IN-SITU COSMOGENIC ¹⁴C IN TERRESTRIAL ROCKS: ANALYTICAL METHOD AND RESULTS

DEVENDRA LAL

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 USA

A J T JULL and D J DONAHUE

NSF Accelerator Facility for Radioisotpe Analysis, The University of Arizona, Tucson, Arizona 85721 USA

We have developed a wet analytical method for the quantitative extraction of *in-situ* cosmogenic ¹⁴C from rocks. The experiments are confined to extraction of ¹⁴C from quartz digesting it with HF *in vacuo* using CO and CO₂ as carrier gases. Kel-F is used for the digestion vessel. Results of determination of system blanks for CO₂ and ¹⁴C are presented along with results for terrestrial rock and sand samples in which cosmogenic ¹⁰Be and ²⁶Al have been determined (Nishiizumi *et al* 1991). We find that about half of the *in-situ* ¹⁴C is present in quartz in the form of ¹⁴CO, similar to the case observed for polar ice (Lal *et al* 1990). The technique developed complements that of high-temperature fusion developed by Jull *et al* (1991) for studies of *in-situ* ¹⁴C in terrestrial and extraterrestrial samples. The technique has the advantage of low blanks and separate assays of ¹⁴C activities in the CO and CO₂ phases. The measurement of ¹⁴C activity in CO phase allows practically contamination-free determination of the ¹⁴C activity.

REFERENCES

Jull, AJT, Donahue, DJ, Linick, TW and Wilson, GC 1989 Spallogenic ¹⁴C in high-altitude rocks and in Antarctic meteorites. In Long, A and Kra, RS, eds, International ¹⁴C conf, 13th, Proc. RADIOCARBON 31(3): 719-724.

Lal, D, Jull, AJT, Donahue, DJ, Burtner,D and Nishiizumi, K 1990 Polar ice ablation rates measured using in-situ cosmogenic ¹⁴C. Nature 346:350-352.

Nishiizumi, K et al 1991 Unpublished data.

COSMOGENIC IN-SITU 14C IN POLAR FIRN AND ICE SAMPLES

DEVENDRA LAL

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 USA

A J T JULL and D J DONAHUE

NSF Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson, Arizona 85721 USA

A recent paper (Lal et al 1990) showed conclusively that Antarctic ablation ice from Allan Hills contained appreciable amounts of cosmogenic in-situ ¹⁴C, and that about 60% of this was in the chemical form of CO, the rest in the form of ¹⁴CO₂. For dating ice using atmospheric trapped CO₂, it is important to know the fraction of in-situ-produced ¹⁴C present in it. We are carrying out experiments to determine the amounts of ¹⁴CO and ¹⁴CO₂ in accumulation firn and ice from Greenland and Antarctica. We hope to present these results which should unambiguously estimate the contributions of in-situ ¹⁴C to the total ¹⁴C activity present in accumulation ice.

REFERENCE

Lal, D, Jull, AJT, Donahue, DJ, Burtner, D and Nishiizumi, K 1990 Polar ice ablation rates measured using in-situ cosmogenic ¹⁴C. Nature 346: 350-352.