used the HOx-I standard (NIST old oxalic acid standard, SRM-4990) to check ¹⁴C concentrations. In the same run of ¹⁴C measurements, 6 NIST new standard, 3 NIST old standard, and 2 blank graphite targets were measured along with targets made from tree-ring samples. The standard deviation of ¹⁴C concentration of ¹⁴C new standard targets was consistent with the statistical error calculated from ¹⁴C counts on a single NIST new standard target. We repeated 3–5 runs of ¹⁴C measurements on a group of samples loaded at one time in the ion source. We calculated the ¹⁴C concentration of the sample in each run, and an average value and an error were evaluated from the results of several runs. The concentration of ¹⁴C was converted to conventional ¹⁴C age, after correction of carbon isotopic fractionation using the δ^{13} C value measured with AMS. The typical precision of the conventional ¹⁴C age was 20–25 yr.

RESULTS AND DISCUSSION

Figure 2 shows a comparison of ¹⁴C ages obtained for individual annual rings of Japanese trees to those of the IntCal09 and SHCal04 data sets. Many of the ¹⁴C ages measured for the Japanese tree rings are older than those estimated by IntCal09, but younger than those estimated by SHCal04 data sets. To clarify the ¹⁴C age distribution for sample tree rings, ¹⁴C ages for annual rings grown in the periods AD 72–382, 589–1072, 1413–1615, and 1617–1860 are shown separately in Figures 3a, 3b, 3c, and 3d, respectively. It is clear that ¹⁴C ages of annual rings from the Japanese tree samples tend to be distributed in a region older than those of the IntCal09 and younger than those of the SHCal04 data sets. The differences in ¹⁴C ages of sample annual rings, as well as those of SHCal04 from IntCal09 data sets, are plotted against the calendar age in Figure 4.

Figure 2 Comparison of ¹⁴C ages among all tree-ring samples analyzed relative to IntCal09 and SHCal04 data sets.

When the measured ¹⁴C dates are compared with data points in the IntCal09 and SHCal04 data sets, the ¹⁴C wiggles observed in IntCal09 and SHCal04 data are also generally well represented in the Japanese tree data. In particular, the ¹⁴C ages for Japanese wood in the calendar age range from AD 1617 to 1860 are quite consistent with the IntCal09 data sets (Figure 3d). To investigate the degree of agreement between ¹⁴C ages of Japanese trees and estimates from IntCal09 data sets, the differences between ¹⁴C ages obtained at Nagoya from those of IntCal09 were evaluated. A linear interpolation was applied to IntCal09 data sets to evaluate annual ¹⁴C age values, and an error propagation method was applied to calculate the errors associated with the ¹⁴C age differences.

The average shifts of Nagoya ¹⁴C ages from the IntCal09 ones and 1σ errors were determined to be +26 ± 36, +24 ± 30, +16 ± 22, +5 ± 21, and +14 ± 22 ¹⁴C yr, for the calendar-year intervals AD 72– 382, 589–1072, 1413–1615, 1617–1739, and 1790–1860, respectively (Table 2). The mean difference in ¹⁴C age between SHCal04 and IntCal09 data is +57 ± 1 ¹⁴C yr for the respective calendar dates from AD 1 to 960. This mean difference is based on SHCal04 ¹⁴C ages that are evaluated from

(AD 72-382), and the IntCal09 and SHCal04 standard data sets.

Figure 3a Comparison of ¹⁴C ages among tree rings analyzed Figure 3b Comparison between ¹⁴C ages of tree rings analyzed (AD 589-1072), and the IntCal09 and SHCal04 standard data sets.

Figure 3c Comparison between ¹⁴C ages of tree rings ana-Figure 3d Comparison between ¹⁴C ages of tree rings analyzed (AD 1413-1615), and the IntCal09 and SHCal04 standard data sets.

lyzed (AD 1617-1860), and the IntCal09 and SHCal04 standard data sets.

IntCal09 ages according to the global box model of environmental carbon circulation, and on mean differences of $+54 \pm 7$ and $+36 \pm 14$ ¹⁴C yr for AD 960–1070 and 1410–1860, respectively, calculated for Southern Hemisphere tree-ring measurements. These results suggest that ¹⁴C ages of the Yakusugi tree tend to be older than those estimated by IntCal09 and show values intermediate to those of IntCal09 and SHCal04 ¹⁴C ages. A similar tendency has been reported for ¹⁴C age values of other Japanese trees collected from Ashinoko Lake, central Japan, when compared with those of IntCal98, for the restricted calendar age range (AD 50-250) (Sakamoto et al. 2003), and also for several other ¹⁴C measurements on Japanese trees (Imamura et al. 2007). In the present research, the ¹⁴C age trends between Japanese trees and IntCal09 data are clear, and our data suggest that air

masses containing CO_2 with a lower ¹⁴C concentration that occasionally arrive in southern Japan from the Southern Hemisphere may be responsible for this discrepancy.

Figure 4 Differences between ¹⁴C ages of all tree-ring samples and SHCal04 compared with IntCal09

Table 2 Differences in the $^{14}\mathrm{C}$ ages of Japanese tree rings and SHCal04 compared with IntCal09.

Tree name	Range of annual rings	¹⁴ C age difference (¹⁴ C yr) (Japanese ring/SHCal04 – IntCal09)
Murouji-sugi	AD 1790–1860	14 ± 22
	AD 1617–1739	5 ± 21
Yakushima-sugi	AD 1413–1615	16 ± 22
Yakusugi	AD 589–1072	24 ± 30
Yakusugi	AD 72–382	26 ± 36
SHCal04	AD 1410–1860	36 ± 14
	AD 960-1070	54 ± 7
	AD 1–960	57 ± 1

Regarding the mechanism by which southern atmospheric air is supplied to the lower latitudes of the Northern Hemisphere, Hua and Barbetti (2007, 2012) pointed out that the Intertropical Convergence Zone (ITCZ) moves into the Northern Hemisphere as far north as 30° due to the East Asian monsoon during summer, transferring air masses with lower ¹⁴C concentration (typically equivalent to a ¹⁴C age excess of 20–50 yr) from the southern atmosphere to the Northern Hemisphere. The ITCZ boundary may move more northwards in years when the Pacific high pressure strengthens due to

¹⁴C Ages of Annual Rings from Japanese Wood

higher solar activity (Figure 5). As summarized in Figure 5, during periods of high solar activity, the ¹⁴C production rate on the Earth's surface decreases and ¹⁴C concentration in atmospheric CO₂ decreases, which results in older estimates of ¹⁴C ages for terrestrial samples grown during those periods. In addition, Pacific barometric pressure increases due to higher solar activity, and air masses with lower ¹⁴C concentration in the Pacific region are supplied preferentially to the Japanese Archipelago by East Asian monsoons during the summer.

Figure 5 Degree of solar activity relative to suitability of sample ¹⁴C age calibration using the IntCal or SHCal standards.

When solar activity is weak, on the other hand, the production rate of ¹⁴C increases, and the ¹⁴C age of terrestrial samples appears to be younger. Pacific barometric pressure is not activated by weak solar activity, and the Japanese Archipelago is dominated by the air masses originating from the Northern Hemisphere. During periods of weak solar activity, IntCal depicts the relationships between ¹⁴C ages and calendar ages well. Therefore, the ¹⁴C ages of trees grown in the southern Japanese Archipelago fluctuate between those defined by IntCal and SHCal standard boundaries (Figures 2–4), according to the strength of solar activity.

Japan is situated near the border of the ITCZ during summer, and the ¹⁴C concentration of atmospheric CO_2 over Japan can be influenced by air masses from the Southern Hemisphere, which have lower ¹⁴C concentrations during periods of higher solar activity and strengthened East Asian summer monsoons. Our results suggest that the Japanese Archipelago is located in a critical zone in which it is difficult to calibrate the ¹⁴C ages of local tree-ring samples with existing calibration data sets. Most importantly, calibration of ¹⁴C dates of Japanese samples with IntCal09 may result in a systematic upward shift in calibrated calendar ages by about 30 yr relative to the sample optimum calendar ages.

CONCLUSION

We measured the ¹⁴C age of annual rings from 3 Japanese trees with calendar dates ranging from ~2000 yr old to present, and we compared the tree-ring ¹⁴C age with the corresponding ¹⁴C age in IntCal09. It was revealed that the ¹⁴C ages of the annual rings of Japanese trees are not consistent with IntCal09 data sets in some instances. Often, the ¹⁴C ages of tree rings are older than those of IntCal09, but younger than those of SHCal04. The shift in Nagoya ¹⁴C age from IntCal09 data sets may depend on the origin of the samples on the Japanese Archipelago, as well as the level of solar

activity (insolation and solar magnetic field) during the period when the samples were growing. We tested 2 kinds of samples: one grown in Nara Prefecture in central Japan, and the other grown on Yaku-shima Island, at the southern end of the Japanese Archipelago. The profile of carbon taken up by the trees that grew on Yaku-shima Island, closer to the ITCZ during summer, is likely to have been influenced more by the low-¹⁴C-concentration air masses from the Southern Hemisphere.

ACKNOWLEDGMENTS

The authors thank Prof K Kimura of Fukushima University for dendrochronological dating of the sample tree rings, and Dr Q Hua of ANSTO, Australia, for valuable discussions on the analysis of ¹⁴C ages of Japanese trees. We would also like to thank the staff of the Technical Center of Nagoya University for their kind support in maintaining the HVEE Tandetron ¹⁴C AMS system. This work was supported partly by the Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS) (Subject Nos. 15202023, 16320108, 22340144, and 22240082).

REFERENCES

- Bronk Ramsey C, Staff RA, Bryant CL, Brock F, Kitagawa H, van der Plicht J, Schlolaut G, Marshall MH, Brauer A, Lamb HF, Payne RL, Tarasov PE, Haraguchi T, Gotanda K, Yonenobu H, Yokoyama Y, Tada R, Nakagawa T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. *Science* 338(6105): 370–4.
- Hua Q, Barbetti M. 2007. Influence of atmospheric circulation on regional ¹⁴CO₂ differences. *Journal of Geophysical Research* 112: D19102, doi:10.1029/ 2006JD007898.
- Hua Q, Barbetti M. 2012. Monsoonal influence on Southern Hemisphere ¹⁴CO₂. *Geophysical Research Letters* 39, L19806, doi:10.1029/2012GL052971.
- Imamura M, Ozaki H, Mitsutani T, Niu E, Itoh S. 2007. Radiocarbon wiggle-matching of Japanese historical materials with a possible systematic age offset. *Radiocarbon* 49(2):331–7.
- Manning SW, Kromer B, Kuniholum I, Newton MW. 2001. Anatolian tree rings and a new chronology for the East Mediterranean Bronze-Iron Ages. *Science* 294(5551):2532–5.
- Manning SW, Kromer B, Bronk Ramsey C, Pearson CL, Talamo S, Trano N, Watkins JD. 2010. ¹⁴C record and wiggle-match placement for the Anatolian (Gordion area) juniper tree-ring chronology ~1729 to 750 cal BC, and typical Aegean/Anatolian (growing season related) regional ¹⁴C offset assessment. *Radiocarbon* 52(4):1571–97.
- McCormac FG, Baillie MGL, Pilcher JR. 1995. Location-dependent differences in the ¹⁴C content of wood. *Radiocarbon* 37(2):395–407.
- McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ. 2004. SHCal southern hemisphere calibration, 0–11.0 cal kyr BP. *Radiocarbon* 46(3):1087–92.
- Miyahara H, Masuda K, Muraki Y, Kitagawa H, Naka-

mura T. 2006. Variation of solar cyclicity during the Spoerer Minimum. *Journal of Geophysical Research* 111: A03103, doi:10.1029/2005JA011016.

- Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic ray increase in AD 774–775 from tree rings in Japan. *Nature* 486(7402)240–2.
- Nagaya K, Kitazawa K, Miyake F, Masuda K, Muraki Y, Nakamura T, Miyahara H, Matsuzaki H. 2012. Variation of the Scwabe cycle length during the grand solar minimum in the 4th century BC deduced from radiocarbon content in tree rings. *Solar Physics* 280(1): 223–36.
- Nakamura T, Niu E, Oda H, Ikeda A, Minami M, Ohta T, Oda T. 2004. High precision ¹⁴C measurements with the HVEE Tandetron AMS system at Nagoya University. *Nuclear Instruments and Methods in Physics Research B* 223–224:124–9.
- Nakamura T, Miyahara H, Masuda K, Menjo H, Kuwana K, Kimura K, Okuno M, Minami M, Oda H, Rakowski A, Ohta T, Ikeda A, Niu E. 2007. High precision ¹⁴C measurements and wiggle-match dating of tree rings at Nagoya University. *Nuclear Instruments and Methods in Physics Research B* 259(1):408–13.
- Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton T, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. *Radiocarbon* 51(4): 1111–50.
- Sakamoto M, Imamura M, van der Plicht J, Mitsutani T, Sahara M. 2003. Radiocarbon calibration for Japanese wood samples. *Radiocarbon* 45(1):81–9.