

14C AND 10Be IN DUST DEPOSITED DURING THE STORM OF 16–17 APRIL 2006 IN BEIJING

C D Shen1,2 • W X Yi1 • P Ding1 • K X Liu3 • X M Xu4

ABSTRACT. The concentrations of 10Be and 14C and values of δ13C in samples collected during a major dust storm in Beijing on 16–17 April 2006 were studied. The 10Be concentrations ranged from 1.69 × 108 to 2.07 × 108 atom/g, 14C ages for black carbon (BC) ranged from 3001 to 5181 yr BP and for total inorganic carbon (TIC) from 8464 to 9119 yr BP, and δ13C values for BC ranged from −23.15‰ to −23.80‰ and for TIC from −5.39‰ to −5.98‰. A comparison of BC content and δ13C values between the dust, surface soil in the dust source region, and aerosols in Beijing indicated that BC in the dust deposited in Beijing is significantly incorporated by aerosol BC during the dust transportation. Based on the 14C ages of BC, the proportion of fossil-fuel-derived BC was 0.35–0.49 of the total. In contrast to BC, the TIC deposited in Beijing can be firmly related to the source area and δ13C was not significantly modified during its transportation. According to the 14C ages of TIC, the proportion of the secondary carbonate in the dust was from 0.63 to 0.70. The results confirm that 14C of TIC is another useful tracer to indicate the source region of dust besides the content and δ13C value of TIC from the arid and semi-arid regions of China.

INTRODUCTION

Asian dust originating from the arid and semi-arid areas of northwestern China causes serious social and economic problems as it increases dust concentration and significantly reduces visibility in the atmosphere (Kwon et al. 2002; Kim and Kim 2003). About 800 Tg of Chinese dust is emitted annually into the atmosphere, of which 70% is transported eastward and deposited over East Asia (Zhang et al. 1997). When dust is transported, it brings new pollutants as aerosols to the local atmosphere. It also transfers a great amount of dust containing various trace elements and nutrient elements to the ocean ecosystem (In and Park 2003; Uematsn et al. 2003; Lim and Chun 2006). During dust transportation, the soil dust or dust in aerosol from downwind areas would also be incorporated. Therefore, it is important to characterize and distinguish between the components of dust and identify their respective source types and the sequence of their incorporation into the load (Chen et al. 2008). Analysis of the physical and chemical compositions of dust provides not only the evidence of the type of source for the dust and its area of origin, but also basic data that help to evaluate the influence of dust on the environment (Uematsn et al. 2003; Cao et al. 2005; Wang et al. 2005).

On 16–17 April 2006, a dust storm arrived in Beijing, causing the deposition of ~330,000 tons of dust, which was several times higher than the amount usually deposited during dust storms in Beijing (Zhang et al. 2008). The meteorological satellites NOAA-17 and NOAA-16 monitored the process: a clear band of dust appeared in Alashan and Bayannao’er on the Sino-Mongolian border at 11:22 AM, April 16, then, at 3:12 PM, an accelerated eastward movement of the dust was observed. There were 2 distinct dust zones: 1) the northern side moved eastward, covering the northeast Alxa, Bayannao’er, Ordos, Baotou, Wulanchabu, and Xilin Gol Leagues, which are Inner Mongolian subdivisions; 2) the other zone on the southern side was newly generated dust from the Mu Us Desert, which mainly affected NW Shaanxi Province in China (Figure 1a). The continuously eastward shift of the northern dust brought large dust storms to Beijing, Tianjin, northern Shanxi, Henan, and Shandong provinces, and the northern Bohai Sea region at 7:02 AM, April 17 (Figure 1b).

1State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
2Corresponding author. Email address: cdshen@gig.ac.cn.
3State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China.
4Department of Earth System Science, University of California, Irvine, California 92697-3100, USA.
Professor Tungsheng Liu at the Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), organized a comprehensive study on the dust deposited in Beijing during this storm (Liu et al. 2006). The physical properties and the chemical compositions of the dust were analyzed by different scientific groups (Liu et al. 2006; Han et al. 2007; Shen et al. 2007; Zhang et al. 2008). We obtained 12 dust samples to analyze the 10Be and 14C concentrations and δ^{13}C values in different fractions of the dust. Based on the results, we discuss whether these results could be used as indicators for the primary source region of the dust and the influences due to subsequent incorporation from other sources during transportation of the dust.

SAMPLING AND METHOD

Sampling

Dust samples were collected around Beijing (39°48′~39°58′N; 116°15′~116°31′E) on 17–18 April 2006 by the Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS). All the samples were collected on cleaned stainless steel discs fixed on roofs of cars except one fixed on a
14C and 10Be in Dust

To minimize dust produced by human activities, all the selected sampling sites were far from expressways and construction sites. The detailed sampling distribution is given by Liu et al. (2006). In total, 27 dust samples about 1 g in weight for each sample were collected. For comparison, another dust sample was collected on 2 April 2007 in Ningbo (29°52’N; 121°33’E) using the same method by our group.

Analytical Methods

Sample Preparation and 10Be Measurements

Sample preparation was carried out in the State Key Laboratory of Isotope Geochemistry, CAS, in Guangzhou. The dust samples were first dried in a vacuum freeze-drier (ALPHA 1-2LDplus) in order to ground them easily to 200 mesh. About 0.5 g of dust was weighed out and placed in a 100-mL plastic beaker, to which 1 mg of 9Be carrier solution was added. Organic matter was removed by leaching with the mixture of 30% H2O2 and 6 mL 6 mol/L HCl for 24 hr (Shen et al. 1992). The leachates were separated by centrifugation, and the insoluble material was leached with 6 mL 6 mol/L HCl for 12 hr and separated by centrifugation. The insoluble residues were then freeze-dried in preparation for accelerator mass spectrometry (AMS) 14C analysis. Solutions from the 2 leaches above were mixed and dried by heating. The dried residues were dissolved by adding 1 mol/L HCl. Be, Al, Fe, and Mn ions in the solution were deposited by adjusting the pH of the solution to 8 by adding NaOH solution. Then, a 4 mol/L NaOH solution was added to the sample solution, and the pH of the solution was adjusted to 14, in order to precipitate Fe and Mn, which can then be separated by centrifugation.

The pH of the solution was then adjusted to 2.5 by adding 0.5 mol/L HCl. At the same time, EDTA solution was added into the solution to mask Al3+ in the solution. Subsequently, the solution was adjusted to pH 8 by adding NaOH solution to precipitate out Be(OH)2. The precipitated Be(OH)2 was again dissolved in HCl. The impurities in the solution were separated by passing the solution through a cation-exchange resin that was finally washed 10 times with 10 mL 1M HCl. We then collected the effluent solution in which Be was concentrated and adjusted the pH value of the effluent to 8 so that Be(OH)2 was precipitated out. The Be(OH)2 precipitate was separated by centrifugation and washed several times with deionized water. Then, the Be(OH)2 precipitate was combusted into BeO powder at 900 °C. The BeO powder was mixed with niobium powder at a 1:1 weight ratio to make the BeO target for AMS measurement (Suter et al. 1984; Shen 1986; Shen et al. 1992). 10Be was measured by a 6MV tandem accelerator mass spectrometer with a sensitivity of 6 × 10^-15 at Peking University. SRM-4325 9Be/10Be from the National Institute of Standards and Technology (NIST) was used as a standard (Liu et al. 2007).

13C and 14C Measurements

The procedures of sample preparations for AMS 14C and δ13C measurements were carried out at the AMS 14C laboratory in the State Key Laboratory of Isotope Geochemistry, CAS, in Guangzhou. The carbon in the residues separated from the chemical pretreatment of 10Be mentioned above was extracted for isotopic analysis. Because the total inorganic carbon (TIC) in the residues had been acid-hydrolyzed, and the organic carbon had been oxidized by peroxide (30% H2O2) during the pretreatment, the carbon left in the residue was mostly black carbon (BC) (Smith et al. 1975). The residues with silver and excess granular CuO in quartz tubes were first evacuated under vacuum at 1.0 × 10^-3 Torr for 12 hr. The residues were then combusted to convert BC into CO2 gas at 860 °C for 2 hr after the tubes were sealed. The combusted tube was cracked open in a vacuum system in which the CO2 gas was extracted and purified. The pressure of the purified CO2 was measured in a known volume, and then the gas was divided into 2 portions with 1 portion containing ~1 mg C for
graphitization using the method reported by Xu et al. (2007), and the other portion for stable carbon isotope analysis (Shen et al. 2001).

The other portion of the ~0.5-g dust sample was weighted out and placed into a tube with a branch filled with purified H₃PO₄ (~100%). After the tube was pumped to vacuum, the dust sample was mixed with the H₃PO₄ to release the CO₂ gas. The gas was purified and divided into 2 portions for both ¹⁴C and ¹³C isotopic analyses using the method described above.

Graphite targets were measured by the compact AMS system in the State Key Laboratory of Nuclear Physics and Technology, Peking University, at a precision of 3‰. Oxalic acid standard I and II (NBS OXI and OXII) were both used as standards (Liu et al. 2007).

δ¹³C values were obtained using a Finnigan MAT-251 isotopic ratio mass spectrometer with a precision of ±0.2‰ in the State Key Laboratory of Loess and Quaternary Geology, CAS in Xi’an. Results are reported as δ¹³C in ‰ with respect to the International Pee Dee Belemnite (PDB) standard.

RESULTS AND DISCUSSION

Contents of BC and TIC, δ¹³C values and ¹⁴C ages of BC and TIC, and ¹⁰Be concentrations in the dust in 12 samples from Beijing and 1 from Ningbo are given in Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TOCa (%</th>
<th>TICb (%)</th>
<th>δ¹³C³ (%)</th>
<th>¹³C age (yr BP)</th>
<th>fₘ</th>
<th>BC (%)</th>
<th>δ¹³Cb (%)</th>
<th>¹⁴C age (yr BP)</th>
<th>fC</th>
<th>¹⁰Be (×10⁸ atom/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZLJJ001</td>
<td>2.38</td>
<td>0.93</td>
<td>−5.95</td>
<td>8604 ± 27</td>
<td>0.34</td>
<td>1.00</td>
<td>−23.46</td>
<td>4932 ± 31</td>
<td>0.51</td>
<td>1.72 ± 0.09</td>
</tr>
<tr>
<td>ZLJJ003</td>
<td>1.83</td>
<td>1.36</td>
<td>−5.83</td>
<td>8845 ± 29</td>
<td>0.33</td>
<td>1.12</td>
<td>−23.25</td>
<td>4024 ± 38</td>
<td>0.57</td>
<td>1.75 ± 0.06</td>
</tr>
<tr>
<td>ZLJJ006</td>
<td>2.18</td>
<td>1.22</td>
<td>−5.97</td>
<td>8976 ± 32</td>
<td>0.33</td>
<td>1.44</td>
<td>−23.80</td>
<td>3645 ± 37</td>
<td>0.60</td>
<td>1.86 ± 0.08</td>
</tr>
<tr>
<td>ZLJJ009</td>
<td>2.11</td>
<td>1.33</td>
<td>−5.96</td>
<td>8709 ± 30</td>
<td>0.34</td>
<td>1.26</td>
<td>−23.43</td>
<td>4102 ± 53</td>
<td>0.57</td>
<td>1.83 ± 0.09</td>
</tr>
<tr>
<td>ZLJJ010</td>
<td>2.16</td>
<td>1.15</td>
<td>−5.97</td>
<td>8464 ± 32</td>
<td>0.35</td>
<td>1.15</td>
<td>−23.15</td>
<td>3004 ± 28</td>
<td>0.65</td>
<td>1.80 ± 0.10</td>
</tr>
<tr>
<td>ZLJJ014</td>
<td>1.97</td>
<td>1.16</td>
<td>−5.98</td>
<td>8673 ± 31</td>
<td>0.34</td>
<td>1.02</td>
<td>−23.50</td>
<td>5181 ± 33</td>
<td>0.49</td>
<td>1.77 ± 0.11</td>
</tr>
<tr>
<td>ZLJJ015</td>
<td>2.01</td>
<td>1.23</td>
<td>−5.96</td>
<td>8647 ± 33</td>
<td>0.34</td>
<td>1.20</td>
<td>−23.69</td>
<td>3657 ± 36</td>
<td>0.60</td>
<td>2.07 ± 0.09</td>
</tr>
<tr>
<td>ZLJJ016</td>
<td>2.00</td>
<td>1.35</td>
<td>−5.63</td>
<td>8828 ± 31</td>
<td>0.33</td>
<td>1.30</td>
<td>−23.67</td>
<td>4078 ± 30</td>
<td>0.57</td>
<td>1.78 ± 0.13</td>
</tr>
<tr>
<td>ZLJJ019</td>
<td>1.98</td>
<td>1.34</td>
<td>−5.80</td>
<td>9119 ± 31</td>
<td>0.32</td>
<td>1.23</td>
<td>−23.45</td>
<td>4840 ± 51</td>
<td>0.52</td>
<td>1.66 ± 0.10</td>
</tr>
<tr>
<td>ZLJJ021</td>
<td>2.35</td>
<td>0.99</td>
<td>−5.60</td>
<td>9252 ± 32</td>
<td>0.32</td>
<td>1.28</td>
<td>−23.70</td>
<td>4253 ± 51</td>
<td>0.56</td>
<td>2.06 ± 0.12</td>
</tr>
<tr>
<td>ZLJJ024</td>
<td>2.43</td>
<td>1.22</td>
<td>−5.39</td>
<td>9276 ± 31</td>
<td>0.32</td>
<td>1.26</td>
<td>−23.48</td>
<td>3756 ± 32</td>
<td>0.59</td>
<td>1.69 ± 0.13</td>
</tr>
<tr>
<td>ZLJJ027</td>
<td>2.08</td>
<td>1.24</td>
<td>−5.48</td>
<td>8622 ± 28</td>
<td>0.34</td>
<td>1.17</td>
<td>−23.45</td>
<td>3545 ± 46</td>
<td>0.61</td>
<td>1.80 ± 0.12</td>
</tr>
<tr>
<td>Ningbo</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND = fraction modern

Distribution of ¹³C and ¹⁴C in the Dust in Beijing

Black carbon (BC) originates from the incomplete combustion of biomass, fossil fuel, waste, and forest fire (Bond et al. 2004). It is widely distributed in the soil, atmosphere, water, sediments, rocks, and even in glaciers (Chylek et al. 1992; Bird et al. 1999; Zhou et al. 2007). Methods to detect BC include optical, thermal oxidation (TO), chemical thermal oxidation (CTO), rock pyrolysis (RE), and multi-element scanning thermal analysis (MESTA), but all these methods have problems in the separation and quantification of black carbon (Currie et al. 2002), because BC is a complex component that is mainly composed of charcoal and black carbon (Lim et al. 1996).
As shown in Table 1, the contents of BC in the dust samples ranged from 1.00% to 1.44%, and the \(\delta^{13}C\) values of BC varied between \(-23.15\%\) and \(-23.80\%\) (Figure 2). The meteorological satellite map indicated that the source region of the dust sampled in Beijing this time was middle Mongolia and midwestern Inner Mongolia where there is a large area of saline soils from dried salt lakes (Zhang et al. 2008). The organic carbon (OC) content of these soils ranges between 2.50\% and 4.92\% (Chen et al. 2003), which is very similar to the OC content of ~5.00\% in loess (Wen 1989). We know that BC is a part of the components in OC, thus the content of BC should be lower than OC content in same sample. Since dust was considered to be the source material of loess, the BC content in soils in middle Mongolia and midwestern Inner Mongolia should be close to that in loess (Liu and Ding 1998; Liu et al. 2007). As shown in Table 2, the BC content in loess was usually <0.5\% as suggested by the loess from Lintai and Weinan (Yang et al. 2001; Zhou et al. 2007). The obviously higher BC content in the dust in Beijing likely indicated a strong incorporation of BC from aerosols during the transportation. Annual observation in Beijing showed that the BC content in aerosol ranges from 0.6\% to 2.8\% in the city and from 0.12\% to 1.90\% in surrounding regions (Tang et al. 2013). Assuming that BC content in the surface soil from the dust source region ranges from 0.50\% to 5.00\%, the proportion of aerosol source BC would be as high as 50\% to 96\% of total BC in the dust. BC prefers to be absorbed in finer particulates (Chen et al. 1997). Grain-size distribution analysis had shown that the proportion of fine grains (<50 \(\mu\)m) in the dust was more than 90\% (Liu et al. 2006). It is therefore assumed that BC in the aerosol would be absorbed by the fine dust grains when the dust storm moved to Beijing and this mixture was then deposited.

![Figure 2: Content and \(\delta^{13}C\) value of BC in dust, aerosol, and surface soil in the dust source region](image)

Table 2 Comparison of the content and \(\delta^{13}C\) value of BC and TIC, and \(^{10}\)Be concentration in different material.

<table>
<thead>
<tr>
<th>Materials</th>
<th>BC Content (%)</th>
<th>(\delta^{13}C) (‰)</th>
<th>TIC Content (%)</th>
<th>(\delta^{13}C) (‰)</th>
<th>(^{10})Be Content (x10^8 atom/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust(a)</td>
<td>1.00–1.44</td>
<td>–23.15 ~ –23.80</td>
<td>0.93–1.36</td>
<td>–5.95 ~ –5.98</td>
<td>1.69–2.07</td>
</tr>
<tr>
<td>Original site surface soils</td>
<td>~ <0.5%(b,c)</td>
<td>–21% ~ –24% (OC)(d)</td>
<td>0.53–4.68(f)</td>
<td>–5.58 ~ –8.35(e)</td>
<td>1.40–2.80(h)</td>
</tr>
<tr>
<td>Aerosols</td>
<td>0.55–2.77(h)</td>
<td>–25.17 ~ –25.02(i)</td>
<td>0.41–0.83(j)</td>
<td>–6.50 ~ –9.30(k)</td>
<td></td>
</tr>
</tbody>
</table>

\(a\)This work; \(b\)Data from loess; \(c\)Wen (1989); \(d\)Liu (1998); \(e\)Yang et al. (2001); \(f\)Wang et al. (2005); \(g\)Shen et al. (1987); \(h\)Tang et al. (2013); \(i\)Cao et al. (2011); \(j\)Zhang et al. (2002); \(k\)\(\delta^{13}C\) value of carbonate in surface soil of Beijing, unreported.
The $\delta^{13}C$ values also suggested that BC in the dust had been mixed. As mentioned above, dust was considered to be the source material of loess; the $\delta^{13}C$ value of BC in the dust should therefore be close to those in the loess (Liu et al. 2007). Research on loess profiles from Heimugou in Luochuan and Yangguo in Weinan showed a distinct difference in $\delta^{13}C$ value of OC and EC, which ranged from -21% to -24% and -12% to -21%, respectively (Liu and Ding 1998; Yang et al. 2001). As illustrated in Figure 2, the $\delta^{13}C$ value of BC is obviously more negative than the minimum $\delta^{13}C$ values of EC in the loess. An earlier investigation showed that the average $\delta^{13}C$ values of OC and EC fraction of PM$_{2.5}$ in Beijing were -25.17% and -25.02% (Cao et al. 2011). However, in different studies in Xi’an and Changchun, China, the $\delta^{13}C$ values of OC and EC fraction of PM$_{2.5}$ were less negative, ranging from -23.08% to -23.61% (Cao et al. 2011). The negative shift of $\delta^{13}C$ of BC in Beijing dust can be attributed to the mixture of the BC from aerosols, which contain both biogenic BC and fossil fuel source BC that has significantly lower ^{13}C and ^{14}C contents (Levin et al. 2003).

Due to the incorporation of fossil fuel sourced BC that had no ^{14}C from aerosols, the ^{14}C ages of BC in the dust were apparently old, ranging from 5181 to 3001 yr BP (Figure 3). Following the calculation of Levin and Hesshaimer (2000): $f_c = f_{m}/1.06, f_f = 1 - f_c$, where f_c, f_m, f_f and 1.06 represent “fraction contemporary,” “fraction modern” (measured), “fossil fuel carbon” and atmospheric ^{14}C level in f_m in 2006, respectively, f_c and f_f of BC were calculated to range between 0.51 to 0.65 and 0.35 to 0.49, respectively. Yang et al. (2005) reported a range of 0.33–0.50 of f_c of OC in PM$_{2.5}$ during 1999–2000 in Beijing. In contrast, f_c of OC in aerosol from Lhasa where the level of human activities was lower showed greater values varying between 0.70 and 0.38 (Huang et al. 2010). The relative stable and intermediate f_c value in the dust is consistent with more than a half of the BC being derived from aerosols during the dust transportation.

In contrast to BC that has been strongly influenced by the addition of BC in aerosol, TIC in the dust seems to have been little affected. As illustrated in Table 1, the TIC content in the dust ranged from 0.93% to 1.36%, and the $\delta^{13}C$ values varied between -5.39% and -5.98%. Both indicators showed stable characteristics (Figure 4). A former investigation of the content and $\delta^{13}C$ values of carbonates in the surface soil from source regions of the dust in China indicated that in the source region of the dust sampled in Beijing in this study the carbonate content was about 0.53% to 4.68%, and the $\delta^{13}C$ value was about -5.58% to -8.35% (Wang et al. 2005). Observation on the carbonate content in the total suspended particles (TSP) under normal meteorological conditions showed a content range of 0.41% to 0.83% in Beijing. However, when the dust storm arrived, the content reached to 1.80% in dust (Zhang and Dong 2002). Therefore, the TIC content in the dust mainly originated from the source region of dust. Previous studies in Changchun and Xi’an city in China indicated that the $\delta^{13}C$ values of the carbonates in the aerosol were close to that in the local surface soils (Cao et al. 2004;
Chen et al. 2008). The carbonate in surface soil of Beijing showed a variation between \(-6.50\%\)o and \(-9.30\%\)o in \(\delta^{13}C\) value (Song Zhang, personal communication). Therefore, there is a distinct difference in \(\delta^{13}C\) value between the carbonate fraction of surface soil in Beijing and the dust deposited during the sand storm, \(-5.98\%\)o to \(-5.39\%\)o (Table 1).

Both TIC content and \(\delta^{13}C\) values suggest there are no obvious influences of aerosol and the local soil on the TIC composition in the dust deposited during the storm. Observations in Xi’an have confirmed the close relationship between the TIC content and \(\delta^{13}C\) value in dust and the surface soil in the dust-source region (Cao et al. 2004). The \(\delta^{13}C\) value of carbonate in the dust deposited in Xi’an showed significantly closer range of \(\delta^{13}C\) value from \(-1.4\%\)o to \(-4.2\%\)o to these in the dust source regions rather than that in the local aerosol ranging from \(-7.50\%\)o to \(-9.30\%\)o. In summary, our results support the former suggestion that both the TIC content and \(\delta^{13}C\) value could be useful indicators for tracing the source regions of the dust (Zhang et al. 2002; Cao et al. 2004; Wang et al. 2005).

Proportion of the Secondary Carbonate in the Dust

Carbonate phases are widespread in the topsoil, particularly in the regions with annual precipitation of \(<750\) mm, while it is rare in regions with annual precipitation \(>1000\) mm (Liu et al. 2007). It can be divided into primary carbonates derived from the weathered ancient primary carbonate minerals occurring in limestone and dolostone, which have no \(^{14}C\), and secondary carbonates generated from the exchange of the \(CO_2\) gas with the primary carbon, which has the similar \(^{14}C\) concentration to that in exchanged \(CO_2\) gas (Cerling et al. 1989). According to Cerling et al. (1989), the primary carbonate can be redissolved to form bicarbonate in the presence of soil water. The content of the secondary carbonate is tightly controlled with the local hydrothermal conditions (Cerling 1984).

As listed in Table 1 and shown in Figure 3, the \(^{14}C\) ages of TIC range from 8460 to 9120 yr BP, suggesting a mixture of the primary carbonate and secondary carbonate as explained below. As the dust mainly originated from the surface dried salt-lake saline soils in the dust source region (Chen et al. 2008), the secondary carbonate in the dust would mostly originate as that the primary carbonate is dissolved as bicarbonate and then bicarbonate mixed with modern \(^{14}CO_2\) from the atmosphere, which would result in 50% modern material (Cerling et al. 1989). Therefore, the ratio of secondary carbonate to TIC \((d)\) in the dust could be regarded as \(d = 2 \times f_m\) noted above. As illustrated in Figure 3, \(d\) ranged from 0.63 to 0.70 in the dust in Beijing. For the source region of the dust this time, the surface soil water content is determined by the annual precipitation. The higher the annual precipitation, the bigger the secondary carbonate content probably is.
The annual mean precipitation in Inner Mongolia decreases generally from north to south from 410 to 58 mm per year (Bao et al. 2012). Investigations on the TIC content and δ13C value in the surface soils from dust source regions shows that both TIC content and δ13C value of TIC usually decreases with increasing annual precipitation in dust source regions (Wang et al. 2005). That means together with TIC content and δ13C value in dust from different source regions could be different. Therefore, investigating the secondary carbonate content in dust could be helpful to identify the source region. Traditional methods such as microscopic observation and δ13C method have limitations in differentiating the secondary and primary carbonate in dust. For microscopic observation, the ratio of the relative content of secondary carbonate to primary carbonate is estimated, and usually associated with great error (Wen et al. 1989). The δ13C method was found to be useful in loess profiles rather than in dust (Ning et al. 2006). The 13C method is useful for determining the content of secondary carbonate content in dust and thus to help identify the source region.

10Be in the Dust in Beijing and Ningbo

10Be is produced in the atmosphere. It is absorbed onto aerosol and is deposited on the Earth’s surface with both dust and precipitation. As the deposition of 10Be is closely related with the air mass movement and dust transportation, 10Be is an excellent tracer to indicate dust processes (Shen et al. 1987). As illustrated in Figure 5, the 10Be concentration in the dust in Beijing ranged from 1.69 to 2.07 × 10^8 atom/g with an average value of 1.82 × 10^8 atom/g. The concentration was more than an order of magnitude higher than that in the Gobi Desert, which had been previously measured to be from 0.5 to 4.5 × 10^6 atom/g (Lü et al. 2010). The 10Be concentration in the Beijing dust was closer to that in loess, which had a range between 1.4 and 2.8 × 10^8 atom/g rather than to that in paleosols ranging from 2.7 to 4.5 × 10^8 atom/g (Shen et al. 1987; Beer et al. 1993; Heller et al. 1993; Gu et al. 1996, 1997).

In contrast, the 10Be concentration in the dust in Ningbo was 1.25 × 10^9 atom/g, which is higher by 1 order of magnitude than that in Beijing. The large difference can be attributed to a longer transportation distance or differences between source regions of the dust. Lal (2007) investigated the 10Be concentration in the eolian dust in Miami (25°47′16″N; 80°13′78″W), and the result showed a similar value of (2.12 ± 0.036) × 10^9 atom/g with that of Ningbo. 10Be absorbed on aerosol particles may have incorporated into the dust and show a similar trend as BC. In the course of transportation of dust, the grain size of the particulates tend to become finer with increasing distance of transporta-
14C and 10Be in Dust

tion. Furthermore, the dust at Ningbo has a more negative δ13C of BC value of about −24.89‰, approximately by 1‰ in comparison with Beijing. The content of BC in the dust in Ningbo was 4.13%, approximately 3–4 times higher than that in Beijing. The 14C age of BC was 4277 ± 66 yr BP, older than most 14C ages of BC in the dust in Beijing. These differences probably reflect an increasing impact on the dust composition from aerosols during the longer distance of transportation of dust to Ningbo than to Beijing.

CONCLUSION

Black carbon (BC) deposited during the dust storm in Beijing on 16–17 April 2006 has been enriched by incorporation of the BC in the aerosol during its transportation from its source area in Mongolia. This enrichment changed the characteristics inherited from its original source area in Mongolia. It significantly increased the BC content, and modified its δ13C values and 14C ages. Therefore, BC is not suitable to be used as a tracer to indicate the dust source regions in China. The 10Be content in the dust was also found to be influenced during the transportation. However, carbonate in the dust could be a useful indicator to confirm the dust source regions. The present study shows that the carbonate content and δ13C value in the dust were firmly related to the source region. 13C of carbonate in the dust has proven to be another useful indicator for the source region of the dust in the arid and semi-arid regions of China.

ACKNOWLEDGMENTS

The authors are be grateful to Prof Deer Zhang from the China Meteorological Administration who provided the satellite images, and also to Profs Qizhong Wen from Guangzhou Institute of Geochemistry, CAS and Liping Zhou from Peking University, and Dr Baruch F Spiro from the Natural History Museum, UK, who discussed this study with us and gave useful suggestions.

REFERENCES

Tang Y, Han GL, Xu ZF. 2013. Black carbon in the atmoo
14C and 10Be in Dust

