# LATE PLEISTOCENE-RECENT ATMOSPHERIC δ<sup>13</sup>C RECORD IN C<sub>4</sub> GRASSES<sup>1</sup>

### LAURENCE J. TOOLIN

NSF Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson, Arizona 85721 USA

and

# CHRISTOPHER J. EASTOE

Department of Geosciences, The University of Arizona, Tucson, Arizona 85721 USA

ABSTRACT. Samples of Setaria species from packrat middens, herbarium specimens and modern plants preserve a record of  $\delta^{13}$ C of atmospheric CO<sub>2</sub> from 12,600 BP to the present. No secular trend is detected between 12,600 and 1800 BP, when the mean value of  $\delta^{13}$ C during that period was  $-6.5 \pm 0.1\%$  (the error is the standard deviation of the mean). Our value agrees with  $\delta^{13}$ C averages of pre-industrial CO<sub>2</sub> from polar ice cores, and differs significantly from modern regional (-8.2  $\pm 0.1\%$ ) and global (-7.7‰) values, which are higher because of fossil fuel burning.

#### INTRODUCTION

Recently, Marino and McElroy (1991) showed that carbon isotope ratios in a  $C_4$  grass, Zea mays (cultivated corn) tracked changes in the carbon isotope ratios of atmospheric CO<sub>2</sub> from the years 1948–1987. Here, we present  $\delta^{13}C$  and  $^{14}C$  age data for species of the  $C_4$  grass genus, Setaria.  $C_4$  plants have advantages over  $C_3$  plants as proxies for atmospheric carbon isotope studies. Briefly, in  $C_3$  plants, the fractionation of C isotopes that occurs during photosynthesis is affected by environmental factors, such as temperature and atmospheric CO<sub>2</sub> concentrations. Fractionation in  $C_4$  plants is little influenced by such factors and is more uniform (O'Leary 1988). Tiezen and Boutton (1989) confirm reduced variation in  $C_4$  grasses. Henderson, von Caemmerer and Farquhar (1992) explore details of photosynthetic fractionation in  $C_4$  dicots and monocots.

Two Setaria species, S. macrostachya and S. leucopila, are common today across the southwest USA and into central Mexico (Rominger 1962). Both respond to summer rains, growing and flowering from July to October. These species are commonly preserved in middens constructed by packrats (*Neotoma*). Packrat middens are well-known reservoirs of paleoecological information and have been the subject of intensive study (Betancourt, Van Devender & Martin 1990). Packrats forage up to 50 m from their dens for plants for food and den-building, sampling the local vegetation. In dry shelters in arid climates, middens of plant matter and fecal pellets at the den may become indurated with crystallized urine, and persist for tens of thousands of years.

One of us (L. J. T.) has studied grasses preserved in dozens of packrat middens from sites across the American Southwest (*e.g.*, Betancourt 1984; Van Devender & Toolin 1983; Van Devender, Toolin & Burgess 1990). Floral parts of *Setaria macrostachya* have been found in many midden assemblages from Arizona to Mexico (Fig. 1). The fragments studied for identification include the distinctive, indurated floral bracts (lemma and palea) that enclose the reproductive organs.

## METHODS AND RESULTS

All samples were given standard acid-base-acid treatment to remove carbonate and humic contaminants, and combusted to  $CO_2$ . Values of  $\delta^{13}C$  of the  $CO_2$  were measured with a 1 $\sigma$  analy-

<sup>1</sup>This paper was presented at the 14th International <sup>14</sup>C Conference, 20-24 May 1991, Tucson, Arizona.

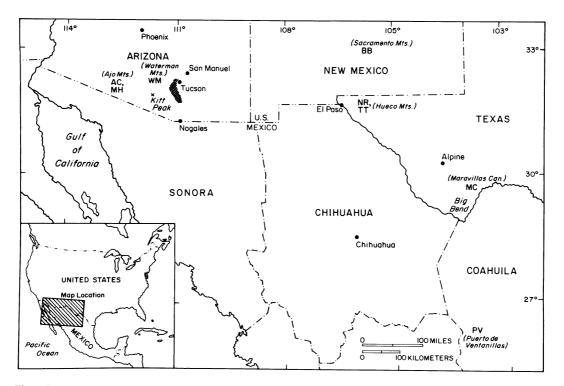



Fig. 1. Sample location map. Locations of Holocene packrat middens are indicated by letters (e.g., BB, Big Boy). Locations of modern (1990) specimens are within the cross-hatched area near Tucson.

tical precision of 0.13%, based on repeated measurements of a laboratory standard calibrated to PDB. The CO<sub>2</sub> was then reduced to graphite (Slota *et al.* 1987) for <sup>14</sup>C dating by accelerator mass spectrometry (AMS) (Linick *et al.* 1986; Donahue, Jull & Toolin 1990). Although it is preferable to measure  $\delta^{13}$ C on plant cellulose rather than on a mix of tissues, the small mass of *Setaria* fragments found in most samples (<1mg-5mg) precludes further loss of datable material that would occur on cellulose extraction. Direct dating of the *Setaria* was imperative because all plant species in a given midden may not be contemporaneous (Van Devender *et al.* 1985). In fact, in the course of this study, we found that the <sup>14</sup>C age of the *Setaria* differed greatly from previous measurements on other plants from the same middens. For example, Waterman Mountains #2 was originally dated on juniper twigs at 21,510 BP, whereas the *Setaria* from this midden dated to 9895 BP. The lack of contemporaneity of different plant species in a single midden calls into question the value of results in which the age of one plant, or of bulk materials, is assumed to be the same as for other plants. This situation appears to have been overlooked by Marino *et al.* (1992).

Five midden samples were large enough to compare cellulose (method modified after Green (1963)) and mixed-tissue values for  $\delta^{13}$ C (Table 1). These results can be compared to those from modern (AD 1990) Setaria samples. Modern samples were collected in eastern Pima and adjacent Santa Cruz counties, Arizona, and from The University of Arizona (ARIZ) herbarium. Cellulose versus mixed-tissue values for midden fragments differed less in the older specimens than in modern material (Table 1). We believe this is because the modern material contained more varied tissues (anthers, pistils, etc.) than the midden samples, where only the indurated, higher-cellulose-content lemmas and paleas remain. This effect is consistent with variations in different tissues of maize kernels (Tiezen & Fagre 1993).

| Sample no.       | Mixed-tissue (%) | Cellulose (‰) | Difference (%) |  |
|------------------|------------------|---------------|----------------|--|
| Modern Samples   |                  |               |                |  |
| AA-6630          | -11.8            | -11.0         | 0.8            |  |
| AA-6631          | -11.9            | -11.4         | 0.5            |  |
| AA-6646a         | -11.7            | -10.9         | 0.8            |  |
| AA-6646b         | -11.7            | -10.9         | 0.8            |  |
| AA-6342a         | -11.8            | -11.1         | 0.7            |  |
| AA-6342b         | -11.6            | -11.1         | 0.5            |  |
| AA-6864          | -12.4            | -11.5         | 0.9            |  |
| AA-6644          | -11.6            | -10.9         | 0.7            |  |
| AA-6343          | -11.4            | -10.8         | 0.6            |  |
|                  |                  |               | Mean = 0.7     |  |
| Holocene Samples |                  |               |                |  |
| AA-6634          | -9.9             | -9.6          | 0.3            |  |
| AA-7056          | -9.7             | -9.5          | 0.2            |  |
| AA-7058          | -9.5             | -9.1          | 0.4            |  |
| AA-7059          | -10.3            | -10.1         | 0.2            |  |
| AA-7061          | -10.3            | -10.0         | 0.3            |  |
|                  |                  |               | Mean = 0.3     |  |

TABLE 1. Mixed-Tissue versus Cellulose  $\delta^{13}$ C (PDB)

| TABLE 2. | Herbarium | and M | lodern | Samples |
|----------|-----------|-------|--------|---------|
|----------|-----------|-------|--------|---------|

| Arizona county | Year | Herbarium no.<br>(ARIZ) | AA-no. | δ <sup>13</sup> C<br>(‰, PDB) |
|----------------|------|-------------------------|--------|-------------------------------|
| Pima           | 1939 | 23344                   | 7704   | -10.4                         |
| Pima           | 1949 | 77865                   | 7648   | -9.8                          |
| Pima           | 1957 | 123359                  | 7649L* | -10.4                         |
| Pima           | 1968 | 169494                  | 7650L  | -11.9                         |
| Pima           | 1978 | 211886                  | 7651L  | -11.8                         |
| Pima           | 1986 | 285825                  | 7652M  | -11.9                         |
| Pima           | 1990 | 290001                  | 6644L  | -11.6                         |
| Pima           | 1990 | 289153                  | 6343L  | -11.4                         |
| Pima           | 1990 |                         | 6864M  | -12.4                         |
| Pima           | 1990 |                         | 6630L  | -11.8                         |
| Pima           | 1990 | 290010                  | 6631M  | -11.9                         |
| Santa Cruz     | 1990 | 289593                  | 6646aL | -11.7                         |
| Santa Cruz     | 1990 | 289593                  | 6646bL | -11.7                         |
| Santa Cruz     | 1990 | 289594                  | 6342aM | -11.8                         |
| Santa Cruz     | 1990 | 289594                  | 6342bM | -11.6                         |

\*Sample no. suffixes: L = S. *leucopila*; M = S. *macrostachya*; a, b indicate different plants collected under the same field number.

| Midden                | Locality*      | AA-no. | <sup>14</sup> C age (BP) | $\delta^{13}C$ |
|-----------------------|----------------|--------|--------------------------|----------------|
| Waterman Mts 1A       | Pima, AZ       | 7058   | 2990 ± 55                | -9.5           |
| Waterman Mts 1C       | Pima, AZ       | 7313   | $1795 \pm 70$            | -10.6          |
| Waterman Mts 1E       | Pima, AZ       | 7059   | $2080 \pm 55$            | -9.6           |
| Waterman Mts 2        | Pima, AZ       | 6862   | 9895 ± 160               | -9.4           |
| Waterman Mts 9A2      | Pima, AZ       | 7049   | $10335 \pm 75$           | -9.6           |
| Waterman Mts 9B       | Pima, AZ       | 7050   | $10415 \pm 70$           | -9.6           |
| Waterman Mts 9C       | Pima, AZ       | 7033   | 9485 ± 120               | -9.4           |
| Waterman Mts 9D       | Pima, AZ       | 7051   | 5610 ± 70                | -10.0          |
| Waterman Mts 10       | Pima, AZ       | 7034   | 8935 ± 105               | -9.5           |
| Waterman Mts 12A      | Pima, AZ       | 7035   | $6015 \pm 75$            | -9.0           |
| Waterman Mts 12A      | Pima, AZ       | 7060   | $6125 \pm 70$            | -9.4           |
| Waterman Mts 13A1     | Pima, AZ       | 6863   | 9340 ± 90                | -8.8           |
| Ajo Mts AC1B          | Pima, AZ       | 6951   | $11100 \pm 175$          | -9.6           |
| Ajo Mts MH1D          | Pima, AZ       | 6953   | $11240 \pm 115$          | -11.0          |
| Big Boy 3             | Otero, NM      | 6952   | $10365 \pm 255$          | -9.7           |
| Tank Trap 2           | El Paso, TX    | 6860   | 9825 ± 175               | -9.5           |
| Navar Ranch 1C1       | El Paso, TX    | 7056   | $6005 \pm 65$            | -9.7           |
| Navar Ranch 4B        | El Paso, TX    | 7061   | $10065 \pm 85$           | -10.0          |
| Navar Ranch 11        | El Paso, TX    | 7047   | 9785 ± 75                | -9.9           |
| Navar Ranch 12        | El Paso, TX    | 7048   | 9560 ± 85                | -9.7           |
| Navar Ranch 14D       | El Paso, TX    | 7037   | 9885 ± 90                | -10.5          |
| Navar Ranch 18C       | El Paso, TX    | 7038   | 7950 ± 60                | -8.9           |
| Navar Ranch 19C       | El Paso, TX    | 7036   | $9125 \pm 60$            | -9.6           |
| Maravillas Canyon 13  | Brewster, TX   | 7046   | $2790 \pm 50$            | -10.2          |
| Maravillas Canyon 16  | Brewster, TX   | 7055   | 6800 ± 60                | -9.4           |
| Puerto de Ventanillas | Coahuila, Mex. | 7314   | $12605 \pm 190$          | -9.4           |

TABLE 3. Specimens from Packrat Middens

\*AZ = Arizona; NM = New Mexico; TX = Texas: Mex. = Mexico. No county given for Mexican sample.

Table 2 presents mixed-tissue values of  $\delta^{13}$ C for all recent samples.  $\delta^{13}$ C measurements for modern S. macrostachya and S. leucopila (indicated by M or L in the table) were essentially the same, ranging from -11.6 to -12.4‰ and -11.5 to -12.8‰, respectively. For nine modern (1990) plants,  $\delta^{13}$ C averages -11.90 ± 0.14‰.

Table 3 presents the results of our measurements on *Setaria* specimens from fossil packrat middens. The two species cannot be distinguished in this material. We show the values of  $\delta^{13}$ C of florets ( $\delta^{13}_{p}$ ). The data for 26 midden samples of *Setaria* (12,600–1800 BP) average -9.67 ± 0.10‰, and the data from the herbarium samples (AD 1939–1986) range between the data for ancient and 1990 samples (Table 2).

Farquhar (1983) and Henderson, von Caemmerer and Farquhar (1992) have established a function for relating the  $\delta^{13}$ C of C<sub>4</sub> plants ( $\delta^{13}_{p}$ ) to  $\delta^{13}_{a}$ , the  $\delta^{13}$ C of the atmospheric CO<sub>2</sub> fixed by the plant. For our *Setaria*, the relation between  $\delta^{13}_{p}$  of florets and  $\delta^{13}_{a}$  (Farquhar, personal communication) is

$$\delta_{a}^{13} = 2.9 + \delta_{p}^{13} \tag{1}$$

To account for the offset between mixed-tissue and cellulose  $\delta_p^{13}$  values, we added the mean difference of the Holocene samples, 0.3‰ from Table 1, to Equation (1); thus the relation for midden florets becomes

$$\delta_{a}^{13} = 3.2 + \delta_{p}^{13} \qquad (2)$$

For the AD 1939–1990 samples, we added the mean differences for 1990 samples (0.7, from Table 3) to Equation (1) and applied the relation

$$\delta_{a}^{13} = 3.6 + \delta_{p}^{13} \qquad (3)$$

We applied these corrections (Eq. 2, 3) to relate all of our  $\delta_p^{13}$  measurements to a common datum, independent of variability in the character of the mixed tissues, following Marino and McElroy (1991). Figure 2 presents the resulting  $\delta_a^{13}$  data for all samples, derived with the above equations.

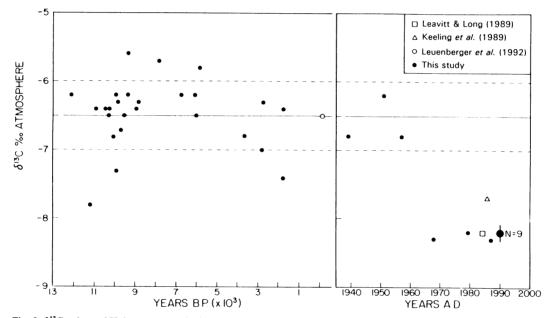



Fig. 2.  $\delta^{13}$ C values of Holocene atmospheric CO<sub>2</sub>. • = Setaria data; \_\_\_\_ = mean ± 1  $\sigma$  of pre-1939 samples. --- = scatter of individual measurements about the mean; • = mean of data for samples collected in 1990; the error bar = 1 $\sigma$ . Direct measurements:  $\Delta$ ,  $\Box$ ;  $\circ$  = the mean of Arctic and Antarctic ice core pre-industrial  $\delta^{13}$ C measurements.

The mean  $\delta_a^{13}$  from nine 1990 Setaria samples is  $-8.2 \pm 0.14\%$ , lower than the 1986 global mean of -7.7% (Keeling et al. 1989), but in line with differences between  $\delta^{13}$ C values from clean-air and inland sites (Keeling 1961). Our value is empirically supported by comparison with an N<sub>2</sub>O-corrected, seasonally averaged, mean atmospheric  $\delta^{13}$ C value of -8.2%, measured in 1983–1984 at Kitt Peak, southern Arizona (Leavitt & Long 1989).

From Equation (2), the mean value of  $\delta_a^{13}$  for all 26 midden samples is  $-6.5 \pm 0.1\%$ , which differs significantly from the modern and global values. Our Holocene mean agrees with  $\delta^{13}$ C data for CO<sub>2</sub> in pre-industrial ice from Antarctica (Siple,  $-6.5 \pm 0.07\%$ ; South Pole  $-6.70 \pm 0.13\%$ ; Byrd,  $-6.49 \pm 0.05\%$ , and Dye 3, Greenland,  $-6.41 \pm 0.09\%$ ) (Leuenberger, Siegenthaler & Langway 1992). The scatter of each of our Holocene measurements (0.5%) is close to that of the modern samples

samples (0.42‰). This suggests that long-term changes in  $\delta_a^{13}$  from 12,600–1800 BP could not have exceeded a few tenths of 1‰. Although our data indicate no secular trend in  $\delta_a^{13}$  during the Holocene, events of short duration or small amplitude might remain undetected.

The nearly step-wise drop of 1.8% between 1957 and 1968 may be real, the few data notwithstanding. This interval of time corresponds approximately with a surge in the burning of fossil fuels in the southwestern USA, as a result of urban growth and ore smelting, and to a global increase in fossil fuel CO<sub>2</sub> production (Marland 1990). We plan to make more measurements on 20th century specimens to determine this segment of the  $\delta_a^{13}$  vs. time curve with better precision.

Recently, Martinelli *et al.* (1991) showed that large outputs of biogenically fractionated CO<sub>2</sub> from the Amazon River produced a gradient in  $\delta_a^{13}$  that could mimic secular changes produced, for example, by changes in atmospheric CO<sub>2</sub> concentration. In our region, there is no such large biogenic effect today, and none appears to have operated in the past. If our Holocene samples are grouped by region, there is no distinction between the western group (Arizona) with mean  $\delta_p^{13} = -9.6 \pm 0.15\%$  and the eastern group (Texas and New Mexico) with mean  $\delta_p^{13} = -9.7 \pm 0.13\%$ .

## CONCLUSION

Our results provide the first measurements of C-isotope values of Holocene atmospheric CO<sub>2</sub>, constrained by AMS <sup>14</sup>C dating of the carbon used for the stable-isotope measurements. Reconstructions of  $\delta_a^{13}$  such as ours may help clarify the interpretation of  $\delta_p^{13}$  changes in C<sub>3</sub> plant tissues (*e.g.*, tree rings) in which C-isotope fractionation is strongly influenced by environmental factors (Leavitt & Danzer 1991; Krishnamurthy & Epstein 1990).

### ACKNOWLEDGMENTS

We are greatly indebted to our colleagues at the University of Arizona. D. J. Donahue and A. J. T. Jull reviewed the manuscript and made important suggestions. T. Lange provided support for the laboratory work. C. T. Mason, Jr., gave access to Herbarium specimens. T. R. Van Devender of the Arizona-Sonora Desert Museum, Tucson, provided all midden *Setaria*. We also thank B. Marino, U. Siegenthaler and G. Farquhar for helpful reviews of an earlier manuscript. S. Leavitt provided further review and much valuable discussion.

#### References

- Betancourt, J. L. 1984 Late Quaternary plant zonation and climate in southeastern Utah. *Great Basin Naturalist* 44: 1-35.
- Betancourt, J. L., Van Devender, T. R. and Martin, P. S., eds., 1990 Packrat Middens - The Last 40,000 Years of Biotic Change. Tucson, The University of Arizona Press: 467 p.
- Donahue, D. J., Jull, A. J. T. and Toolin, L. J. 1990 Radiocarbon measurements at the University of Arizona AMS Facility. Nuclear Instrumentation and Methods in Physics Research B52: 224-228.
- Farquhar, G. D. 1983 On the nature of carbon isotope discrimination in C<sub>4</sub> species. Australian Journal of Plant Physiolology 10: 205-226.
- Green, J. W. 1963 Wood cellulose. In Whistler, R. L., ed., Methods of Carbohydrate Chemistry III. New York, Academic Press: 9-21.
- Henderson, F. A., Von Caemmerer, G. D. and Farquhar,

G. D. 1992 Short-term measurements of carbon isotope discrimination in several  $C_4$  species. Australian Journal of Plant Physiology 19: 263-285.

- Keeling, C. D. 1961 The concentration and isotopic abundances of carbon dioxide in rural and marine air. *Geochimica et Cosmochimica Acta* 24: 227-298.
- Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. F. Heimann, M., Mook, W.G. and Roeloffzer, H. 1989 A three dimensional model of atmospheric CO<sub>2</sub> transport based on observed winds:
  1. Analysis of observational data. American Geophysical Monograph 55: 165-236.
- Krishnamurthy, R. V. and Epstein, S. 1990 Glacialinterglacial excursion in the concentration of atmospheric CO<sub>2</sub>: Effect in the  ${}^{13}C/{}^{12}C$  ratio in wood cellulose. *Tellus* 42B: 423-434.
- Leavitt, S. W. and Danzer, S. R. 1992  $\delta^{13}$ C variations in C<sub>1</sub> plants over the past 50,000 years. *In* Long, A.

and Kra, R. S., eds., Proceedings of the 14th International <sup>14</sup>C Conference. *Radiocarbon* 34(3): 783-791.

- Leavitt, S. W. and Long, A. 1989 Variation of concentration, <sup>14</sup>C activity, and <sup>13</sup>C/<sup>12</sup>C ratios of CO<sub>2</sub> in air samples from Kitt Peak, Arizona. *In* Long, A. and Kra, R. S., eds., Proceedings of the 13th International <sup>14</sup>C Conference. *Radiocarbon* 31(3): 464–468.
- Leuenberger, M., Siegenthaler, U. and Langway, C. 1992 Carbon isotope composition of atmospheric  $CO_2$ during the last ice age from an Antarctic ice core. *Nature* 357: 488-490.
- Linick, T. W., Jull, A. J. T., Toolin, L. J. and Donahue, D. J. 1986 Operation of the NSF-Arizona accelerator facility for radioisotope analysis, and results from selected collaborative research projects. *In Stuiver*, M. and Kra, R. S., eds., Proceedings of the 12th International <sup>14</sup>C Conference. *Radiocarbon* 28(2A): 522-533.
- Marino, B. D. and McElroy, M. B. 1991 Isotope composition of atmospheric CO<sub>2</sub> inferred from carbon in  $C_4$  plant cellulose. *Nature* 349: 127-131.
- Marino, B. D., McElroy, M. B., Salawitch, R. J. and Spaulding, W. G. 1992 Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO<sub>2</sub>. Nature 357: 461-466.
- Marland, G. 1990 Global CO<sub>2</sub> emmisions. In Boden, T.
  A., Danciruk, P. and Farrell, M. P., eds., Trends '90:
  A Compendium of Data on Global Change. Oak
  Ridge National Laboratory/CDIAC-36: 92 p.
- Martinelli, L. A., Devol, A. H., Victoria, R. L. and Rickey, J. E. 1991 Stable carbon isotope variation in  $C_3$  and  $C_4$  plants along the Amazon River. *Nature* 353: 57-59.

- O'Leary, M. H. 1988 Carbon isotopes in photosynthesis. Bioscience 38: 328-336.
- Rominger, J. 1962 Taxonomy of Setaria (Gramineae) in North America. Illinois Biological Monograph 29. Urbana, University of Illinois Press: 1-132.
- Slota, P. J., Jull, A. J. T., Linick, T. and Toolin, L. J. 1987 Preparation of small samples for <sup>14</sup>C accelerator targets by catalytic reduction of CO. *Radiocarbon* 29(2): 303–306.
- Tiezen, L. L. and Boutton, T. W. 1989 Stable carbon isotopes in terrestrial ecosystem research. In Rundel, P. W., Ehleringer, J.R. and Nagy, K. A., eds., Stable Carbon Isotopes in Ecological Research, Ecological Studies Series. New York, Springer Verlag: 167-195.
- Van Devender, T. R., Martin, P. S., Thompson, R. S., Jull, A. J. T., Long, A., Toolin, L. J. and Donahue, D. J. 1985 Fossil packrat middens and the tandem accelerator mass spectrometer. *Nature* 317: 610-613.
- Van Devender, T. R. and Toolin, L. J. 1983 Late Quaternary vegetation of the San Andres mountains, Sierra County, New Mexico. In Eidenbach, P. L., ed., Prehistory of Rhodes Canyon, New Mexico. Tularosa, New Mexico, Human Systems Research: 33-54.
- Van Devender, T. R., Toolin, L. J. and Burgess, T. L. 1990 The ecology and paleoecology of grasses in selected Sonoran Desert plant communities. *In* Betancourt, J. L., Van Devender, T. R. and Martin, P. S., eds., *Packrat Middens – The Last 40,000 Years* of Biotic Change. Tucson, The University of Arizona Press: 326–349.