[RADIOCARBON, VOL 30, NO. 3, 1988, P 261-295]

Radiocarbon

1988

ACCELERATOR MASS SPECTROMETRY RADIOCARBON MEASUREMENTS ON MARINE CARBONATE SAMPLES FROM DEEP SEA CORES AND SEDIMENT TRAPS

SAMPLE PREPARATION

WALLACE BROECKER, MIECZYSLAWA KLAS NANCY RAGANO-BEAVAN, GUY MATHIEU Lamont-Doherty Geological Observatory, Palisades, New York 10964

and

ALAN MIX

Oregon State University, Corvallis, Oregon 97331

TARGET PREPARATION

MICHAEL ANDREE and HANS OESCHGER Physikalisches Institut, University of Bern, CH-3012 Bern, Switzerland

MASS SPECTROMETRY

WILLY WÖLFLI, MARTIN SUTER, GEORGES BONANI H J HOFMANN, MARZIO NESSI and ELVEZIO MORENZONI ETH Hönggerberg, CH-8093 Zürich, Switzerland

CONTENTS

INT	RODUCTION	263
I.	Cores from the open Atlantic	
	Ceara Rise Sierra Leone Rise Western Equatorial Atlantic Northern Atlantic	264 267 268 269
II.	Cores from basins adjacent to the Atlantic	
	Caribbean Gulf of Mexico Arctic	274 276 277
III.	Cores from the open Pacific	
	East Pacific Rise Oontong Java Plateau	278 282
IV.	Cores from basins adjacent to the Pacific	
	South China Sea	285
V.	Sediment trap samples	
	MANOP Site C	293
VI.	References cited	295

INTRODUCTION

This report was prepared to permit those interested in our accelerator ¹⁴C results to get a complete listing of the abundance and radiocarbon age results that we have obtained during the first four years of our study. For these ¹⁴C dates that have been published or are in press, reference numbers are given corresponding to those in the references cited at the end of this report. Results without reference numbers have not yet been incorporated into one of our papers.

The foram samples were prepared at Lamont as follows: the dried core sample is weighed and disaggregated in deionized water. The wet sediment is then rinsed through a 63μ mesh sieve. This wash-rinse procedure is repeated four times. The material (coarse fraction) retained in the sieve is dried and weighed. From the weight of the coarse fraction and the original sample weight, the per cent coarse fraction is calculated.

The >63 μ coarse fraction is then split to yield a manageable size sample for picking. The split portion is then put through a 150 μ sieve and the species of interest is counted to yield the total whole shells in the split.

The number needed for ¹⁴C measurement (200 to 1000 specimens) is picked. This known number of shells is then weighed yielding the weight of the average shell. The number of specimens per gram of sediment and the milligrams of specimens per gram of sediment are calculated as follows:

No. s	pecimens	No. of specime	ns in split
Gms	ediment	Split fraction \cdot weight of	of original sample
Mg forams	Mass o	of picked sample (mg)	No. of specimens in split
Gm sediment	No. spec	imens in picked sample	Weight of split (gm)

The samples listed in this report were converted to CO_2 gas at Lamont. This CO_2 was then converted in Bern to carbon targets by the zinc reduction method (Andrée *et al*, 1984). The carbon targets were then analyzed for ¹⁴C/¹²C ratio by AMS at the ETH facility in Zurich (Suter *et al*, 1984).

References

Suter, M, Balzer, R, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Wolfli, W, Andrée, M, Beer, J and Oeschger, H, 1984, Precision measurements of ¹⁴C in AMS—some results and prospects: Nuclear Instruments & Methods, v B5, p 117–122.

Andrée, M, Beer, J, Oeschger, H, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1984, Target preparation for milligram sized ¹⁴C samples and data evaluation for AMS measurements: Nuclear Instruments & Methods, v B5, p 274–279.

I. CORES FROM THE OPEN ATLANTIC

CEARA RISE

KNORR 110 82GGC

Giant gravity core raised from RV KNORR by Bill Curry of WHOI. Holocene 0–19cm 65–75% CaCO₃ Glacial below 19cm 25–30% CaCO₃

The study of this core was carried out cooperatively with Bill Curry of Woods Hole Oceanographic. Our goal was to obtain benthic-planktonic age difference for the glacial section of the core (see Figs 1, 2, Table 1).

References

Broecker, W S, Andrée, M, Bonani, G, Mix, A, Klas, M, Wolfli, W and Oeschger, H, ms in preparation, Differences between the radiocarbon age of coexisting planktonic foraminifera.

Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H, Klas, M, Mix, A and Curry, W, ms in preparation, The radiocarbon age of deep water in the glacial ocean.

Curry, W. Duplessy, J C, Labeyrie, L and Shackleton, N, in press, Changes in the distribution of deep water 2CO₂ between the last glacial and the Holocene: Paleoceanography.

Fig 1. Oxygen isotope record on benthic foraminifera, for KNORR 110-82GGC obtained by Bill Curry of WHOI

KNORR 110 82GGC CEARA RISE

Fig 2. Abundance vs depth for the three planktonic and the mixed benthics on which ¹⁴C measurements were made

TABLE 1

KNORR 110 82GGC Equatorial Atlantic Ceara Rise Location (4°20.2'N, 43°29.2'W) Depth 2816m

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date o	f AMS Age	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(cm)	(%)	sp	(no./gm)	(mgm/gm)	analyzed	analyze (mgm)	ed anal	ysis (yr)	Ref*
" " " " " " " " " " " " " " " " " " "	0-3**	32.3	<u>G</u> sacc	265	11.2	216	12.3	-	-	
" " " " " " " " " " " " " " " " " " "		"	<u>G</u> ruber	2840	43.6	463	7.1	-	-	
" " " " " " " " " " " " " " " " " " "		"	P obliq	57.7	2.3	201	9.7	-	-	
" " " " " " " " " " " " " " " " " " "		"	N duter	93.2	5.4	161	9.4		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	M benth	5.7	0.23	247	9.8	-	-	
" " " " " " " " " " " " " " " " " " "	3-5†	31.8	G sacc	356	22.1	181	11.2	_	_	
" " " " " " " " " " " " " " " " " " "	"	"	G ruber	2810	52.1	522	9.7	-	-	
" " " " " " " " " " " " " " " " " " "	"	"	P oblig	49.8	3.0	161	9.7	-	-	
" " " " " " " " " " " " " " " " " " "	"		N duter	76.2	4.8	24	1.5	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	M benth	-	-	-	-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-8	32.8	G sacc	333	29.1	70	6.1	_	_	
" " " " " " " " " " " " " " " " " " "	"	"	G ruber	1720	33.1	349	6.7	-	-	
" " " $M = benth$ 3.8 -	"	"	N duter	29.4	1.75	-	-	-	_	
9-11 30.1 <u>G</u> sacc 464 20.6 153 6.8 - - " " <u>N</u> duter 41.0 2.31 - - - - " " <u>M</u> benth - - - - - - - " " <u>M</u> benth - - - - - - - " " <u>M</u> benth - - - - - - - " " <u>M</u> benth - - - - - - - - " " <u>M</u> benth 9.4 0.35 225 8.2 - - - 20-23 15.4 <u>G</u> sacc 358 20.4 255 14.5 April 86 12,360 ± 190 15 15 " " <u>P</u> obliq 110 6.25 274 15.6 " 11,950 ± 180 14.8 13,350 ± 230 15 15 " " <u>M</u> benth 7.1 0.22 328 10.4 " 13,160 ± 210	"	"	M benth	3.8	-	-	-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9-11	30.1	G sacc	464	20.6	153	6.8	_	_	
" " " " " " " " " " " " " " " " " " "		"	G ruber	1720	12.8	566	4.2	-	-	
" " " $\frac{M}{D} \frac{benth}{c}$ - -	"	"	N duter	41.0	2.31	-	-	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	M benth	-	-	-	-	-	-	
"" $\frac{G}{N}$ $\frac{G}{N}$ $\frac{1630}{103}$ 20.7 401 5.1 $ -$ "" $\frac{N}{N}$ $\frac{duter}{benth}$ 103 5.37 $ -$ 20-23 15.4 $\frac{G}{C}$ $\frac{sacc}{ruber}$ 358 20.4 255 14.5 $Apri1$ $8612,360$ ± 190 15 "" " $\frac{P}{P}$ $obliq$ 110 6.25 274 15.6 " $11,950$ ± 180 "" " $\frac{N}{D}$ $duter$ 58.2 3.9 221 14.8 " $13,350$ 220 15 "" $\frac{N}{M}$ $benth$ 7.1 0.22 328 10.4 " $13,160$ 210 $23-25$ 15.2 $\frac{G}{G}$ $ruber$ $ -$ <td< td=""><td>15-17</td><td>26.1</td><td>G sacc</td><td>454</td><td>28.4</td><td>152</td><td>9.5</td><td>-</td><td>_</td><td></td></td<>	15-17	26.1	G sacc	454	28.4	152	9.5	-	_	
" " \overline{N} duter 103 5.37 - -	"	"	G ruber	1630	20.7	401	5.1		_	
" " M benth 9.4 0.35 225 8.2 - - 20-23 15.4 \underline{G} sacc 358 20.4 255 14.5 April 86 12,360 ± 190 15 " " \underline{G} ruber 804 17.8 521 11.5 " 12,040 ± 190 15 " " \underline{P} obliq 110 6.25 274 15.6 " 11,950 ± 180 " " \underline{N} duter 58.2 3.9 221 14.8 " 13,350 ± 230 15 " " M benth 7.1 0.22 328 10.4 " 13,160 ± 210 23-25 15.2 G sacc - <td></td> <td>"</td> <td>N duter</td> <td>103</td> <td>5.37</td> <td></td> <td>_</td> <td>-</td> <td>-</td> <td></td>		"	N duter	103	5.37		_	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	M benth	9.4	0.35	225	8.2	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20-23	15.4	G sacc	358	20.4	255	14.5	April 86	12.360 ± 190	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	11	G ruber	804	17.8	521	11.5	"	12.040 ± 190	15
" " " $\frac{N}{M} \frac{duter}{benth}$ 7.1 3.9 221 14.8 " $13,350 \pm 230$ 15 " " $13,350 \pm 230$ 15 " " " " $\frac{N}{M} \frac{benth}{benth}$ 7.1 0.22 328 10.4 " $13,160 \pm 210$ $13,160 \pm 210$ $13,160 \pm 210$ $13,160 \pm 210$ 10.4 " 14.8 " $13,160 \pm 210$ 10.4 " 14.8 " $13,160 \pm 210$ 10.4 " 14.8 " $13,160 \pm 210$ " 14.8 " 14.8 " $13,160 \pm 210$ " 14.8 " 14.8 " $13,160 \pm 210$ " 14.8 "	**	"	P oblig	110	6.25	274	15.6		11950 ± 180	
" " " <u>M benth</u> 7.1 0.22 328 10.4 " 13,160 \pm 210 23-25 15.2 <u>G sacc</u> - <u>G ruber</u> - <u>G ruber</u> - <u>G ruber</u> <u>G ruber</u> <u>C ruber</u> 1010 22.8 500 11.3 Jan 87 13,870 \pm 260 15, " " <u>P oblig 38.2 2.0 254 13.2 June 86 14,150 \pm 160 15, " " <u>N duter 143 8.8 213 13.0 July 86 13,860 \pm 190 15, " " " " N duter 143 8.8 0.24 233 9.5 Imoe 6 14,20 15 </u></u>	"	11	N duter	58.2	3.9	221	14.8	"	$13,350 \pm 230$	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	17	M benth	7.1	0.22	328	10.4	"	$13,160 \pm 210$	15
" " $\frac{G}{M} \frac{ruber}{benth}$	23-25	15.2	G sacc	-	-	_	-	_	-	
" " \underline{M} benth		"	G ruber	-	-	-	-	_	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	M benth	-	-	-	-	-	-	
" \overline{G} \overline{ruber} 1010 22.8 500 11.3 \overline{Jan} 87 13,870 \pm 260 15, " \overline{P} \overline{obliq} 38.2 2.0 254 13.2 June 86 12,610 \pm 140 " \overline{N} \overline{duter} 143 8.8 213 13.0 July 86 13,860 \pm 190 15, " " \overline{M} \overline{duter} 143 8.8 213 13.0 July 86 13,860 \pm 190 15, " " \overline{M} \overline{barth} 5 0.24 233 9.50 \overline{barth}	25-28	14.5	G sacc	557	30.8	222	12.3	June 86	14.150 ± 160	15,16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			G ruber	1010	22.8	500	11.3	Jan 87	13.870 ± 260	15,16
" " $\frac{N}{duter}$ 143 8.8 213 13.0 July 86 13,860 ± 190 15, " " M benth 5.8 0.24 233 9.5 June 66 14,800 ± 200 16		"	P oblig	38.2	2.0	254	13.2	June 86	$12,610 \pm 140$	15,10
" " M henth $5.8 + 0.24 + 233 + 9.5 + 0.014 + 0.014 + 200 + 15$		"	N duter	143	8.8	213	13.0	July 86	$13,860 \pm 190$	15 16
			M benth	5.8	0.24	233	9.5	June 86	14.930 ± 200	16

/

TABLE	1 (cont	'd)
-------	-----	------	-----

Depth	Coarse	Foram	Abund	Abund	No. Tests	Weight	Date of	AMS Age	Ref*
(cm)	(%)	sp	(no./gm)	(mgm/gm)	anaryzeu	(mgm)		(yr)	
28-30	12.3	G sacc	-	_	-	-	-	-	
"	"	G ruber	-	-	-	-		-	
	"	<u>M</u> benth	-	-	-	-	-	-	
30-33	6.8	G sacc	215	14.9	194	13.5	April 86	15,100 ± 250	15,16
11	"	G ruber	526	10.1	453	8.7	"	15,450 ± 260	15,16
	"	P obliq	5.7	0.36	-	-	-	-	
	"	N duter	61.7	3.7	186	11.1	April 86	$15,170 \pm 260$	15,16
"	"	M benth	6.7	0.21	298	9.3		$16,350 \pm 280$	16
33-35	9.2	G sacc	-	-	-	-	-	-	
"		G ruber	-	-	-	-	-	-	
"	**	M benth	-	-	-	-	-	-	
35-38	74	G sacc	216	16.3	163	12.3	Jan 87	16.090 ± 320	15,16
"	, • •	G ruber	496	8.7	400	7.0	"	15,870 ± 290	15,16
	11	P oblig	1.6	0.08	-	-	-	· -	
"	"	N duter	58.2	3.5	229	13.7	July 86	16,060 ± 200	15,16
"	"	M benth	4.7	0.11	187	4.4	July 86	16,130 ± 240	16
36-38	7.9	G sacc	96.2	9.4	157	15.3	March 87	-	
"	"	G ruber	-	-	-	-	-	-	
"	"	M benth	3.4	0.24	58	4.1	March 87	-	
38-40	9.1	G sacc	-	-	-	-	. –	-	
	"	G ruber	-	-	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
40-43	8.9	G sacc	220	15.5	183	13.0	June 86	16,710 ± 250	15,16
"	"	G ruber	458	13.2	548	15.8	"	$17,040 \pm 250$	15,16
"	"	P obliq	1.4	0.07	-	-	-		
"		<u>N</u> duter	86.7	6.3	181	13.2	June 86	$17,610 \pm 280$	15,16
"	"	M benth	4.5	0.23	193	10.2		17,870 ± 370	16
43-45	10.1	G sacc	-	-	-	-	-	-	
	"	G ruber	-	-	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
45-48	8.6	G sacc	186	22.8	86	9.5	Jan 87	17,780 ± 360	15,16
"	"	G ruber	766	14.0	500	12.7	"	17,430 ± 340	15,16
"		P obliq	4.2	0.22	-	-		-	
"	"	N duter	52.5	3.4	199	12.9	July 86	1/,660 = 260	15,16
		<u>M</u> benth	4.5	0.23	5 155	5.8		17,900 - 640	10

*Publication no. in which radiocarbon date has been published (see references cited) **Archive core †Working core

SIERRA LEONE RISE

EN 066 39GGC EN 066 21GGC EN 066 32GGC

Study of the dependence of core top ages for *G menardi* and *G sacculifer* on water depth in cores of low sedimentation rate ($\sim 2 \text{cm}/10^3 \text{ yr}$). The study was initiated by Lisa Dubois of Brown University on cores originally studied by Curry and Lohmann of Woods Hole Oceanographic (see Table 2).

References

TABLE 2

EN 066 39GGC Equatorial Atlantic Sierra Leone Rise Location (5°04'N, 20°52'W) Depth 2818m

Depth	Coarse fraction	Foram Sp	Abund	Abund	No. tests Anal.	Weight Anal	Date of AMS Analysis	Age Age
(cm)	(%)		(no./gm)	(mgm/gm)		(mgm)	-21419.010	(yr)
2-3		<u>G</u> menardi	-	-	-	1.2	Sept 85	1860 ± 120
"		G sacc	-	-	-	12.1	<u>́</u> н	4510 ± 170
"	-	M benth	-	-	-	9.0	"	5180 ± 180
10-11	-	<u>G</u> menardi	-	-	100	10.3	July 86	3920 ± 90
11-12		<u>G</u> menardi	-	-	-	10.1	Sept 85	4100 ± 160
"	-	G sacc	-	-	-	8.0	11	7720 ± 260
	-	M benth	-	-	-	10.9	"	10,430 ± 350
13-14	-	<u>G</u> menardi	-	-	66	3.0	Aug 86	7510 ± 200
16-17	-	<u>G</u> sacc	-	-	208	10.5	Jan 87	15,130 ± 280
23-24	-	<u>G</u> sacc	-	-	-	11.6	Sept 85	19,290 ±1080
	-	G infla	-	-	-	5.5	Feb 86	16,900 ± 250
"	-	M benth	-	-	-	5.7	"	20,430 ± 360

EN 066 21GGC Equatorial Atlantic Sierra Leone Rise Location (4°14'N, 20°38'W) Depth 3995m

2-3	-	<u>G</u> <u>menardi</u> <u>G</u> <u>sacc</u>	- -	- -	- -	11.8 8.0	Sept 85 "	2280 ± 130 3800 ± 160
		EN 066 L	32GGC Eq ocation	uatorial A (2°28'N, 1	tlantic S 9°44'W) D	dierra Leone Nepth 5003m	Rise	
2-3	-	<u>G</u> menardi	_	-	-	10.9	Sept 85	2840 ± 130
"	-	G sacc	-	-	-	8.1	- n	4070 ± 160

WESTERN EQUATORIAL ATLANTIC

V14-05TW V25-59TW V16-200TW V14-06TW V15-17TW

The study of these whole shell, shell fragment pairs from trigger weight cores from the western equatorial Atlantic was initiated by Alan Mix (see Table 3).

REFERENCES

Damuth, J. (ms) 1973, The western equatorial Atlantic: Morphology, Quaternary sediments, and climatic cycles: PhD dissert, Columbia Univ, 602 p.
Mix, A, (ms) 1986, Late Quaternary paleoceanography of the Atlantic Ocean: Foraminiferal faunal and stable isotopic evidence: PhD dissert, Columbia Univ, 738 p.
Mix, A and Ruddiman, W, 1985, Structure and timing of the last deglaciation: Oxygen-isotope evidence: Quaternary Sci Rev, v 4, p 59–108.

TABLE 3

V14-05TW Equatorial Atlantic Location (00°15'N, 32°51'W) Depth 3255m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AMS	S Age
(cm)	(%)	sþ	(no./gm)	(mgm/gm)	anaryzeu	(mgm)	anarysis	(yr)
5-10 "	-	<u>G</u> menardi <u>G</u> men frag	 <u>-</u>	-	- -	9.9 5.5	Sept 85 "	4050 ± 210 3360 ± 220
			V25- Location	59TW Equat (01°22'N,	orial Atlan 33°29'W) De	ntic epth 3824m	I	
5-10 "	-	<u>G menardi</u> <u>G men fra</u>		-	- -	7.5 7.9	Sept 85 "	4740 ± 230 5010 ± 210
			V16- Location	200TW Equa (01°58'N 3	torial Atla 7°04'W) Dep	antic oth 4093m		
0-10	-	<u>G</u> menardi	-	-	_	10.3	Sept 85	2950 ± 180
			V14- Location	06TW Equat (00°50'N,	orial Atlan 34°20'W) De	ntic epth 4429m	1	
0–10 "	-	<u>G</u> menardi <u>G</u> men frag	_ g	`	- -	9.8 8.6	Sept 85	7760 ± 330 7610 ± 330
			V15- Location	17TW Equat (06°59'N,	orial Atlan 41°04'W) De	ntic epth 4768m	1	
0-10 "	-	<u>G</u> menardi G men fra	_ g	-	-	5.0 9.9	Sept 85	6420 ± 280 5800 ± 230

NORTHERN ATLANTIC

V23-81

The study of this northern Atlantic core was undertaken to establish the chronology of surface water temperature changes in the northern Atlantic from 40,000 years ago to present (see Figs 3, 4; Table 4).

References

- Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H and Klas, M, 1988, in press, Can the Greenland climatic jumps be identified in records from ocean and land?: Quaternary Research.
- Broecker, W S, Andrée, M, Wolfli, W, Oeschger, H, Bonani, G, Kennett, J and Peteet, D, in press, The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event: Paleoceanography.

Ruddiman, W F and McIntyre, A, 1981, The North Atlantic Ocean during the last deglaciation: Paleogeog, paleoclimatol, paleoecol, v 35, p 145–214.
Ruddiman, W F, Sancetta, C D and McIntyre, A, 1977, Glacial/interglacial response rate of

Kuddiman, W F, Sancetta, C D and McIntyre, A, 1977, Glacial/interglacial response rate of subpolar North Atlantic waters to climatic change: the record in ocean sediments: Royal Soc [London] Philos Trans, v B280, p 119–142.

Fig 3. Plot of ¹⁴C ages, relative abundances, and coarse fractions *vs* depth for the deglacial interval in core V23-81. As the coarse fraction is made up almost entirely of planktonic shells, the product of the coarse fraction percentage and the relative abundance percentage provides a measure of the absolute abundance of a given shell type (*ie*, gm shell/gm sediment). We do not graph this product for two reasons: 1) the abundances and coarse fractions were not done on the same samples, 2) the abundances are for shell number rather than shell weight. The ¹⁴C ages are uncorrected for the ¹⁴C/C ratio difference between atmospheric CO₂ and surface ocean Σ CO₂. The reference line shows the expected trend in age if the sedimentation rate and the ¹⁴C/C ratio in surface ocean water remained constant with time.

Fig 4. ¹⁴C ages on the shells of N pachyderma(s) in northern Atlantic core V23-81

TABLE	4
-------	---

V23-81 North Atlantic Location (54°18'N, 16°48'W) Depth 2393m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AMS	Age	
(cm)	fraction (%)	sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysis	(yr)	Ref*
0-3TW	5.0	<u>G</u> infla	309	6.31	270	5.5	Aug 86	2070 ± 90	12
7–8 " "	10.0 " "	G glut G quin G bull G infla M benth	72.8 65.5 328 386 14.1	- 3.34 9.04 -	- 542 410 -	- 5.5 9.6 -	- - Aug 86 -	- 2410 ± 100 1820 ± 90 -	12,15 12,15
61-63 " 112.5- 113.5	11.7 " 4.2	<u>G bull</u> <u>G infla</u> <u>M benth</u>	312 277 35.0	4.76 9.41 1.01	531 376 276	8.1 12.8 8.0	Nov 87 Mar 87 "	6930 ± 170 6260 ± 150 6990 ± 170 -	12 12 12
122.5- 123.5 131-132	7.0 3.6	-	-	-	-	-	-	-	
135–136 " "	3.4 " "	G glut G quin G bull G infla M benth	107 70.5 212 112 8.05	0.55 0.13 3.94 2.86	1000 1570 530 339 -	5.2 3.0 9.9 8.7	Aug 86 – Aug 86 "	9610 ± 150 - 9890 ± 160 9490 ± 200 -	12 12,15 12,15
143–144 "	2.2	<u>N</u> pach(s <u>G</u> infla) 92.9 71.2	0.82 1.76	817 304	7.2 7.5	Jan 87 10 Nov 87 10),120 ± 180),450 ± 200	12 12
146.0- 146.5 "	4.8 "	N pach(s) G bull G infla) 138 436 142	- 8.30	- 462 -	_ 8.8 _	- Mar 87 -	- 9600 ± 210 -	12

271

TABLE 4 (cont'd)

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of	AMS Age	Ref*
(cm)	(%)	зр	(no./gm)	(mgm/gm)	anaryzeu	(mgm)	anarysi	(yr)	Net
147.5-									
148.0	2.6	$\frac{N}{C}$ pach(s)	209	-	-	-	_	-	
"	"	G infla	105	3.18	296	9.0	Mar 87	10,260 ± 190	12
157-158	8 8 7	N pach(s)	4130	25.0	1370	8.3	July 85	11.300 ± 140	12.13
"	"	" pacif(b)	4130	32.7	1400	11.1	Jan 87	$10,230 \pm 200$	12,13
164-165	5 1.8	N pach(s)	167	-	-	-	-	-	
		<u>G bull</u> G infla	155 97.3	2.76 2.16	548 316	9.8 7.0	Mar 87	$11,500 \pm 210$ $11,500 \pm 200$	12,15
171-17	2 1 8	C bull	113	1.61	500	7.1	Aug. 86	11 170 ± 180	12 15
"	2 I.0 "	G infla	64.0	1.39	350	7.6	nug 00	$10,530 \pm 160$	12,15
"	11	N pach(d)	-	-	_	-	-	-	,
172-17	3 2.4	<u>G</u> glut	103.4	0.57	777	4.3	Aug 86	11,140 ± 190	12
	"	<u>G</u> quin	207	0.47	1100	2.5	-	-	10.15
		$\frac{G}{C}$ bull	219 52 7	3.64	4/9	8.0	Aug 86	$11,860 \div 170$ 10,960 ± 200	12,15
"	11	N pach(d)	71.1	0.49	583	4.0	-	-	12,15
173-17	4 0.6	C bull	31.2	-	100	_	_	_	
"	"	<u>G</u> infla	41.8	-	183	-	-	-	
175-17	6 3.9	N pach(s)	647	6.31	862	8.4	Aug 86	10,990 ± 190	12,13
"			647	7.34	837	9.5	Jan 87	10,780 ± 190	12
175-17	6 1.4	N pach(s)	43.2	-	133	-	-	-	
180-18	1 1.7	N pach(s)	38.5	-	-	-	-	-	
"	"	G bull	191	3.42	250	4.7	Mar 87	11,990 ± 280	12,15
"	"	<u>G</u> infla	78.6	1.90	300	7.2		12,240 ± 220	12,15
186-18	7 2.8	<u>G bull</u>	169		-	-	-	_	
		<u>G</u> infla	109	2.96	294	8.0	Mar 87	10,500 ± 230	12,15
186-18	7 2.5	<u>G</u> <u>bull</u>	254	5.64	450	10.0	Mar 87	11,540 ± 210	12,15
. "		<u>G</u> infla	109	-	-	-	-	-	
188-190	0 2.4	N pach(s)	185	1.69	900	8.2	Jan 87	11,850 ± 200	12,13
188-190	0 2.1	G bull	114	1.35	715	8.5	Mar 87	11,650 ± 210	12,15
"	"	<u>G</u> infla	75.3	1.13	535	8.0	"	11,330 ± 230	12,15
194.0-									
195.5	3.2	N pach(s)	289	3.41	687	8.1	Jan 87	12,660 ± 240	12
"	11	<u>G bull</u>	282	3.20	724	8.2	Mar 87	12,840 ± 230	12,15
194.0-									
195.5	3.5	<u>C</u> infla	145	3.17	474	10.4	Mar 87	11,940 ± 210	12,15
194.5-									
195.0	3.5	N pach(s)	353	-	-	-	-	-	
		<u>G</u> <u>bull</u> <u>G</u> infla	283 180	-	-	-	-	-	
		~							

				11220 1	(conc u)				
Depth	Coarse fraction	Foram sp	Abund	Abund	No. tests analyzed	Weight analvzed	Date of analysi	AMS Age	Ref*
(cm)	(%)	-1	(no./gm)	(mgm/gm)		(mgm)	41.42,02	(yr)	
195.0-									
195.5	3.6	N pach(s)	499	-	568	-	-	-	
"	"	G bull	251	-	269		-	-	
"	**	<u>G</u> infla	145	-	160	-	-	-	
195.5-									
196.0	2.9	N pach(s)	193	-	438	-	-	-	
		G bull	304		294	-	-	-	
	"	G infla	87.0	-	184	-	-	-	
198-199	3.6	_	-		_	_	-	-	
198-199	4.1	N pach(s)	366	3.84	905	9.5	Jan 87	12,270 ± 220	12,13
"	"	G bull	423	7.49	593	10.5	Mar 87	12,910 ± 240	12,15
	"	<u>C</u> infla	168	4.06	327	7.9	"	12,530 ± 220	12,15
200.0-									
200.5	3.0	G bull	255	-	-	-	_		
"	"	G infla	131	-	-	-	-	-	
201-202	2.9	G bull	272	5.24	451	8.7	Nov 87	12.860 ± 240	12
"	"	G infla	118	4.31	335	12.2	Nov 87	12,390 ± 240	12
206-207	3.8	G bull	277	5.34	550	10.6	Nov 87	13,180 ± 240	12
"	"	<u>G</u> infla	97.7	2.60	432	11.5	Nov 87	$13,240 \pm 310$	12
"	11	N pach(s)	_	_	-	_	-	-	
215-216	5.0	N pach(s)	789	8.66	930	10.2	Aug 86	14,060 ± 210	12,13
234–235	4.5	<u>N</u> pach(s)	1860	20.7	771	8.6	July 85	15,600 ± 190	12,13
293–294	6.7	<u>N</u> pach(s)	2610	32.9	706	8.9	July 85	17,140 ± 240	12,13
313-315	1.9	N pach(s)	105	_	-	_	_	_	
"		G bull	39.6	-	400	-	-	-	
"	11	G infla	8.40	-	113	-	-	-	
335-336	7.7	N pach(s)	2130	23.7	845	9.4	July 85	18,790 ± 280	13
384-385	5.6	N pach(s)	1230	15.0	813	9.9	Sept 85	24,820 ± 870	13
385-386	6.8	N pach(s)	898	11.2	900	11.2	Aug 86	24,400 ± 540	13
418-419	9.2	N pach(s)	1780	21.3	916	10.9	Aug 86	29,400 ± 960	13
449-450	5.4	N pach(s)	328	3.56	810	8.8	Aug 86	32,540 ±1240	13
499-500	9.8	N pach(s)	1480	18.0	861	10.5	Aug 86	35.640 ±1810	13

TABLE 4 (cont'd)

*Publication no. in which radiocarbon date has been published.

II. CORES FROM BASINS ADJACENT TO THE ATLANTIC OCEAN

V28-122

The study of this core was undertaken to measure the benthic-planktonic age difference for the "Boyle water" of glacial time in the Caribbean Sea (see Figs 5, 6; Table 5).

References

- Boyle, E A and Keigwin, L D, 1987, North Atlantic circulation during the last 20,000 years linked to high-latitude surface temperature: Nature, v 330, p 35–40.
- Broecker, W S, Andrée, M, Bonani, G, Mix, A, Klas, M, Wolfli, W and Oeschger, H, ms in preparation, Differences between the radiocarbon ages of coexisting planktonic foraminifera.
- Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H, Klas, M, Mix, A and Curry, W, ms in preparation, The radiocarbon age of deep water in the glacial ocean.
- Oppo, D W and Fairbanks, R, 1987, Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the southern ocean: Earth & Planetary Sci Letters, v 86, no. 1, p 1–15.

———— in press, Carbon isotope composition of tropical surface water during the past 22,000 years: Paleooceanography.

Prell, W L, 1978, Upper Quaternary sediments of the Colombia Basin: Spatial and stratigraphic variation: Geol Soc America Bull, v 89, p 1241-1255.

V28-122 CARIBBEAN SEA

Fig 5. Oxygen isotope record for benthic foraminifera (Oppo & Fairbanks, in press)

Fig 6. Abundance vs depth planktonic and mixed benthic foraminifera shells for V28-122

TABLE 5

V28-122 Caribbean Sea Columbia Basin Location (11°56'N, 78°41'W) Depth 3623m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of	AMS Age	Pof*
(cm)	(%)	зþ	(no./gm)	(mgm/gm)	anaiyzeu	(mgm)	anaiysi	s (yr)	Ner.
2- 3	5TW 23.1	<u>G</u> sacc	437	25.7	241	14.2	Mar 87	3180 ± 160	
"		G ruber	1210	23.6	554	10.8	-	-	
"		M benth	19.6	0.47	172	4.2	-	-	
1- 3	30.3	G sacc	612	29.0	194	9.2	Mar 86	2930 ± 120	15,16
	"	<u>G</u> ruber	2300	38.7	493	8.3	"	3040 ± 130	15,16
"		M benth	27.2	0.57	530	11.1	"	3280 ± 140	16
24- 2	25 24.9	<u>G</u> sacc	595	27.0	205	9.3	-	5940 ± 130	15
	"	<u>G</u> ruber	1780	30.7	610	10.5	-	6170 ± 190	15
"	"	M benth	22.5	0.73	130	4.2	-	-	
48- 4	9 21.4	G sacc	368	20.4	222	12.3	-	9230 ± 150	15,16
	"	G ruber	1600	23.4	607	8.9	-	9390 ± 160	15,16
"	11	M benth	32.2	1.32	207	8.5	-	10,120 ± 200	16
74- 7	5 13.8	<u>G</u> sacc	177	9.9	193	10.8	-	12,040 ± 220	15,16
"	"	<u>G</u> ruber	628	9.4	500	7.5	-	12,410 ± 230	15,16
"	**	M benth	31.2	0.69	367	8.1	-	12,620 ± 210	16
98-10	4.1	G sacc	16.6	1.1	205	13.9	Mar 87	12,650 ± 250	15,16
		<u>G</u> ruber	183	3.3	545	9.8	-	13,240 ± 240	15,16
	"	M benth	6.50	0.29	227	10.3	Mar 87	15,200 ± 300	16
123-12	4 6.0	<u>G</u> sacc	38.3	2.2	174	10.1	-	15,860 ± 260	15,16
	"	<u>G</u> ruber	549	10.6	525	10.1	-	15,540 ± 270	15,16
123-12	8** "	<u>M</u> benth	17.0	0.51	302	8.2	-	16,550 ± 270	16
129-13	9 8.0	G sacc	59.2	4.0	121	8.2	Mar 87	17,910 ± 400	16
**		<u>G</u> ruber	374	7.1	582	11.1	-	18,730 ± 480	16
	"	<u>M</u> benth	16.3	0.46	505	15.3	Mar 87	18,530 ± 420	16
145-14	6 –	G sacc	28.4	1.5	-	-	-	-	
"	-	<u>G</u> ruber	274	4.2	-	-	-	-	
157-15	8 –	<u>G</u> sacc	20.3	1.1	-	-	-	-	
"	-	<u>G</u> ruber	268	4.7	-	-	-	-	

*Publication no. in which radiocarbon date has been published (see references cited)

**55.3% from 123-124cm 26.2% from 125cm

18.5% from 128cm

GULF OF MEXICO ORCA BASIN

EN32-PC6

The study of this core was undertaken in cooperation with James Kennett. The purpose was to establish the chronology of the Mississippi River melt water record (see Figs 7, 8; Table 6).

References

- Broecker, W S, Andrée, M, Wolfli, W, Oeschger, H, Bonani, G, Kennett, J and Peteet, D, in press, The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event: Paleoceanography.
- Kennett, J P, Elmstrom, K and Penrose, N, 1985, The last deglaciation in Orca Basin, Gulf of Mexico: High-resolution planktonic foraminiferal changes: Paleogeog, Paleoclimatol, Paleoecol, v 50, p 189–216.
- Leventer, A, Williams, D F and Kennett, J P, 1982, Dynamics of the Laurentide ice sheet during the last deglaciation: Evidence from the Gulf of Mexico: Earth & Planetary Sci Letters, v 59, p 11–17.

Fig 7. The ¹⁸O/¹⁶O record obtained on the shells of the planktonic species *G ruber* from a Gulf of Mexico deep-sea core raised in the Orca Basin (Leventer, Williams & Kennett, 1982). The smooth curve shows the record expected was the core from the open ocean. The large anomaly to more negative δ^{18} O values is attributed to the discharge of glacial melt water from the Mississippi River. The ¹⁴C analyses were carried out on hand-picked planktonic shells.

Fig 8. ¹⁴C age vs depth in Gulf of Mexico core EN32-PC6. The results suggest that a section of the record from ca 7000 BP to ca 11,000 BP is missing. The ¹⁴C ages have not been corrected for the air-surface-sea age difference.

EN32-PC6 Gulf of	Mexico Orca Basin
Location (26°57'N,	91°21'W) Depth 2280m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AM	S Age	
(cm)	(%)	sp	analyzed analyzed (no./gm) (mgm/gm) (mgm)		analysis	(yr)	Ref*		
23- 29) -	<u>M plank*</u>	* _	_	-	10.2	Mar 87	1470 ± 120	12
380-382	! -	<u>M plank</u>	-	-	-	14.5	Mar 87	5410 ± 130	12
437-438	-	<u>M plank</u>	-	-	-	-	Sept 85	6650 ± 110	12
442-443	0.41	<u>M plank</u>	-	-	-	-	Oct 86	8780 ± 180	12
456-458	-	<u>M</u> plank	-	-	-	7.2	Mar 87	7360 ± 160	12
470-472	-	<u>M plank</u>	-	-	-	13.4	Mar 87	11,690 ± 210	12
485–487	-	<u>G</u> ruber	-	-	-	-	May 85	12,240 ± 150	12
547-548	-	<u>G</u> ruber	-	-	-	8.0	Jan 87	11,880 ± 210	12
627–629	-	<u>M plank</u>	-	-	-	-	Aug 86	13,970 ± 410	12
808-810	-	<u>M plank</u>	-	-	-	7.7	Mar 87	17,860 ± 370	12

*Publication no. in which radiocarbon date has been published (see Refereces cited) ** \underline{M} plank = mixed planktonic species

ARCTIC OCEAN

FL-124

This study was undertaken in cooperation with David Clark of the University of Wisconsin in order to confirm the previous estimates of low sedimentation rates in the Arctic Basin (see Table 7).

References

Clark, D L, Andrée, M, Broecker, W S, Mix, A, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1986, Arctic Ocean chronology confirmed by accelerator ¹⁴C dating: Geophysical Research Letters, v 13, no. 4, p 319–321.

TABLE 7

FL-124 Arctic Ocean Location (78°14'N, 174°42'W) Depth 1517m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of	AMS Age	
(cm)	(%)	sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysi	s (years)	Ref*
0-1	-	N pach(s)	-	-	-	-	May 85	9130 ± 120	8
2-3	-	"	-	-	-	-	"	15310 ± 210	8
4-5	-	"	-	-	-	-	"	31720 ± 1280	8
8-9	-	"	-	-	-	-	**	>41100	8

*Publication no. in which radiocarbon date has been published (see References cited)

III. CORES FROM THE OPEN PACIFIC

EAST PACIFIC RISE

TT154-10

This study was carried out in cooperation with Steve Emerson of the University of Washington. The purpose was to obtain benthic-planktonic and planktonic-planktonic age differences on hand-picked foraminifera shells. Material was taken from two separate subcores from the primary 50cm² box core (see Tables 8, 9).

TABLE 8

TT154-10 (Core 5) East Pacific Rise Location (10°17.5'N, 111°20'W) Depth 3225m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AMS	Age	Pof*
(cm)	fraction (%)	sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysis	(yr)	Ne1.
0- 1 "	35.7	BULK CaCO3 G sacc	_ 885	-	-	- 7.2	 July 84	5100 ± 200* 5920 ± 100	* 15
	"	P obliq M benth	612 32.0	_ 0.56	537	10.2 9.4	-	5770 ± 120 -	15
1- 2 "	41.0	<u>G sacc</u> P obliq	-	- 1 -	-	9.9 7.7	July 84 "	5930 ± 100 5580 140	15 15
2- 3 "	40.4 ''	<u>G</u> sacc <u>P</u> obliq M benth	767 787 26-0	- - 0.35	187 192 607	7.4 7.2 8.1	July 84 "-	6110 ± 100 5020 ± 130 -	15 15 15
3- 4 "	34.9 "' "	BULK CaCO ₃ <u>G</u> sacc <u>P</u> obliq <u>M</u> benth	657 743 36.0	- - 0.38	- - - 920	_ 12.4 9.1 9.7	_ Mar 84 July 84 _	5100 ± 200* 5160 ± 140 4750 ± 110 -	** 15 15 15
4- 6 "	37.5 " "	BULK CaCO ₃ <u>G sacc</u> <u>P obliq</u> <u>M benth</u>	786 643 27.0	 	- - 496	8.7 12.6 6.8	July 84 "	5600 ± 200* 6770 ± 150 5500 ± 90 -	** 15 15 15
6- 8 "	37 . 8 ''	<u>G sacc</u> <u>P obliq</u> <u>M benth</u>	- 28.0	 0.31	 - 570	12.2 10.9 6.4	July 84 "-	5880 ± 100 5530 ± 100 -	15 15
7-8	-	BULK CaCO	3 -	-	-	-	-	6100 ± 250*	** 15
8–10 "	34.5 "	G <u>sacc</u> P <u>obliq</u> M benth	675 532 30•0	 0.42	- - 591	8.7 11.5 8.3	July 84 "	6500 ± 110 6180 ± 100 -	15 15
9-10 11-12	45.2	BULK CaCO BULK CaCO	3 – 3 –	-		-	- -	5700 ± 150 6700 ± 250	** 15 ** 15
10-14	-	M benth	25.0	0.34	537	7.4	-	-	
13-14	-	BULK CaCO	3 -	-	-	-	-	8100 ± 300	**
14–16 "	48.8 "	BULK CaCO; <u>G sacc</u> P oblig	3 – 648 800	- -	- - -	- - -	- - -	8800 ± 100; - -	k*
"	11	M benth	31.0	-	-	-	-	-	

References

Broecker, W S, Andrée, M, Bonani, G, Mix, A, Klas, M, Wolfli, W and Oeschger, H, ms in preparation, Differences between the radiocarbon ages of coexisting planktonic foramin-ifera.

Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H, Klas, M, Mix, A and Curry, W,

Brocker, w. S. Andree, M. Bohan, G. wohn, w. Oesenger, H. Kias, M. Mix, A and Curry, w. ms in preparation, The radiocarbon age of deep water in the glacial ocean.
 Emerson, S. Stump, C. Grootes, P. M. Stuiver, M. Farwell, G. W and Schmidt, F. H. 1987, Estimates of degradable organic carbon in deep-sea surface sediments from ¹⁴C concentrations: Nature, v 329, p 51–53.

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of	AMS	Age	
(cm)	(%)	r sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	l analys:	is	(yr)	Ref*
16–18 "	49.6 "	BULK CaCO	3 – 31.0	-	-	-		9400) ± 100**	;
18-20	46.5	M benth	36.0	-	-	-	-		_	
20-22	50.1	M benth	31.0	-	-	-	-		-	
22-24	43.5 "	<u>G</u> <u>sacc</u> P oblig	511 481	-	-	13.0	July 84	11,640	± 130	
"	**	M benth	35.0	0.48	530	7.3	_		-	
24-26	52.3	<u>M</u> benth	39.0	-	587	-	-		-	
26–28 "	51.2	G <u>sacc</u> P obliq M benth	- _ 37.0	_ 0.44	- _ 562	- 11.6 6.7	Jan 87 "	12,200 13,350 16,220	± 230 ± 250 ± 300	15 15
28-30	53.8	M benth	55.0	-	-	-	-		-	
30–32 "	47.3	P obliq M benth	- - 83.0	_ _ 1.14	- - 656	_ 12.8 9.0	- Jan 87 "	16,320 17,500	- ± 310 ± 380	15,16 16
30-32 "	46.9 ''	<u>G</u> sacc <u>P</u> obliq <u>M</u> benth	120	9.4 - -	150 	11.8 _ _	Mar 87 - -	15,770	± 330 - -	15,16
32-34	46.6	M benth	34.0	-	-	-	-		-	
34–36 "	47.5 "	<u>G</u> <u>sacc</u> <u>P</u> <u>obliq</u> <u>M</u> <u>benth</u>	- 57.0	 0.62	161 200 809	10.7 14.2 8.8	Jan 87 "	16,600 16,530 19,170	± 340 ± 340 ± 420	15,16 15,16 16
36-38	46.6	M benth	72.0	-	-	-	-		-	
36-38 "	46.1 "	G <u>sacc</u> P obliq M benth	- -	- -	150 113 137	10.6 8.1 6.8	Mar 87 "	16,320 17,390 20,180	± 370 ± 370 ± 610	15,16 15,16 16
40–42 "	46.9	G <u>sacc</u> M benth	362 44•0	_ 0.73	_ 484	10.5 8.0	July 84	20,110	± 220 ± 640	16 16

TABLE 8 (cont'd)

*Publication no. in which radiocarbon date has been published (see References cited) **Ages obtained at LDGO by conventional decay counting

TABLE	9
-------	---

TT154-10 (Emerson Frozen Subcore) East Pacific Rise Location (10°17.5'N, 111°20'W) Depth 3225m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AMS	S Age
(cm)	fraction (%)	sp	(no./gm)	(mgm/gm)	analyzed	(mgm)		(yr)
0-								
1.2	49.9	G sacc	487	-	-	-	-	-
"	"	P obliq	683	-	-	-	-	-
"	"	M benth	38.0	0.48	657	8.3	May 85	6700 ± 100
1.2-								
2.4	49.9	G sacc	411	-	-	-	-	-
"	"	P obliq	679	-	-	-	-	
"	"	M benth	36.0	0.41	653	7.5	Jun 85	6780 ± 110
2.4-								
3.6	48.6	G sacc	531	-	-	-	-	-
"	"	G ruber	-	-	754	8.2	-	-
11	"	P obliq	742	-	-	-	-	-
"	"	N duter	-	-	300	12.1	-	-
"	"	M benth	35.0	0.39	704	7.9	Dec 84	6930 ± 11
3.6-								
4.8	42.0	<u>G</u> sacc	403	33.7	140	11./	-	-
"		P obliq	597	43.5	147	10.7	-	-
"	11	M benth	37.0	0.51	705	9.8	Jun 85	6960 ± 10
4.8-								
6.0	44.8	G sacc	485	33.3	150	10.3	-	-
"	"	<u>P</u> obliq	624	48.5	148	11.5	-	-
5.0-								· · · · · · · · · · · · · · · · · · ·
6.0	44.8	<u>M</u> benth	34.0	0.47	641	8.8	Jun 85	6610 ± 11
6.0-								
7.2	47.5	<u>G</u> sacc	462	32.8	163	11.2	-	-
"	"	<u>P obliq</u>	657	55.6	124	10.5	- -	-
"	"	<u>M</u> benth	41.0	0.51	784	9./	Jun 85	6550 ÷ 90
7.2-		_		10.7	120	10.0		
8.4	45.0	G sacc	434	40.7	130	12.2	_	_
		<u>P</u> obliq	590	52.2	113	10.0	- Tum 05	7410 + 1
		<u>M</u> benth	32.0	0.39	/4/	9.0	Jun 83	/410 - 1
8.4-		0	225	22.0	140	12 0	_	_
9.6	44.0	G sacc	333 572	23.9 13 0	100	12.0	_	_
		P ODIIQ	213	43.0	707	7 6	_	_
	••	ri benth	33.0	0.30	107	/.0		

Depth	Coarse fraction	Foram sp	Abund	Abund	No. tests analyzed	s Weight analyzed	Date of A analysis	MS Age
(cm)	(%)		(no./gm)	(mgm/gm)		(mgm)	-	(yr)
9.6-								
10.8	3/.1	G sacc	527	40.9	152	11.8	-	-
		P oblig	598	48.6	144	11.7	-	-
10.8-								
12.0	37.4	G sacc	490	32.2	166	10.9	_	_
"	'n	P oblig	562	48.8	137	11.9	_	_
						,		
12.0-								
13.2	39.0	<u>G</u> sacc	447	31.7	162	11.5	May 85	6950 ± 110
		<u>G</u> ruber	-		552	7.5	-	-
		P oblig	625	47.0	145	10.9	May 85	6480 ± 100
	"	M bonth	28.0	- 20	326	12.2	-	-
		<u>n bentn</u>	20.0	0.30	044	8.0	May 85	9400 ± 120
13.2-								
14.4	39.6	G sacc	470	36.8	152	11.9	_	_
"	"	P obliq	582	44.0	152	11.5	-	-
20.4-								
21.6	44.2	G sacc	569	44.0	163	12.6	-	-
		P oblig	382	30.8	150	12.1	-	-
		G ruber	9/3	22.6	543	12.6	-	-
		N ducer	101	/•0	300	12.6	-	-
25.2-								
26.4	50.3	G sacc	405	21.6	205	10.9	_	-
"	"	P obliq	560	34.0	283	17.2	-	-
32 4	40.0	6	100	0.0	(1			
11	49.0	P oblig	448	9.9 28.7	61 145	3.2	-	-
		<u>1 00114</u>	440	20.7	145	9.5	-	
4.8-								
86.0	47.9	G sacc	231	15.6	120	8.1	-	_
"	"	P oblig	448	35.0	233	18.2	-	-
0 6								
0.8	50 1	C	140	12.0	<i>(</i> -			
11	JU•1	G sacc	148	13.0	6/	5.9	-	-
		T ODIIQ	232	38.4	241	1/.4	-	-
4.4-								
5.6	43.7	G sacc	110	7.8	45	3.2	_	-
"	"	P oblig	509	34.1	209	14.0	-	-
9.2-	15.0							
U.4	45.9	G sacc	242	14.8	100	6.1	-	-
		<u>r obliq</u>	303	35.8	150	14.8	-	-

Table 9 (cont'd)

OONTONG-JAVA PLATEAU

V28-238

RC17-176

These cores were chosen for our initial effort because they typified normal open ocean conditions (see Fig 9; Tables 10, 11).

References

- Andrée, M, Beer, J, Oeschger, H, Broecker, W S, Mix, A, Ragano, N, O'Hara, P, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1984, ¹⁴C measurements on foraminifera of deep sea core V28-238 and their preliminary interpretation: Nuclear Instruments & Methods, v B5, p 340–345.
- Andrée, M, Beer, J, Oeschger, H, Mix, A, Broecker, W S, Ragano, N, O'Hara, P, Bonani, G, Hofmann, H J, Nessi, M, Suter, M and Wolfli, W, 1985, Accelerator radiocarbon ages on foraminifera separated from deep-sea sediments. Reprinted from, The carbon cycle and atmospheric CO₂: Natural variations Achean to present: Geophys Mono 32, Am Geophys Union.
- Peng, T-H and Broecker, W S, 1984, The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments: Nuclear Instruments & Methods, v B5, p 346–352.
- Shackleton, N J and Opdyke, N D, 1973, Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238, oxygen isotope temperatures and ice volumes on a 10⁵ year time scale. Quaternary Research, v 3, p 39–45.

Fig 9. Oxygen isotope records for core V28-238 (Shackleton & Opdyke, 1973)

TABLE 10

V28-238 Equatorial Pacific Oontong-Java Plateau Location (01°01'N, 160°29'E) DEPTH 3120m

Depth	Coars	e Foram	Abund	Abund	No. tests	Weight	Date of A	AMS Age	
(cm)	(%)	n sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysis	(yr)	Ref*
3. 81	W 30.8	<u>G</u> sacc	632	-	_	_	Dec 83	4640 ± 160	4.6
"	"	sacc frag	<u> </u>	-	-		Mar 84	4650 ± 100	4.6
"	"	G ruber	2067	19.1	-	-		5680 ± 90	4.6
"		P obliq	685	-	-	-	Dec 83	4760 ± 160	4.6
	"	N duter	385	17.8	-	-	Mar 84	5410 ± 80	4.6
	"	M benth	-	-	-	-	Dec 83	6150 ± 180	4,6
2.5-									
4.5	-	G sacc	-	-		-	July 84	5500 ± 230	6
"	••	P obliq	-	-	-	-	"	4330 ± 100	6
10-12	39.0	G sacc	535	_	-	-	Feb 83	5880 ± 100	4.6
"	"	G ruber	1433	1.9	-	_	Mar 84	7670 ± 100	4,6
		P oblig	1604	-	~	_	Dec 83	6390 ± 160	4,0
	"	N duter	92.0	0.3	-	-	Mar 84	9070 ± 100	4,0
	"	M benth	_	-	_	-	Feb 83	9530 ± 80	4,0
"		<25 micron	s -	-	-	-	"	6320 ± 60	4,6
	" 2	5-63 micron	s –	-	-	_		6620 ± 70	4,0
"	"	>63 micron	s –	-	-	-	Mar 84	6870 ± 140	4,0 4,6
12-15	-	BULK CaCO	3 -	-	-	-	-	8010 ± 150	
13-14	40.3	G sacc	249	12.3	-	9.4	Mar 84	8350 ± 100	4.6
"	"	G ruber	1907	-	-	-	_	-	.,.
"		P oblig	613	27.4	-	10.5	Mar 84	8620 ± 100	4.6
	"	N duter	-	-	-	-	-	-	.,.
		<u>H</u> bench	25.0	1.0	152	6.2	Mar 84	12,080 ± 120	4,6
15-16	38.6	$\frac{G}{C}$ sacc	716	-	-	-	Feb 85	8190 ± 120	
		B oblig	1200	-	-	-	-	-	
		F Obiiq	1200	-	-	-	Feb 85	8450 ± 110	
"	"	M benth	40.0	-	189	3.2	-	_	
18-20	45.3	G RACO	662	_			D 00	0700 + 000	
	1915	G sace	955	_		17.0	Dec 83	9730 ± 220	4,6
		C mihor	1070	11.0	662	17.8	Mar 84	8490 ± 150	4,6
		B ablia	1079	11.0	-	-		9580 ± 110	4,6
	"	P oblig	1400	-	515	41.2	Dec 83	9300 ± 220	4,6
		N duton	107	<i>, , ,</i>		-	Mar 84	9680 ± 170	4,6
		M honth	107	4.4	-	_	- "	$11,230 \pm 130$	4,6
		<u>H benth</u>	49.0	-	540	8.1	Dec 83	11,660 ± 260	4,6
21-22	37.0	G sacc	270	-	208	-	Feb 85	10.230 ± 120	
"	"	G ruber	1862	-	-	-			
"		P obliq	719	-	60	-	Feb 85	10.470 ± 160	
		N duter	195	-	-	-	_	-	
"		M benth	60.0	-	-	-	-	-	
25-26	33.1	G sacc	529	_	233	-	-	_	
"		G ruber	1114	_		-	_	_	
"	"	P oblig	935	-	75	-		-	
"		N duter	166	-	-	-	-	_	
"	"	M benth	61.0	-	-	_	_	-	
29-3 0	30.0	G sacc	138	-	208	_	Feb 85	11 880 + 140	
		G ruber	634	-	-	_			
	"	P oblig	795	-	85	-	Feb 85	12 950 + 140	
"		N duter	108	-	-	-			
"	"	M benth	69.0	-	-	-	-	_	

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AM	IS Age	D C#
(cm)	fraction (%)	sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysis	(yr)	Kei*
30-31	25.7	G sacc	392	-	464	16.4	Dec 83	11,650 ± 260	4,6
"	"	P oblig	1069	-	315	21.7	"	12,680 ± 460	4,6
"	11	M benth	76.0	-	715	8.7	"	16,140 ± 390	4,6
34-35	21.6	G sacc	96	3.40	241	8.54	Mar 84	13,560 ± 220	4,6
"	"	G ruber	768	-	-	-	-	-	
		P oblig	340	23.5	80	8.0	Feb 85	14,340 ± 130	
"		N duter	225	-	-	-	-	-	
"	**	M benth	87.0	1.00	-	-	-	-	
41-43	24.8	G sacc	93	-	-	11.0	Apr 83	17,780 ± 390	4,6
"	"	P oblig	648	-	-	11.0	July 83	19,620 ± 190	4,6
"	11	N duter	169	-	-	-	-	-	
	"	M benth	81.0	-	781	6.0	Apr 83	20,650 ± 220	4,6
"	**	<25 micros	ns –	-	-	-		17,800 ± 160	4,6
"	" 2	5-63 micro	ns -	-	-	-	11	19,440 ± 260	4,6
44-45	21.2	G ruber	288	-	-	-	-	-	
	"	P obliq	310	-	-	-	-	-	
"	"	N duter	149	-	-	-	-	-	
"	"	M benth	9.00	-	-	-	-	-	
45-47	28.8	G sacc	-	-	-	-	Mar, 84	19,620 ± 240	4,6
"	"	<u>G</u> ruber	436	0.09	-	-		19,380 ± 260	4,6
	"	N duter	180	6.4	-	-	**	$21,000 \pm 250$	4,6
"	"	M benth	-	-	-	-	"	22,110 ± 350	4,6
50-51	25.9	G sacc	678	21.2	458	14.5	Dec, 83	19,610 ± 620	4
"		G sacc	678	-	-	-	Mar, 84	22,400 ± 1180) 4
	"	G ruber	504	5.20	-	-		21,030 ± 280	4
"		P oblig	1282	75.9	433	26.9	Dec, 83	22,630 ± 1290) 4
	"	P oblig	-	-	-	-	Mar, 84	22,180 ± 1090) 4
	н	N duter	182	0.50	-	-	"	22,890 ± 280	4
"	"	M benth	124	1.40	678	8.1	Dec, 83	22,440 ± 690	4
1200	21.5	G sacc	124	-	-	-	Mar, 84	>40140	4
"	" '	P obliq	-	-	-	-	"	>41900	
"	11	P obliq	-	-	-	-	Nov, 85	>42840	4
"	"	G sacc	-	-	-	-		>36400	

TABLE 10 (cont'd)

*Publication no. in which radiocarbon date has been published (see References cited

TABLE 11

RCl7-176 Equatorial Pacific Oontong-Java Plateau Location (03°45'N, 158°46'E) Depth 3156m

Depth (cm)	Coarse fraction (%)	Foram sp	Abund (no./gm)	Abund (mgm/gm)	No. tests analyzed	Weight analyzed (mgm)	Date of AMS analysis	Age (yr)
4-6	49.0	G sacc	351	-	_	-	Dec 83	6080 ± 190
	"	P oblig	814	-	-	-	"	6710 ± 190
"		N duter	-	-	-	-	"	-
"		M benth	25.6	-	-	-	"	9400 ± 220

IV. CORES FROM BASINS ADJACENT TO THE PACIFIC

SOUTH CHINA SEA

V35-5

V35-6

This study was undertaken to determine the time history of the surface to deep 14 C/C ratio difference for the Pacific Ocean (see Fig 10; Tables 12, 13).

References

- Andrée, M, Oeschger, H, Broecker, W S, Beavan, N, Klas, M, Mix, A, Bonani, G, Hofmann, H J, Suter, M, Wolfli, W and Peng, T-H, 1986, Limits on the ventilation rate for the deep ocean over the last 12,000 years: Climate Dynamics, v 1, p 53–62.
- Broecker, W S, 1986, Paleocean circulation rates as determined from accelerator radiocarbon measurements on hand-picked foraminifera: Internatl conf geochronology, cosmochronology and isotope geology, Cambridge, England, abs.
- Broecker, W S, Andrée, M, Bonani, G, Míx, A, Klas, M, Wolfli, W and Oeschger, H, ms in preparation, Differences between the radiocarbon ages of coexisting planktonic foraminifera.
- Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H, Klas, M, Mix, A and Curry, W, ms in preparation, The radiocarbon age of deep water in the glacial ocean.
 Broecker, W S, Andrée, M, Klas, M, Bonani, G, Wolfli, W and Oeschger, H, in press, New
- Broecker, W S, Andrée, M, Klas, M, Bonani, G, Wolfli, W and Oeschger, H, in press, New evidence from the South China Sea for an abrupt termination of the last glacial period about 13,500 years ago: Nature.
- Oppo, D W and Fairbanks, R, 1987, Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the southern ocean: Earth & Planetary Sci Letters, v 86, no. 1, p 1–15.

Fig 10. Oxygen isotope record for benthic foraminifera in core V35-05 (Oppo & Fairbanks, 1987)

TABLE 12

V35-05 South China Sea Location (07°11.7'N, 112°4.6'E) Depth 1953m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AM	1S Age	Do ft
(cm)	(%)	sp	(no./gm)	(mgm/gm)	anaiyzeu	(mgm)	anarysis	(yr)	Ne1.
1- 4TV	V 1.77	G sacc	32.5	0.52	255	4.1	July 85	690 ± 150	9
0-20TV	v 1.91	G sacc	31.8	1.19	404	15.1	Sept 85	1930 ± 90	9,15
		G sacc	31.8	1.43	348	15.7	Apr 86	1810 ± 100	9,15
		P oblig	10.5	0.29	376	10.4	Sept 85	2090 ± 90	9,15
		P oblig	10.5	0.34	250	8.1	July 86	2160 ± 120	15
"	"	M benth	9.8	0.21	690	15	Sept 85	3560 ± 100	9
0-1	2.51	G sacc	9.0	0.24	74	2	-	-	
3-6	3.86	G sacc	26.7	0.66	303	7.5	Sept 85	1940 ± 120	
"	"	P oblig	8.1	0.17	87	1.8	-	-	
6- 7	3.65	<u>G</u> sacc	27.1	0.60	-	-	-	-	
7-8	3.44	<u>G</u> sacc	4.9	0.18	-	-	-	-	
0-10	3, 36	G sacc	23.2	0.86	387	14.3	Sept 85	2010 ± 90	9.15
"	"	G sace	23.2	0.74	320	10.2	Apr 86	2100 ± 100	9 15
		B shide	20.0	0.02	204	9.9	Sopt 85	2620 ± 00	0 15
		P ODIIQ	30.9	0.92	2.54	7.6	3ept 05	2020 = 90	9,15
"	"	M benth	8.8	0.25	472	13.4	Sept 85	3610 ± 100	9
10-15	3.54	G sacc	11.3	0.44	-	-	-	-	
"	"	P obliq	9.6	0.38	-	-	-	-	
25-30	2.72	G sacc w/s	29.8	1.05	165	6.4	Nov 87	3380 ± 120	
"	"	G sacc 0/s	35.1	0.88	196	6.2	Nov 87	1740 ± 110	
	"	P oblig	14.9	0.48	151	-	-	-	
"	"	M benth	-	-	-	-	-	-	
40-45	2.52	G sacc	23.5	0.87	. –	_	-	-	
	"	P oblig	10.8	0.27		-	-	-	
"	**	M benth	-	-	-	-	-	-	
59- 70	2.19	G sacc	39.5	1.46	373	13.8	Apr 86	5750 ± 120	9,15
**	"	P oblig	17.2	0.53	253	7.7	"	6500 ± 130	9,15
"	"	M benth	5.7	0.17	232	7.4	"	7240 ± 120	9
60-70	2.41	G sacc	51.2	1.60	433	13.5	Sept 85	5830 ± 110	9,15
		P oblig	12.7	0.37	312	9.1	• "	6190 ± 110	9,15
"	"	M benth	7.4	0.12	241	4	"	7110 ± 120	9
65- 70	1.80	G sacc w/s	9.6	0.45	202	9	Nov 87	5750 ± 130	
	"	G sacc 0/s	10.3	0.46	227	10.2	Nov 87	5400 ± 150	
"	"	P oblig	6.2	-	-		-	-	

Depth	Coarse fraction	Foram 1 sp	Abund	Abund	No. tests analyzed	Weight analyzed	Date o 1 analy	f AMS sis	Age	Ref*
(cm)	(%)		(no./gm)	(mgm/gm)		(mgm)	5		(yr)	
70- 75	5 1.75	<u>G</u> sacc	49.7	1.57	308	9.8	Oct 86	5990	± 150	15
	**	P obliq	22.9	0.82	256	9.2		6870	± 150	15
"		M benth	4.1	0.09	260	6	-		-	
75- 80	1.81	G sacc	44.9	1.64	309	11.3	Jan 87	6830	± 190	
	"	P obliq	28.5	1.11	273	10.6	"	L	OST	
n		<u>M</u> benth	4.4	0.12	294	7.9	-		-	
80- 85	1.58	G sacc	34.5	1.20	414	14.4	Apr 86	7670	± 140	9,15
		P.obliq	21.0	0.67	366	11.6	. 11	8350	± 150	9,15
		<u>M</u> benth	5.4	0.09	280	4.8	-		-	
85- 90	1.95	<u>G</u> sacc	37.5	0.99	586	14.5	Apr 86	7500	± 150	9,15
		P obliq	29.5	0.46	481	14.8		7910	± 150	9,15
		M benth	6.0	0.14	475	11.1	"	8870	± 160	9
90-100	2.20	G sacc	27.7	0.90	407	13.2	Apr 86	8250	± 140	9,15
		<u>P</u> obliq	19.7	0.79	284	11.4	July 86	9000	± 130	9
90-100	1.28	G sacc	26.8	0.94	396	14	Apr 86	8130	± 140	9,15
.,		<u>P</u> obliq	19.5	0.63	449	14.7	"	8820	± 150	9,15
90-100	1.61	M benth	4.6	0.09	461	8.8	July 86	10,930	± 190	
96-104	1.21	<u>G</u> sacc w/s	13.0	0.58	224	8.6	Nov 87	8700	± 180	
		<u>G</u> sacc 0/s	17.3	0.55	240	7.5	Nov 87	8680	± 200	
		<u>P</u> obliq	14.0	0.61	155	6.8	-		-	
00-105	1.61	<u>G</u> sacc	35.2	1.22	382	13.3	July 86	9050	± 130	15
"		P obliq	17.6	0.66	320	12.1	"	9520	± 130	15
)5-110	1.33	G sacc	26.3	0.94	424	15.2	July 86	8930	± 150	15
	11	P obliq	20.2	0.65	367	11.7	**	9980	± 140	15
)0-110	1.42	M benth	5.1	0.15	304	8.7	July 86	11,430	± 180	
10-115	1.34	G sacc	27.7	1.05	406	15.4	Apr 86	9050	± 160	9,15
		P obliq	26.3	0.89	364	12.3	"	9800	± 180	9,15
		M benth	5.9	0.16	332	9.2		10,910	± 180	9
5-120	1.51	G sacc	29.5	1.11	402	15.1	Oct 86	9610	± 200	15
		P obliq	22.7	0.87	350	13.4	"	10,400	± 220	15
		M benth	6.2	0.11	300	5.7	-	-	-	
0-130	2.11	G sacc	46.8	1.64	405	14.2	July 86	9520	± 150	15
		P obliq	32.0	1.00	359	11.2		-	-	

TABLE 12 (cont'd)

TABLE 12 (cont'd)

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of	AMS Age	D. 64
(cm)	fraction (%)	sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysi	s (yr)	Kei*
120-12	26 1.60	<u>G</u> sacc	32.0	1.12	380	13.3	July 86	9550 ± 130	
125-13	30 1.47	<u>G</u> sacc	35.4	1.34	372	14.1	Jun 86	9910 ± 240	9
120-13	30 1.74 "	P <u>obliq</u> M <u>benth</u>	37.3 5.4	1.17 0.11	319 446	10 9.1	Jun 86 "	10,350 ± 120 11,690 ± 130	9,15 9
130-13	35 1.20	<u>G</u> sacc	20.7	0.68	248	8.1	Jun 86	9670 ± 110	9
135-14	0 1.28	<u>G</u> sacc	25.9	0.84	361	11.7	Jun 86	10,890 ± 130	9
140-14	5 2.05	<u>G</u> sacc	36.3	1.54	356	15.1	Jun 86	11,300 ± 120	9
130-14	45 1.61 "	P obliq M benth	35.8 4.5	1.24 0.10	331 490	11.5 10.8	Jun 86 "	11,410 ± 190 11,960 ± 180	9,15 9
150–16 "	50 3.11 "	<u>G</u> sacc <u>P</u> obliq <u>M</u> benth	29.7 38.3 8.7	1.19 1.43 0.25	388 399 308	15.5 14.9 8.7	Jun 86 "	11,580 ± 200 12,210 ± 190 12,620 ± 190	9,15 9,15 9
160–16 "	55 1.81 "	<u>G</u> <u>sacc</u> P obliq	20.5 37.2	0.72 1.35	242 217	8.5 7.9	Nov 87 Nov 87	9820 ± 160 12,920 ± 210	
160–16 "	55 1.54 "	<u>G sacc</u> P obliq	14.9 40.0	0.61 1.20	-	-	-	-	
165-17 "	70 1.06 "	<u>G sacc</u> P obliq	14.1 23.3	0.54 0.84	-	-	-	- -	
170–17 "	75 .83 "	<u>G sacc</u> P obliq	13.6 25.8	0.45 0.77	213 331	7 9.9	Nov 87 Nov 87	11,860 ± 190 13,170 ± 210	
170-17	75 .98 "	<u>G sacc</u> P obliq	20.1 30.7	0.48 0.86	-	-	-	- -	
175–18 "	80 . 70	<u>G sacc</u> P oblig	7.2 16.6	0.22 0.43	221 259	7.4 7.6	May 88 May 88	12,980 ± 210 13,600 ± 170	
180–19 "	95 1.43 "	<u>G</u> <u>sacc</u> <u>P</u> <u>obliq</u> <u>M</u> benth	9.5 5.5 1.9	0.32 0.17 0.11	285 270 119	9.7 8.5 6.7	Sept 85 "	13,240 ± 190 15,160 ± 220 13,710 ± 190	15,16 15,16 16
180–19 "	95 1.35 "	<u>G sacc</u> P obliq	9.6 5.8	0.27 0.16	337 232	9.5 6.6	Apr 86	13,220 ± 190 14,780 ± 210	15,16 15,16
205-22	20 <u>.</u> 50	<u>G sacc</u> P oblig	6.2 1.4	0.15 0.07	-	-	-	-	

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of .	AMS Age	
(cm)	(%)	i sp	(no./gm)	(mgm/gm)	analyzed	analyzed (mgm)	analysi	s (yr)	Ref*
210-220	0•89 ''	<u>G</u> sacc <u>P</u> obliq M benth	10.9 1.9 2.5	0.23 0.05 0.11	434 214 114	9 5.6 4.8	Sept 85 "	1,3740 ± 190 1,4340 ± 200 1,6330 ± 250	15,16 15,16 16
240–255	5 1.09 "	G sacc P obliq M benth	2.8 12.4 1.3	0.08 0.34 0.04	218 444 -	6.1 12 -	Sept 85 "-	1,4570 ± 600 1,6010 ± 440 -	15 15,16
240-255	5 .22 "	<u>G</u> <u>sacc</u> <u>P</u> obliq	3.0 5.6	0.07 0.22	300	_ 11.4	_ July 86	- 1,6130 ± 330	16
240-255	.62	M benth	1.6	0.04	287	7.9	July 86	1,7010 ± 230	16
270-285	•45 "	<u>G</u> <u>sacc</u> <u>P</u> obliq	1.9 7.9	0.04 0.22	-	-	-	-	
270–285	•38 "	<u>sac</u> &30% <u>rub</u> <u>P_obliq</u> <u>M_benth</u>	2.5 10.4 2.5	0.06 0.28 0.05	387* 498 435	8.8 13.5 10	Aug 86 ''	1,6170 ± 290 1,7530 ± 330 1,7810 ± 350	15,16 15,16 16
300–318 "	1.12	G sacc P obliq M benth	2.7 8.1 1.0	0.09 0.22 0.03	135 339 -	4.6 9.1 -	Sept 85 "	1,6380 ± 590 1,7300 ± 500 -	15 15
300–319 "	•24 ''	<u>C sacc</u> <u>P obliq</u>	4.2 10.2	0.11 0.32	293 264	7.6 8.1	Jun 86 "	1,7540 ± 260 1,8440 ± 270	15,16 15,16
300-319	• 55	M benth	1.8	0.05	367	9.6	Jun 86	1,9280 ± 290	16
318–330 "	•41 ''	G sacc P oblig M benth	5.6 10.4 2.3	0.12 0.32 0.05	475 499 349	9.8 15.5 7	Oct 86 "	1,7020 ± 390 1,7840 ± 430 1,9040 ± 460	15 15
330–350 " "	•27 "	<u>G sacc</u> <u>P obliq</u> <u>P obliq</u> <u>M benth</u>	4.4 10.6 10.6 2.9	0.11 0.32 0.32 0.06	312 300 472 507	8 9.1 15.1 10.8	Jun 86 " Oct 86 Jun 86	2,1110 ± 340 1,8890 ± 280 1,8770 ± 480 1,6200 ± 220	16 16 16 16

TABLE 12 (cont'd)

*Publication no. in which radiocarbon date has been published (see References cited). **30% \underline{G} ruber added to reach desired size

V35-06 South China Sea Location (07°13'N, 112°09'E) Depth 2030m

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of AMS	Age	Ref*
(cm)	(%)	sp	(no./gm)	(mgm/gm)	anaryzeu	(mgm)	anarysrs	(yr)	
1- 7TW	•80 ''	<u>G sacc</u> P obliq	9.2 3.2	0.17 0.06	125 35	2.3 0.7	July 85 _	1170 ± 170 _	7,9
7- 8TW	•83 ''	<u>G sacc</u> P obliq	9.3 1.2	0.15	-	-	-	- -	
8- 9TW "	•68 ''	<u>G sacc</u> P obliq	7.6 1.3	0.14 0.07	- -	-	-	- -	
9-10TW "	•91 ''	<u>G sacc</u> P obliq	5.8 1.2	0.13 0.12	-		-	- -	
7-18TW	1.80	<u>G sacc</u> <u>P obliq</u>	2.0 3.2	0.07 0.08	-		-	- -	
18-22TW	2.45	<u>G sacc</u> P obliq	18.4 4.8	0.55	-	-	-	- -	
37-41TW	2.95 "	<u>G sacc</u> <u>P obliq</u>	23.6 7.0	0.91 0.15	-	-	-	- -	
0- 1 "	2.35 "	G <u>sacc</u> P <u>obliq</u> M <u>benth</u>	2.0 3.2 . 4.4	0.29	- - -		- -	- - -	
1-2	3.26 "	<u>G</u> sacc P obliq	16.2 2.5	0.51	-	-	-	-	
2-3	2.28	<u>G sacc</u> P oblig	10.1 2.2	-	-	-	- -	- -	
1- 2	2.14	<u>G</u> sacc	33.8	0.24	-	-	-	-	
2- 4 "	2.22	<u>G sacc</u> <u>P obliq</u> <u>M benth</u>	43.1 2.7 4.9	1.13 0.15 0.14	347 32 58	9.1 1.8 1.6	July 85 _ _	3580 ± 80 - -	7,9
4- 5	2.04	<u>G</u> sacc	18.2	0.32	52	0.9	-	-	
5-6	4.30	<u>G</u> sacc	69.2	1.99	251	7.2	-	-	
6- 7	2.37	G sacc	26.4	0.50	64	1.2	-	-	

TABLE 13 (cont'd)

Depth	Coarse	Foram	Abund	Abund	No. tests	Weight	Date of	AMS A	ge	
(cm)	(%)	. 3p	(no./gm)	(mgm/gm)	analyzed	analyzec (mgm)	l analysis	s (yr)	Ref*
8-13	3.07	G.sacc	41.9	-	100	9.4	May 85	4860 ±	90	7,9,15
		G.ruber	-	-	-	-	-	-		, , ,
	"	P.obliq	24.6	-	155	13.4	May 85	5140 ±	90	7.9.15
		N.duter	-	-	-	-	-	-		,,,,.,
"	"	M.benth	7.8	-	271	4.9	May 85	6420 ±	100	7,9
Unknowr	n* 2 . 16	G.sacc w/s	24.9	1.02	192	7.9	Nov 87	5210 +	170	
"		G.sacc 0/s	19.7	0.60	269	8 1	Nov 87	5/70 ±	170	
11	11	P.obliq	15.7	0.53	-	-	-	- J470 -	170	
13-16	1.19	G.sacc	15.2	0.47	_	_	_	-		
"		P.oblig	19.7	0.51	-		_	_		
	"	M.benth	-	-	-	-	_	-		
16-22	1.84	G.sacc w/s	19.5	0.76	130	5.1	Nov 87	6350 ±	160	
	"	G.sacc 0/s	15.9	0.51	185	5.9	Nov 87	6370 ±	170	
"		P.oblig	16.2	0.50		_	_		1,0	
	"	M.benth	-	-	-	-	-	-		
17-24	2.38	G.sacc	28.9	_	128	10.0	May 85	6040 +	1.00	7 0 15
	11	G. ruber	_	-	-	-	1.ay 0.5	0040 -	100	7,9,15
	"	Problig	13.7	-	161	12.2	M 05	-	100	7 0 15
	"	N.duter	-	-	_	-	may 65 -	6060 ±	100	7,9,15
18-20	-	M.benth	-	-	273	4.0	Jun 85	7200 ±	110	7,9
22-28	-	M.benth	7.6	-	237	4.8	May 85	7660 ±	130	7,9
27-30	2.75	G.sacc	44.0	-	-	10.0	May 85	6420 +	100	7 0 15
	"	G.ruber	_	-	-	-		0420 -	100	7,9,15
"		P.oblig	15.0	_	_	12.4	May 85	6810 +	100	7 0 15
	"	N.duter	_	_	-	-	1 ay 05	0010 -	100	7,9,15
н	11	M.benth	8.8	-	-	-	-	-		
37-45	2.46	G.sacc	51.0		_	10.0	Mav 85	7890 ± 1	110	7.9.15
"	11	G.ruber	-	-	-	-	-	_		.,.,
"		P.oblig	24.0	-	-	13.5	May 85	8030 ± 3	110	7915
"	"	N.duter	-	-	-	-		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
"	"	M.benth	8.6	-	480	8.4	Jun 85	9210 ± 1	130	7,9
42-47	1.52	G.sacc	20.9	0.70	_	-	_	_		
"		P-oblig	17.7	0.59		_	_	-		
"	"	M.benth	_	-	-	_	-	-		
45-53	1.61	G.sacc	29.0	_	-	9.5	Max 85	8780 + 1	20	7 0 15
	"	G.ruber	-	-	-	-		0700 ∸ I	.20	1,9,13
	"	P.oblig	23.0	_	_	11 7	- Matr 85	0020 + 1	20	7 0 15
		N.duter		_	_	-	ay, 05	3020 ± 1	20	1,9,15
		M.benth	7.9	-	476	7 0	Jun 95	0760 + 1	20	7 0
					4/0	/.0	Juii, 0J	7/0U - I	30	1,9

TABLE 13 (cont'd)

Depth	Coarse	Foram	Abund	Abund	No. tests analyzed	Weight analyzed	Date of AMS analysis	S Age	Ref*
(cm)	(%)	З₽	(no./gm)	(mgm/gm)		(mgm)	-	(yr)	
52-60	1.41	G sacc	16.5	0.47	-	-	-	-	
	"	P obliq	22.6	0.80	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
54-61	1.79	G sacc w/s	17.7	0.56	267	8.4	Nov 87	9600 ± 210	
	"	G sacc 0/s	18.5	0.65	216	7.7	Nov 87	9500 ± 90	
"		P oblig	28.5	0.95	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
57-64	0.96	G sacc	24.0	-	-	9.4	May 85	9550 ± 120	7,9,15
"	11	G ruber	-	-	-	-	-	-	7 0 15
	"	P obliq	20.0	-	-	11.0	May 85	9630 ± 120	7,9,15
"	"	N duter		-	-	-	-	1 0910 + 150	7 0
"	"	<u>M</u> benth	6.6	-	362	6.5	Jun 85	1,0810 - 150	7,9
68-72	1.48	G sacc	20.0	-	-	-	Jun 85	1,0130 ± 120	7,9,15
"	"	G ruber	-	-	-	-		-	7 0 15
"	"	P oblig	51.0	-	-	-	Jun 85	1,0070 - 120	7,9,15
"		<u>N</u> duter M benth	- 7.5	-	408	7.3	Jun 85	1,1290 ± 150	7,9
78-82	1 72	6 8800	24-0	_	-	-	May 85	9740 ± 130	7,9,15
70 02	"	G ruber	_	_	-	-	· -	-	
17	"	P oblig	30.0	-	-	-	May 85	1,0370 ± 130	7,9,15
"		N duter	-	-	-	_	- Mart 85	-	79
	"	M benth	9.2	-	-	-	may ob	1,1100 - 140	7,9
89-92	2.17	G sacc	23.0	-	-	-	July 85	1,1590 ± 140	7,9,15
		<u>G</u> ruber	-	-	-	_	Tul 1 85	$1 1820 \pm 140$	7.9.15
		P oblig	21.0	-	_	_	5ury 05	-	,,,,,,,
		M benth	9 . 2	-	386	5.8	July 85	1,2950 ± 160	7,9
98-10	12 1 81	G sacc	23.0	-	-		July 85	1,2540 ± 160	7,9,15
90-10	"	G ruber	-	-	-	-	í –	-	
	"	P oblig	50.0	-	-	-	July 85	1,2700 ± 160	7,9,15
		N duter	_	-	-	-	-	-	
"	"	M benth	12.8	-	-	-	July 85	1,3550 ± 170	7,9
103-10	08 1.03	G sacc	11.0	0.38	-	-	-	-	
	**	P oblig	30.9	0.95	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
145-15	55 1.03	G sacc	4.5	0.18	-	-	-	-	
"	"	P obliq	1.5	-	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
196-20	00 0.21	G sacc	0.2	-	-	-	-	-	
"	"	P oblig	0.1	-	-	-	-	-	
	"	M.benth	-	-	-	-	-	-	

*Publication no. in which radiocarbon date has been published (see References cited).

V. SEDIMENT TRAP SAMPLES

MANOP SITE C

This project was initiated by Alan Mix working in cooperation with Jack Dymond. It involves measurements of one size fractions and handpicked foraminifera shells from material caught in sediment traps deployed in the equatorial Pacific Ocean (see Tables 14, 15).

			TABL	E 14			
		•	MPC-2	SOUTAR			
		Location	(01°2.4'N, 13	8°56.4'W) [epth 2695	n	
OSU #	Coll From	date To	Material analyzed	No. tests analyzed	Weight analyzed (mgm)	Date of analysi	AMS $\Delta^{14}C$ is (°/oo)
1 2 3 4 5 6 7 8 9 14(Rep5)	12/16/82 " " " " " " " 12/16/82	02/29/84 " " " " " " " 02/29/84	P obliq N duter Pteropods 63-150µm <63µm <u>C sacc</u> w/s <u>C sacc</u> 0/s <u>C congl</u> <u>C ruber</u> wh	192 210 - - 407 572 235 1490 -	7.6 8.4 9.6 >8.6 >9.6 11.7 10.4 11.2 9.0 53.5	Feb 86 "" "" ""	$112 \pm 12 \\ 90 \pm 12 \\ 70 \pm 12 \\ 79 \pm 12 \\ 50 \pm 11 \\ 131 \pm 12 \\ 133 \pm 13 \\ 110 \pm 11 \\ 98 \pm 11$
Ter Harry - H		Location	MPC-2 Low (01°2.4'N, 138	ver Trap 3°56.4'W) De	epth 3495m		
15 16 17 18 56(Rep16)	12/23/82 04/03/83 07/12/83 10/20/83 –	04/03/83 07/12/83 10/20/83 02/29/84 –	<63µ CaCO ₃ " " "	- - - -	31.9 21.2 50.7 46.3 25.0	- Mar 87 - -	204 ± 17 243 ± 13
		Location	MPC-1 Midd (01°3.6'N, 138	le Trap °57.6'W) De	epth 4295m		
19 20 21 22	12/18/82 03/29/83 07/07/83 10/15/83	03/29/83 07/07/83 10/15/83 02/08/84	11 11 11	- - -	37.0 38.5 46.0	 Mar 87 	-142 ± 14

34.5

_

_

10/15/83 02/08/84

TABLE 15 MPC-2 MIDDLE TRAP Location (01°2.4'N, 138°56.4'W) Depth 1895m

osu #	Coll o From	date To	Material analyzed	No. tests analyzed	Weight analyzed (mgm)	Date of A analysis	MS 4 ¹⁴ C (°/00)
10	12/23/82	04/03/83	<63µ CaCO3	_	33.4	-	-
11	04/03/83	07/12/83		-	44.8	Mar 87	119±15
12	07/12/83	10/20/83	"	-	32.4	-	-
13	10/20/83	02/29/83	"	-	52.5	-	
27	12/23/82	04/03/83	G ruber	1290	7.9		-
28	"		P oblig	185	6.2	Sept 87	109 ± 12
29	"	"	G sacc w/s	206	7.1	Sept 87	153 ± 12
30		"	G sacc O/s	279	6.0	-	-
31	04/03/83	07/12/83	G ruber	1112	7.6	-	
32	"		P oblig	272	6.3	Sept 87	106 ± 12
33	"	"	G sacc w/s	344	9.6	Sept 87	151 ± 12
34	"	11	G sacc 0/s	309	5.6	-	-
35	"	11	N duter	161	5.4	Sept 87	96 ± 12
36	07/12/83	10/20/83	P oblig	184	5.0	Sept 87	80 ± 12
37		11	N duter	171	6.5	Sept 87	102 ± 12
38	10/20/83	02/29/84	P oblig	220	8.2	Sept 87	90 ± 13
(39+40)			G sacc w/+0)/s 326	6.8	Sept 87	93 ± 13
41	17	**	N duter	219	8.5	Sept 87	48 ± 14
		Location	(01°3.6'N, 1	38°56.8'W) I	Depth 2895	m	
23	02/25/84	04/01/84	<63µ CaCO3	-	12.8	-	-
24	04/01/84	07/10/84	"	-	22.4	-	-
25	07/10/84	10/18/84	11	-	47.0	-	-
26	10/18/84	02/22/84	**	-	33.2	-	· -
42	04/01/84	07/10/84	G ruber	912	6.6	-	-
43	"	"	P oblig	371	9.7	Sept 87	116 ± 12
44		11	G sacc	365	7.2	Sept 87	121 ± 12
45		"	N duter	257	8.0	Sept 87	77 ± 12
46	07/10/84	10/18/84	G ruber	≃1400	9.1	-	-
47		11	P oblig	231	8.3	Sept 87	102 ± 12
48	11	11	G sacc w/s	347	9.6	Sept 87	80 ± 13
49		**	G sacc 0/s	511	9.8	-	-
50	"	"	N duter	278	9.4	Sept 87	62 ± 12
51	10/18/84	02/22/85	G ruber	≃1300	8.4	-	-
52	10, 10, 01	=,, ee	P oblig	285	8.2	Sept 87	70 ± 13
53	11	"	G sacc w/s	237	8.3	Sept 87	118 ± 12
54		"	G sacc 0/s	303	6.0	-	-
55		"	N duter	264	8.0	Sept 87	78 ± 12

REFERENCES CITED IN TABLES

- 1. Andrée, M, Beer, J, Oeschger, H, Bonani, G, Hofmann, J H, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1984, Target preparation for milligram sized ¹⁴C samples and data evaluation for AMS measurements: Nuclear Instruments & Methods, v B5, p 274-279.
- 2. Suter, M, Balzer, R, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Wolfli, W, Andrée, M, Beer, J and Oeschger, H, 1984, Precision measurements of ¹⁴C in AMSsome results and prospects. Nuclear Instruments & Methods, v B5, p 117-122.
- 3. Broecker, W S, Mix, A, Andrée, M and Oeschger, H, 1984, Radiocarbon measurements on coexisting benthic and planktonic foraminifera shells: Potential for reconstructing ocean ventilation times over the past 20,000 years: Nuclear Instruments & Methods, v B5, p 331-339.
- 4. Andrée, M, Beer, J, Oeschger, H, Broecker, W S, Mix, A, Ragano, N, O'Hara, P, Bona-ni, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1984, ¹⁴C measurements on foraminifera of deep sea core V28-238 and their preliminary interpretation: Nuclear Instruments & Methods, v B5, p 340-345.
- 5. Peng, T-H and Broecker, W S, 1984, The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments: Nuclear Instruments & Methods, v B5, p 346-352. 6. Andrée, M, Beer, J, Oeschger, H, Mix, A, Broecker, W S, Ragano, N, O'Hara, P, Bona-
- ni, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1985, Accelerator radiocarbon ages on foraminifera separated from deep-sea sediments. Reprinted from, The carbon cycle and atmospheric CO₂: Natural variations Achean to present: Geophys Mono 32, Am Geophys Union.
- 7. Andrée, M, Oeschger, H, Broecker, W S, Beavan, N, Mix, A, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1986, AMS radiocarbon dates on foraminifera from deep sea sediments, in Stuiver, M, and Kra, R S, eds, Internal ¹⁴C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 424-428.
- Clark, D L, Andrée, M, Broecker, W S, Mix, A, Bonani, G, Hofmann, H J, Morenzoni, E, Nessi, M, Suter, M and Wolfli, W, 1986, Arctic Ocean chronology confirmed by accelerator 14C dating: Geophys Research Letters 13, no. 4, p 319-321.
- 9. Andrée, M, Öeschger, H, Broecker, W S, Beavan, N, Klas, M, Mix, A, Bonani, G, Hofmann, H J, Suter, M, Wolfli, W and Peng, T-H, 1986, Limits on the ventilation rate for the deep ocean over the last 12,000 years: Climate Dynamics, v 1, p 53-62.
- 10. Broecker, W S, 1986, Paleocean circulation rates as determined from accelerator radiocarbon measurements on hand-picked foraminifera: Internatl conf, 6th, Geochronology, cosmochronology and isotope geology, Cambridge, England, abs. 11. Andrée, M, 1987, The impact of bioturbation on AMS ^AC dates on hand-picked foramin-
- ifera: A statistical model: Radiocarbon, v 29, no. 2, p 169-175.
- 12. Broecker, W S, Andrée, M, Wolfli, W, Oeschger, H, Bonani, G, Kennett, J and Peteet, D, in press, The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event: Paleoceanography.
- 13. Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H and Klas, M, in press, Can the Greenland climatic jumps be identified in records from ocean and land?: Quaternary Research.
- 14. Broecker, W S, Andrée, M, Klas, M, Bonani, G, Wolfli, W and Oeschger, H, in press, New evidence from the South China Sea for an abrupt termination of the last glacial period about 13,100 years ago: Nature.
- 15. Broecker, W S, Andree, M, Bonani, G, Mix, A, Klas, M, Wolfli, W and Oeschger, H, ms in preparation, Differences between the radiocarbon ages of coexisting planktonic foraminifera
- 16. Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H, Klas, M, Mix, A and Curry, W, ms in preparation, The radiocarbon age of deep water in the glacial ocean.
- 17. Broecker, W S, Oppo, D, Curry, W, Andrée, M, Wolfli, W and Bonani, G, ms in prepara-tion, Radiocarbon based chronology for the ¹⁸O/¹⁶O record for the last deglaciation.
- 18. Broecker, W S, 1987, The biggest chill: Natural History, v 96, no. 10, p 74-75.