gases were extracted from the water samples, measured volumetrically and analyzed by gas chromatography. The DIC was precipitated as barium carbonate and analyzed for both δ^{13} C and ¹⁴C. The DIC had δ^{13} C values of -3 to -1‰, similar to those observed for carbonates in the tills. If these heavy δ^{13} C values are used in readily available groundwater dating models without accounting for the effects of microbial methane formation, the resultant calculated age is unrealistically young.

Preliminary results show a positive correlation ($r^2 = 0.91$) between the $\delta^{13}C$ of the DIC and the concentration of methane in the water. With this correlation, a more realistic estimate of the water-rock interaction can be calculated and used for correcting the ¹⁴C age of the groundwater.

ISOTOPIC ANALYSIS OF CARBON IN A GEOTHERMAL SYSTEM

MUNEVERA HADŽIŠEHOVIĆ and NADA MILJEVIĆ

Boris Kidrič Institute of Nuclear Sciences, Vinča, 11001 Belgrade, Yugoslavia

The Surdulica geothermal system in the southeast part of Yugoslavia belongs to the granodiorite aquifer. Geothermal waters are in a range of $60^{\circ}-130^{\circ}$ C, and show bicarbonate sodium content, slightly alkali (pH = 7.0-7.5), mineralized (1.1-1.3 gr/L), with high fluoride and silica concentrations. The carbonate content of water increases with depth to the bottom of the system. Spring waters from altitudes higher than 800 m (top of the system, 1922 m asl) contain HCO₃ and CO₂ lower than 80 mg/L and 10 mg/L, respectively. During water flow, carbonate content fluctuates from 200 mg/L at the middle elevations (600 m asl) to 500 mg/L in geothermal waters reaching, in some parts of the aquifer, values of 3 g/L for HCO₃ and 500 mg/L for dissolved CO₂.

According to these data, the isotopic content of total dissolved inorganic carbon (TDIC) also changes. At the surface vegetation cover, $\delta^{13}C = -27\%$ and ¹⁴C content of 120 pMC were recorded. Data on ¹³C concentration vary from -15‰ in the springs at the middle elevations up to the interval of -5 to 0.5‰ for geothermal waters at the bottom.

In the surface water zone, we discovered infiltration of water at the top of the system (above 1300 m asl) with 30-50 pMC. The hot thermal spring zone in the foothills of the massif (400 m asl) is characterized by tritium-free water with very low ¹⁴C content (2-7 pMC). Because of the evident influence of dead carbon, ¹⁴C dating of these geothermal waters is difficult. For $A_o = 85$ pMC, the ages were estimated in the range of 10,000–28,000 years.

¹⁴C MEASUREMENTS ON LAMINATED LAKE SEDIMENTS

IRENA HAJDAS¹, JUERG BEER¹, GEORGES BONANI², ANDRE LOTTER³, MICHAEL STURM¹ and WILLY WÖLFLI²

With the development of the AMS technique, ¹⁴C measurements on laminated lake sediments became especially interesting because the measurement of milligram-size samples is now possible. The selection of well-defined terrestrial macrofossils (leaves, needles, seeds of trees) from the sediment, excludes "hard water" contamination.

¹Swiss Federal Institute for Water Resources and Water Pollution Control, EAWAG-ETH, CH-8600 Zürich, Switzerland ²Institut für Mittelenergiephysik, ETH, CH-8093 Zürich, Switzerland ³University of Bern, CH-3012 Bern, Switzerland