persisting over at least 300 dendroyears. Thus, a precise radiometric datingof this event cannot be expected. However, we can fix the stable isotope increase on the tree-ring scale. A minimum absolute age determination of 11,100 dendroyears for the Late Glacial/Holocene transition has been derived by a correlation of the ¹⁴C ages at the end of the 1477-year floating pine chronology with those at the beginning of the 9938-year absolute German oak dendrochronology.

THE USE OF NATURAL ¹⁴C AND ¹³C IN SOILS FOR STUDIES ON GLOBAL CLIMATIC CHANGE

PETER BECKER-HEIDMANN and HANS-WILHELM SCHARPENSEEL

Institut für Bodenkunde, Universität Hamburg, D-2000 Hamburg 13, Germany

The amount of the "greenhouse" gases, CO_2 and CH_4 , produced by the decomposition of organic matter in terrestrial and paddy soils and emitted from the soil, can be estimated from depth profiles of the $\delta^{13}C$ value and ¹⁴C activity of soil organic matter, using simple mathematical models. By sampling the soil as thin layers, we can also determine whether the non-gaseous decomposition products are fixed to clay or transported downwards to the groundwater table. The influence of temperature and soil moisture regime on the carbon isotope depth profiles is shown by comparing a range of investigated soils from various climatic regions. A change of vegetation from C_3 to C_4 plants, which might take place during a predicted temperature rise in certain areas, thereby influencing the carbon balance, can be clearly detected by $\delta^{13}C$ depth profiles.

A HIGH RESOLUTION ¹⁰Be RECORD IN POLAR ICE

JUERG BEER¹, GEORGES BONANI², BEATE DIETRICH², R C FINKEL³, H J HOFMANN² B E LEHMANN⁴, HANS OESCHGER⁴, BERNHARD STAUFFER⁴, MARTIN SUTER⁵ and WILLY WÖLFLI²

A project has been started to establish a ¹⁰Be record in Greenland ice with a time resolution of one year. The upper part of a 300 m ice core from Dye 3, Greenland, has been used for this study. The time scale in this core has been determined using acidity peaks caused by volcanic eruptions and annual variations of the H_2O_2 concentration.

The main results obtained so far are:

- 1. The comparson of the ¹⁰Be record with solar activity as determined by sun spots, aurorae and Aa-index reveal a good correlation regarding the 11-year Schwabe cycle as well as the longer-term trends.
- 2. During the Maunder minimum period (AD 1645-1715), the ¹⁰Be concentration is higher by about 50%.
- 3. The 11-year Schwabe cycle is also present during the Maunder minimum, in spite of the missing sun spots.

¹Environmental Physics, ETH-Zürich, Institute for Aquatic Sciences and Water Pollution Control, CH-8600 Dübendorf, Switzerland

²Institute for Intermediate Energy Physics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

³Lawrence Livermore National Laboratory, Livermore, California 94550 USA

⁴Physics Institute, University of Bern, CH-3012 Bern, Switzerland

⁵Paul Scherrer Institute, CH-5232 Villigen, Switzerland