THE VOSTOK 10Be SPIKES AND AN INTERSTELLAR SHOCK WAVE?

CHARLES P SONETTI and MIHALY HORANYI

Lunar and Planetary Laboratory, The University of Arizona, Tucson, Arizona 85721 USA

10Be in the Vostok ice core discloses two prominent increases not accompanied by corresponding 18O enhancements. Raisbeck et al (1987) attribute these to cosmic-ray (CR) increases from geomagnetic field reversals or excursions. Sonett et al (1987) alternatively propose CR increases from propagating supernova shells. A possible source is the North Polar Spur (NPS) (Davelaar et al 1980). The recent uranium/thorium dating of Barbados corals implies radiocarbon ages that are too young (Bard et al 1990). This is in accord qualitatively with a 14C burst. We review whether the atmosphere inventory memory is consistent with reasonable ocean-atmosphere transfer rates.

REFERENCES

ACCURACY, PRECISION AND THROUGHPUT OF 14C MEASUREMENTS AT THE CENTER FOR ACCELERATOR MASS SPECTROMETRY (AMS)

J R SOUTHON, J S VOGEL, I D PROCTOR, M L ROBERTS and D W HEIKKINEN

Center for Accelerator Mass Spectrometry, University of California, Lawrence Livermore National Laboratory, Livermore, California 94550 USA

The AMS facility at Lawrence Livermore National Laboratory (LLNL) has been making 14C measurements for over one year. During that year, measurement precision, specified as the deviation among multiple measures on single samples, varied between 1% and 5%. Accuracy has remained within the stated precision during most tests, indicating that the errors are seldom systematic. The sources of the imprecisions are being discovered and successively eliminated. The stability of the accelerator has been a limiting factor, which improves as the accelerator is conditioned to higher voltages and better control is implemented. The output of the multisample, high-intensity ion source and its emittance have been improved through replacement of the ionizer and modification of the source geometry. Further modifications are planned to better couple the ion source to the isotope injection optics. 14C count rates have been in excess of 250 cps for modern material. Less than a minute is required to make individual measurements to 1% counting precision for contemporary samples. We introduced an efficient program for collecting multiparameter data on a Macintosh II CX, which stores summarized data directly into a spreadsheet format for rapid summation and analysis. Over 500 unknown samples for archaeology, atmospheric science, biomedicine, geology and oceanography have been measured in the first year of operation.