HIGH-PRECISION BIDECADAL CALIBRATION OF THE RADIOCARBON TIME SCALE, 500–2500 BC

GORDON W. PEARSON

Retired from Palaeoecology Centre, The Queen's University of Belfast, BEIfast, BT71NN, Northern Ireland

and

MINZE STUIVER

Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, Washington 98195 USA

INTRODUCTION

The sole purpose of this paper is to present a previously published ¹⁴C data set to which minor corrections have been applied. All basic information previously given is still applicable (Pearson & Stuiver 1986). The corrections are needed because ¹⁴C count-rate influences (radon decay in Seattle, a re-evaluation of the corrections applied for efficiency variation with time previously unrecognized in Belfast) had to be accounted for in more detail. Information on the radon correction is given in Stuiver and Becker (1993). The Belfast corrections were necessary because the original correction for efficiency variations with time was calculated using two suspect standards (these were shown to be suspect by recent observations) that overweighted the correction. A re-evaluation (Pearson & Qua 1993) now shows it to be almost insignificant, and the corrected dates (using the new correction) became older by about 16 years.

Systematic ¹⁴C age differences between the current Seattle and Belfast data sets are 9.9, 16.6 and 2.4 ¹⁴C yr for, respectively, the 1–1000 BC, 1001–2000 BC and 2001–3000 BC intervals. Reproducibility can be expressed by an error multiplier, $K_{\text{Seattle-Belfast}}$, which is defined as the ratio of the actual standard deviation in the age differences and the average standard deviation of the differences calculated from the quoted errors in the ¹⁴C determinations. K values for the above intervals are, respectively, 1.3, 1.4 and 1.8. A detailed discussion of the offsets and K values for the AD 1840–6000 BC interval is given in Stuiver and Pearson (1992, 1993). Here we note: 1) the Table 1 Seattle-Belfast bidecadal conventional (Stuiver & Polach 1977) ¹⁴C age averages may be subject to systematic errors of 5–8 ¹⁴C yr maximally; and 2) the standard deviations given with the bidecadal ¹⁴C ages are based on quoted errors multiplied with $K_{\text{Belfast}} = 1.23$ and $K_{\text{Seattle}} = 1.6$, and thus account for 90–100% of the variance encountered in the Seattle-Belfast ¹⁴C age differences. Details on K determinations can be found, *e.g.*, in Stuiver and Pearson (1986).

Seattle-Belfast bidecadal ¹⁴C age averages for the AD 1840–500 BC and 2500–6000 BC interval are given in a twin paper (Stuiver & Pearson 1993).

CALIBRATION INSTRUCTIONS

We recommend that users of ¹⁴C dates obtain additional information on reproducibility (and systematic error, if any) from the laboratory reporting the ¹⁴C date. This information should lead to a realistic standard deviation in the reported age. A systematic error has to be deducted from, or added to, the reported ¹⁴C age prior to age calibration.

26 G. W. Pearson and M. Stuiver

Only the calibration curve is given in Figure 1; the one-sigma (1 σ ; standard deviation) uncertainty in the curve is not given. The actual standard deviation (averaging 12.9 ¹⁴C yr for the nearly 8000 cal yr bidecadal calibration curve of Belfast-Seattle ¹⁴C age averages) is tabulated in Table 1 for each bidecadal midpoint.

Cal BP ages are relative to the year AD 1950, with 0 cal BP equal to AD 1950. The relationship between cal AD/BC and cal BP ages is cal BP = 1950 - cal AD, and cal BP = 1949 + cal BC. The switch from 1950 to 1949 when converting BC ages is caused by the absence of the zero year in the AD/BC chronology.

The conversion of a ¹⁴C age to a cal age is as follows: 1) draw line A parallel to the bottom axis through the ¹⁴C age to be converted; 2) draw vertical line(s) through the intercept(s) of line A and the calibration curve. The cal AD/BC ages can be read at the bottom axis, the cal BP ages at the top.

To convert the standard error in the ¹⁴C age into a range of cal AD/BC (BP) ages, determine the sample standard deviation, σ , by multiplying the quoted laboratory standard deviation by the "error multiplier". Unfortunately, information on error multipliers is often lacking. Here, the ¹⁴C age user should refer to K values given in Stuiver and Pearson (1992, 1993) or Scott, Long & Kra (1990).

Once the sample σ is known, the curve σ should be read from Table I. The curve σ and sample σ should then be used to calculate total $\sigma = ((\text{sample } \sigma)^2 + (\text{curve } \sigma)^2)^{\frac{1}{2}}$ (Stuiver 1982). Lines parallel to A should now be drawn through the ¹⁴C age + total σ , and ¹⁴C age - total σ value. The vertical lines drawn through the intercepts now yield the outer limits of possible cal AD/BC (cal BP) ages that are compatible with the sample standard deviation.

The conversion procedure yields 1) single or multiple cal AD/BC (BP) ages that are compatible with a certain ¹⁴C age, and 2) the range(s) of cal ages that correspond(s) to the standard deviation in the ¹⁴C age (and calibration curve). Here, the user determines the calibrated ages from the Figure 1 graphs by drawing lines, whereas an alternate approach would be to use the computerized calibration (CALIB) program discussed elsewhere in this issue (Stuiver & Reimer 1993).

The probability that a certain cal age is the actual sample age may be quite variable within the cal age range. Higher probabilities are encountered around the intercept ages. The non-linear transform of a Gaussian standard deviation around a ¹⁴C age into cal AD/BC (cal BP) age is not a simple matter, and computer programs are needed to derive the complex probability distribution. The CALIB program incorporates such probability distributions.

The calibration data presented here are valid for northern hemispheric samples that were formed in equilibrium with atmospheric ¹⁴CO₂. Systematic age differences are possible for the southern hemisphere where ¹⁴C ages of wood samples tend to be about 40 yr older (Vogel *et al.* 1993). Thus, ¹⁴C ages of southern hemispheric samples preceding our era of fossil-fuel combustion should be reduced by 40 yr before being converted into cal AD/BC (BP) ages.

The Figure 1 calibration points are the midpoints of wood samples spanning 20 yr. Samples submitted for dating may cover shorter or longer intervals. The decadal calibration results of the Seattle laboratory (Stuiver & Becker 1993; Stuiver & Reimer 1993) provide a better time resolution, whereas the CALIB program also has an option to use Figure 1 moving averages (*e.g.*, a 5-point or 100-yr moving average of the bidecadal curve). The latter should be used for a sample grown over a 100-yr interval. Samples formed over intervals longer than a decade or bidecade are very desirable as the ¹⁴C "wiggles" of the calibration curve have less influence on the (midpoint) cal age when a smoothed (moving average) calibration curve is used (Stuiver 1992).

The calibration curve is valid only for age conversion of samples that were formed in equilibrium with atmospheric CO_2 . Conventional ¹⁴C ages of materials not in equilibrium with atmospheric reservoirs do not take into account the offset in ¹⁴C age that may occur (Stuiver & Polach 1977). This constant offset, or reservoir deficiency, must be deducted from the reported ¹⁴C age before any attempt can be made to convert to cal AD/BC (BP) ages.

The reservoir deficiency is time dependent for the mixed (and deep) layer of the ocean. For the calibration of marine samples in this time domain, the reader is referred to Stuiver and Braziunas (1993) and, of course, the CALIB program.

ACKNOWLEDGMENTS

The ¹⁴C research at Seattle was supported by a National Science Foundation grant BNS-9004492, and by a SERC grant in Belfast. We thank Dr. B. Becker of the University of Hohenheim, Stuttgart for providing German oak (unified Donau/Main series) samples, Drs. J. R. Pilcher and M. G. Baillie for the wood samples of the Irish chronology, and F. Qua, P. J. Reimer and P. J. Wilkinson for crucial technical and analytical support.

REFERENCES

- Pearson, G. W. and Qua, F. 1993 High-precision ¹⁴C measurement of Irish oaks to show the natural ¹⁴C variations from AD 1840-5000 BC: A correction. *Radiocarbon*, this issue.
- Pearson, G. W., and Stuiver, M. 1986 High-precision calibration of the radiocarbon time scale, 500-2500
 BC. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 839-862.
- Scott, E. M., Long, A. and Kra, R., eds. 1990 Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories: *Radiocarbon* 32(3): 253-397.
- Stuiver, M. 1982 A high-precision calibration of the AD radiocarbon time scale. *Radiocarbon* 24(1): 1–26.
- 1992 How accurate are our chronologies of the past? I: Time warps caused by the transformation of ¹⁴C ages. Proceedings of the Dahlem Workshop on Global Changes in the Perspective of the Past. Chichester, John Wiley & Sons, in press.
- Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale AD 1950– 6000 BC. *Radiocarbon*, this issue.
- Stuiver, M. and Braziunas, T. F. 1993 Modeling radio-

carbon ages of marine samples back to 10,000 BC. *Radiocarbon*, this issue.

- Stuiver, M. and Pearson, G. W. 1986 High-precision calibration of the radiocarbon time scale, AD 1950– 500 BC. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2B): 805–838.
- 1992 Calibration of the radiocarbon time scale 2500-5000 BC. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer Verlag: 19-33.
- _____1993 High-precision bidecadal calibration of the radiocarbon time scale, AD 1950-500 BC and 2500-6000 BC. *Radiocarbon*, this issue.
- Stuiver, M. and Polach, H. 1977 Discussion: Reporting of ¹⁴C data. *Radiocarbon* 19(3): 355-363.
- Stuiver, M. and Reimer, P. J. 1993 Extended ¹⁴C database and revised CALIB radiocarbon age calibration program. *Radiocarbon*, this issue.
- Vogel, J. C., Fuls, A., Visser, E. and Becker, B. 1993 Pretoria calibration curve for short-lived samples, 1930 BC-3350 BC. *Radiocarbon*, this issue.

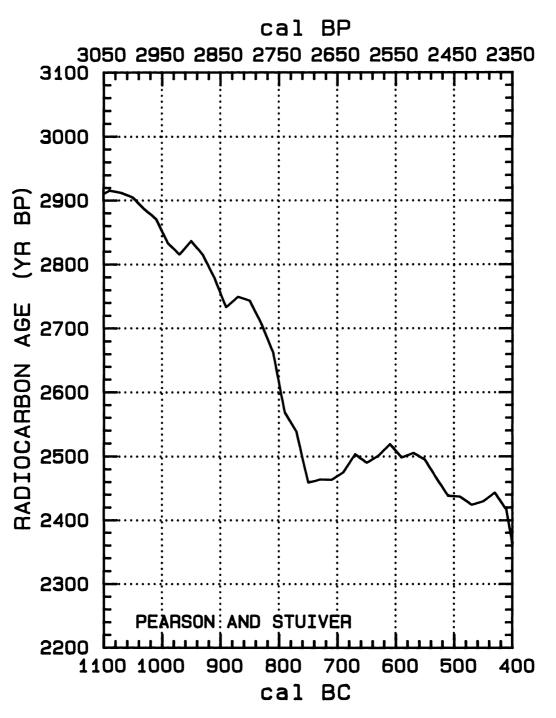


Fig. 1A-D. ¹⁴C calibration curve derived from bidecadal samples

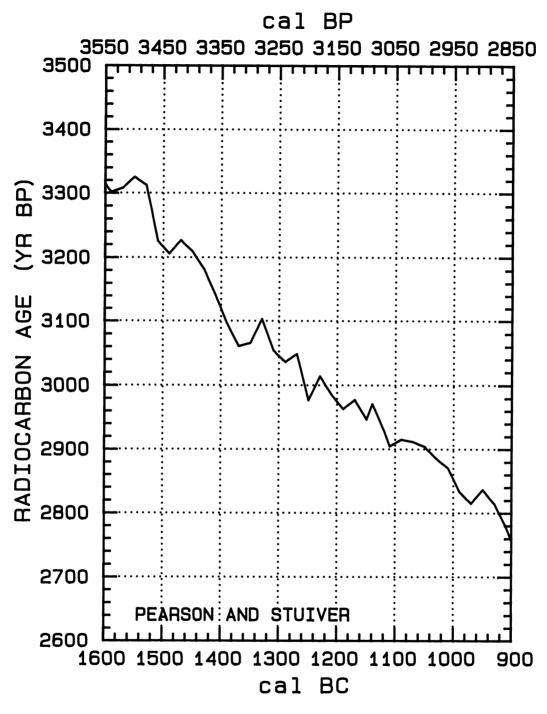


Fig. 1B

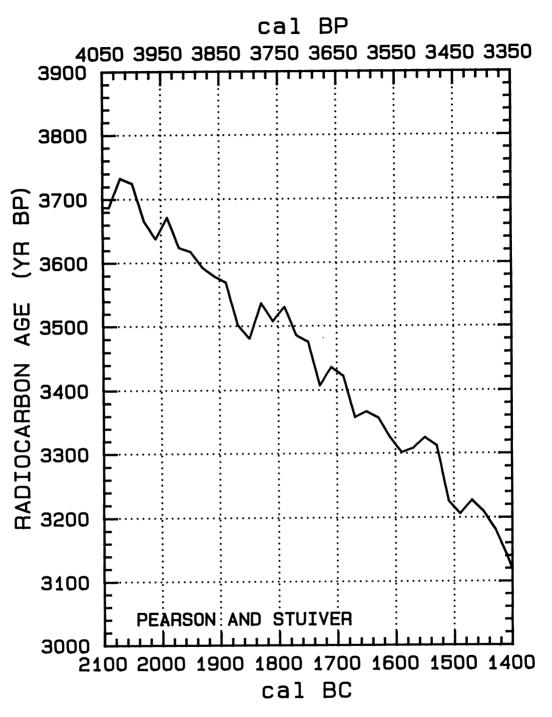


Fig. 1C

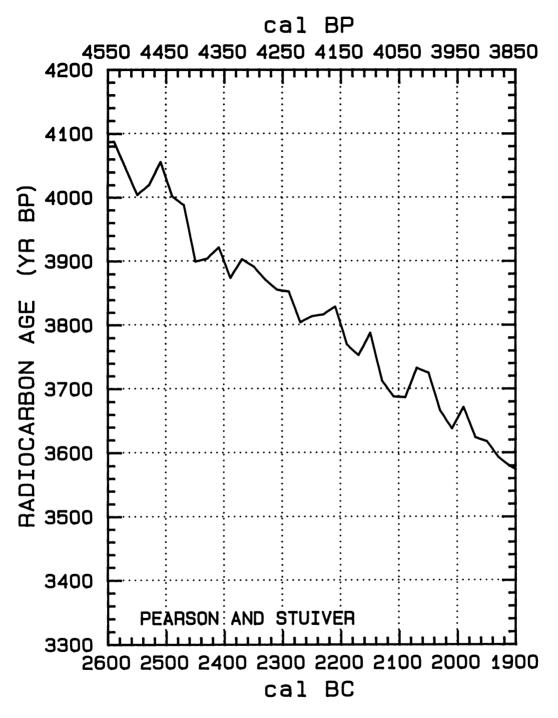


Fig. 1D

32 G. W. Pearson and M. Stuiver

TABLE 1. Weighted averages of University of Belfast and the University of Washington (Seattle) ¹⁴C age determinations. The cal AD/BC (or cal BP) ages represent the midpoints of bidecadal wood sections, except as noted in the text. The standard deviation in the ages and Δ^{14} C (defined in Stuiver and Polach 1977) values includes lab error multipliers of 1.23 for Belfast and 1.6 for Seattle.

6							······
		¹⁴ C				¹⁴ C	
Cal AD/BC	Δ^{14} C ‰	age (BP)	Cal BP	Cal AD/BC	Δ^{14} C ‰	age (BP)	Cal BP
510 вс	-6.0 ± 1.2	2438 ± 10	BP 2459	1350 вс	17.6 ± 1.8	3066 ± 14	BP 3299
530 вс	-7.1 ± 1.1	2466 ± 9	BP 2479	1370 вс	20.7 ± 1.8	3061 ± 14	BP 3319
550 вс	-8.2 ± 1.0	2495 ± 8	BP 2499	1390 вс	18.7 ± 1.5	3096 ± 12	BP 3339
570 вс	-7.1 ± 1.3	2505 ± 11	BP 2519	1410 вс	15.4 ± 1.6	3141 ± 13	BP 3359
590 вс	-3.9 ± 1.3	2498 ± 11	BP 2539	1430 вс	12.7 ± 1.5	3182 ± 12	BP 3379
610 вс	-4.0 ± 1.2	2519 ± 10	BP 2559	1450 вс	11.7 ± 1.1	3210 ± 9	BP 3399
630 вс	0.6 ± 1.2	2501 ± 9	BP 2579	1470 вс	11.9 ± 1.4	3227 ± 11	BP 3419
650 вс	4.4 ± 1.3	2490 ± 10	BP 2599	1490 вс	17.1 ± 1.6	3206 ± 13	BP 3439
670 вс	5.2 ± 1.6	2503 ± 13	BP 2619	1510 вс	17.0 ± 1.7	3226 ± 14	bp 3459
690 вс	11.2 ± 1.8	2475 ± 14	BP 2639	1530 вс	8.5 ± 1.6	3313 ± 13	BP 3479
710 вс	15.1 ± 2.0	2464 ± 16	BP 2659	1550 вс	9.3 ± 1.8	3326 ± 15	bp 3499
730 вс	17.5 ± 1.5	2464 ± 12	BP 2679	1570 вс	14.0 ± 2.1	3308 ± 17	BP 3519
750 вс	20.6 ± 1.7	2459 ± 14	BP 2699	1590 вс	17.3 ± 1.5	3301 ± 12	BP 3539
770 вс	13.1 ± 2.0	2538 ± 16	bp 2719	1610 вс	16.7 ± 1.5	3326 ± 12	BP 3559
790 вс	11.7 ± 1.3	2568 ± 10	BP 2739	1630 вс	15.1 ± 1.6	3357 ± 12	BP 3579
810 BC	2.3 ± 1.6	2662 ± 13	bp 2759	1650 вс	16.3 ± 1.3	3367 ± 10	BP 3599
830 BC	-0.8 ± 1.5	2707 ± 12	bp 2779	1670 вс	20.0 ± 1.7	3357 ± 14	BP 3619
850 BC	-2.9 ± 1.6	2743 ± 13	bp 2799	1690 вс	14.2 ± 1.6	3423 ± 12	BP 3639
870 вс	-1.3 ± 1.6	2750 ± 13	bp 2819	1710 вс	15.0 ± 1.9	3436 ± 15	bp 3659
890 BC	3.2 ± 1.6	2733 ± 13	BP 2839	1730 вс	21.1 ± 1.6	3407 ± 12	BP 3679
910 вс	-0.1 ± 1.5	2779 ± 12	BP 2859	1750 вс	14.9 ± 1.6	3476 ± 12	BP 3699
930 вс	-2.1 ± 1.7	2815 ± 13	bp 2879	1770 вс	16.1 ± 1.4	3486 ± 11	BP 3719
950 вс	-2.4 ± 1.5	2837 ± 12	BP 2899	1790 вс	12.8 ± 1.4	3531 ± 11	bp 3739
970 вс	2.7 ± 1.3	2815 ± 10	bp 2919	1810 вс	18.2 ± 1.5	3508 ± 12	bp 3759
990 BC	2.8 ± 1.4	2833 ± 11	bp 2939	1830 вс	17.0 ± 1.9	3537 ± 15	bp 3779
1010 вс	0.5 ± 1.1	2871 ± 9	bp 2959	1850 вс	26.6 ± 1.7	3481 ± 13	bp 3799
1030 вс	1.1 ± 1.5	2886 ± 12	BP 2979	1870 вс	26.4 ± 1.5	3502 ± 12	BP 3819
1050 вс	1.2 ± 1.3	2905 ± 10	BP 2999	1890 вс	20.3 ± 1.6	3569 ± 12	BP 3839
1070 вс	2.7 ± 1.3	2912 ± 11	BP 3019	1910 вс	21.5 ± 1.9	3579 ± 15	BP 3859
1090 вс	4.7 ± 1.3	2916 ± 11	BP 3039	1930 вс	22.2 ± 1.5	3593 ± 12	BP 3879
1110 вс	8.4 ± 1.4	2905 ± 11	BP 3059	1950 вс	21.5 ± 1.6	3618 ± 13	BP 3899
1120 вс	6.6 ± 1.7	2930 ± 14	BP 3069	1970 вс	23.1 ± 1.8	3624 ± 14	BP 3919
1140 вс	3.8 ± 1.5	2972 ± 12	BP 3089	1990 вс	19.6 ± 1.4	3672 ± 11	BP 3939
1150 BC	8.1 ± 1.7	2947 ± 14	BP 3099	2010 вс	26.4 ± 1.7	3638 ± 13	BP 3959
1170 вс	6.6 ± 1.7	2978 ± 13	BP 3119	2030 вс	25.3 ± 1.5	3666 ± 12	BP 3979
1190 BC	10.9 ± 1.7	2963 ± 14	BP 3139	2050 вс	20.2 ± 1.4	3725 ± 11	BP 3999
1210 вс	10.5 ± 1.4	2986 ± 11	BP 3159	2070 вс	21.7 ± 1.6	3733 ± 13	BP 4019
1230 BC	9.4 ± 1.6	3014 ± 13	BP 3179	2090 вс	30.1 ± 1.7	3687 ± 13	BP 4039
1250 BC	16.5 ± 1.5	2977 ± 12	BP 3199	2110 вс	32.4 ± 1.6	3688 ± 13	BP 4059
1270 вс 1200 вс	9.9 ± 1.8	3049 ± 14	BP 3219	2130 вс	31.8 ± 1.9	3713 ± 15	BP 4079
1290 вс 1210 вс	14.0 ± 1.8	3036 ± 14	BP 3239	2150 BC	24.7 ± 1.3	3788 ± 10	BP 4099
1310 BC	14.1 ± 1.8	3054 ± 15	BP 3259	2170 BC	31.6 ± 1.6	3753 ± 13	BP 4119
1330 вс	10.4 ± 1.7	3103 ± 13	BP 3279	2190 вс	31.9 ± 1.2	3770 ± 9	bp 4139
				I			

¹⁴ C				¹⁴ C			
Cal AD/BC	Δ ¹⁴ C ‰	age (BP)	Cal BP	Cal AD/BC	$\Delta^{14}C$ ‰	age (BP)	Cal BP
2210 вс	26.8 ± 1.4	3829 ± 11	BP 4159	2370 вс	37.2 ± 1.5	3903 ± 11	BP 4319
2230 вс	30.9 ± 1.5	3817 ± 12	BP 4179	2390 вс	43.6 ± 1.7	3874 ± 13	BP 4339
2250 вс	33.7 ± 1.4	3814 ± 11	BP 4199	2410 вс	39.9 ± 1.4	3922 ± 11	BP 4359
2270 вс	37.5 ± 1.9	3804 ± 15	BP 4219	2430 вс	44.7 ± 0.9	3904 ± 7	BP 4379
2290 вс	33.6 ± 1.6	3853 ± 12	BP 4239	2450 вс	48.0 ± 1.7	3899 ± 12	BP 4399
2310 вс	35.8 ± 1.8	3856 ± 14	BP 4259	2470 вс	38.8 ± 1.5	3988 ± 12	BP 4419
2330 вс	36.3 ± 1.5	3872 ± 11	BP 4279	2490 вс	39.5 ± 1.5	4002 ± 12	BP 4439
2350 вс	36.2 ± 1.6	3892 ± 13	BP 4299				

TABLE 1. (Continued)