Radiocarbon

1986

THE VALUE OF ²¹⁰Pb IN DATING SCANDINAVIAN AQUATIC AND PEAT DEPOSITS*

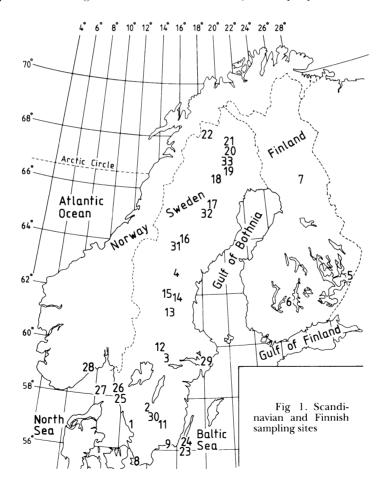
FARID EL-DAOUSHY

Institute of Physics, Box 530, S-751 21 Uppsala, Sweden

ABSTRACT. Sediment and peat chronologies have been further improved allowing alternative radiometric methods to complement ¹⁴C dating. Lacustrine and coastal marine sediments as well as peat deposits in various parts in Scandinavia are studied using ¹³⁷Cs, ²¹⁰Pb, ¹⁴C and other methods primarily to evaluate the ²¹⁰Pb but also to extend the ¹⁴C chronology. The sampling sites have various sources of input and are characterized by different geochemical, depositional, and post-depositional conditions.

INTRODUCTION

During the past three decades several alternative methods have been developed for dating recent aquatic and peat deposits. However, the possibilities to date sediments and peat earlier than 50,000–70,000 BP are quite limited and further research is required to improve the available techniques.


The ²³⁸U series provides several chronologies which are based on the fact that the secular equilibrium in the series is broken under favorable conditions. This gives rise to either a deficiency or an excess of certain nuclides. For ²¹⁰Pb, eg, an excess activity (unsupported ²¹⁰Pb) is created through the emanation of ²²²Rn and its subsequent decay in the atmosphere. This ²¹⁰Pb is then introduced to different water systems through atmospheric and hydrologic processes. In the case of marine environments unsupported ²¹⁰Pb could be produced in water columns as well because of high amounts of ²²⁶Ra in the waters. The pre-existing ²¹⁰Pb, which is available in local deposits, is called supported 210 Pb which may or may not be in secular equilibrium with its precursor ²²⁶Ra. The unsupported ²¹⁰Pb, particularly when combined with other techniques, yielded credible chronologies for the past 150 yr (Pennington et al, 1976; Krishnaswamy & Lal, 1978). Further, the ²¹⁰Pb method (Robbins, 1978; Oldfield & Appelby, 1984) is used to study the influence of external and internal processes on the depositional pattern of aquatic systems. Absolute and relative dating techniques can be combined to construct whole body chronologies of lakes, marine coasts, and peat bogs (Thompson et al, 1980). Such studies are of major importance for mass-balance calculations and modeling of multi-system interactions (Fyfe, 1981; Dearing et al, 1986). This would provide information on the production, circulation, and accumulation of various chemical species in aquatic environments.

^{*}This paper was presented at the Twelfth International Radiocarbon Conference in Trondheim, Norway, June 24–28, 1985.

RECENT ACCUMULATION RATES OF SEDIMENTS AND PEATS IN SCANDINAVIAN SITES

Forty-two cores from Sweden, Norway, and Finland (Fig 1) have been analyzed using ²³⁸U series and other complementary methods. These cores were collected from lakes, marine coasts, and peat bogs primarily to evaluate the ²¹⁰Pb methodology (El-Daoushy, 1981) in dating aquatic and peat deposits and solving problems related to aquatic systems. The sediment cores, save Sites 23 and 24, were sampled from accumulation bottoms with more or less stable sedimentary conditions. In most cases, the coring sites were flat bottoms at maximum depths and the sampling procedures were carried out carefully to avoid possible disturbances.

The unsupported ²¹⁰Pb is calculated using the total ²¹⁰Pb and the supported ²¹⁰Pb. The latter ²¹⁰Pb is based on ²²⁶Ra profiles and/or total ²¹⁰Pb in deposits older than 150–200 yr. A detailed description of the evaluation of supported ²¹⁰Pb is given elsewhere (El-Daoushy, ms in preparation). Table 1

1032

	ig 1) and total	ackets.	· supported
	idinavian sites (F	al are given in b'	unsupported 2261
	s in Scar	ne interv	[ritia]
[]	Mean deposition rate	organic matter in the past 150 ± 20 yr. Total deposited matter in the same time interval are given in brackets.	Mean denosition - Total organic - Unsummerted ²¹⁰ Pb - Initial unsummerted - 2265 summerted
TABLE 1	deposited matter.]	r. Total deposited 1	Total organic
	n the calculations of	1 the past 150 ± 20 y	Mean denosition
	²¹⁰ Pb parameters used in the calculations of deposited matter. Mean deposition rates in Scandinavian sites (Fig 1) and total	organic matter in	Coring site, number on

Coring site, number on	Mean deposition	Total organic	Unsupported ²¹⁰ Pb	Initial unsupported	Initial unsupported ²²⁶ Ra; supported
figure 1	rate, mg·cm ⁻² ·y ⁻ 1	matter, g·cm ⁻ 2	flu≭, pCi∙cm ⁻² .y ⁻ 1		^{210pb} activity*, pCi·g ⁻¹
Lake Tussjön, 1	s ₽	0.32 (0.69)	≈ 0.01	≤ 2.7 ± 0.5	; 0.36 <u>+</u> 0.06
Lake Skärvsjön, 2	S1) 5.0 ± 0.4	0.21 (0.62)	0.26 ± 0.03	66.6 ± 7.3	<pre>< 2.0 ± 0.1;</pre>
	S2) 3.0 <u>+</u> 0.4	0.19 (0.53)	0.09 ± 0.01	35.9 ± 5.8	1.95 ± 0.1
Lake Björken, 3	6 -+ 2	≈ 0.2 (0.9)	0.16 ± 0.02	33.4 ± 5.4	Variable (6.7 ± 0.3 - 4.9 ± 0.2); Variable (6.2 ± 0.5 - 3.9 ± 0.6)
Lake Väster-Täckelsjön, 4	11 ± 2	0.38 (1.23)	0.17 ± 0.02	22.3 ± 2.7	$2.0 \pm 0.1; \\1.6 \pm 0.15$
Kunonniemensuo bog (core F9), 5	21.1	3.2 (2 % ash)	0.15 ± 0.01**	×* ♦ 6	$0.12 \pm 0.04;$ 0.08 ± 0.01
Kärpänsuo bog (core 1), 6	9.3	1.4 (2 % ash)	0.12 ± 0.02**	×* >6	$\begin{array}{c} 0.12 \\ 1.20 \\ 1.20 \\ 1.003 \end{array}$
Lake Säynäjälampi, 7	(sedimentation rate 1.0 ± 0.1 mm·y ⁻¹)		short core	θ	Variable (1.9 ± 0.1 - 0.08 ± 0.04);
Lake Havgårdssjön, 8 (two cores)	BPM) 55 ± 11 C3) 17 ± 3 +	1.45 (7.45) 0.44 (2.29) +	0.51 ± 0.06 	11 + 3 	Variable (1.6 ± 0.07 - 0.31 ± 0.05)\$≤1.2 ± 0.1 ≤; ≤ 1.2 ± 0.1
Lake Hallsjön, 9	10 ± 3	0.65 (1.42)	0.24 ± 0.02	31.5 ± 2.7	1.3 $\frac{1}{2}$ 0.6; 1.3 $\frac{1}{2}$ 0.2

	$\leq 1.55 \stackrel{+}{-} 0.04; \leq 1.55 \stackrel{+}{-} 0.11$	Variable (2.0 ± 0.1 - 3.5 ± 0.2); Variable (3.5 -1.5)	Variable (1.9 ± 0.1 - 3.1 ± 0.1); very uncertain	$1.2 \pm 0.3; \\1.1 \pm 0.1$;1.7;±0.1	$0.4 \pm 0.6 \pm 0.02$ 0.64 ± 0.02	$1.1 \pm 0.2; \\ 1.2 \pm 0.1$	2.2 ± 0.1 ‡ 2.6 ± 0.2	$0.6 \pm 0.2;$ 0.8 ± 0.1	$0.70 \pm 0.05 \pm 0.05$ 0.90 ± 0.1	$0.30 \pm 0.04;$ 0.52 ± 0.04	Variable (1.5 ± 0.1 - 3.6 ± 0.2); ≥ 1.55 ± 0.2	<pre>: layers Variable (1.1 ± 0.1 - 2.7 ± 0.2); (1.4 ± 0.2 - 2.6 ± 0.2)</pre>
	25.4 ± 4.6	12.7 ± 1.8	1	143 ± 19	1.9 ± 0.3	25.9 ± 2.1	23.5 ± 3.1	56.1 ± 5.0	32.3 ± 3.0	23.6 ± 2.2	34.3 ± 2.1	6.9 <u>+</u> 2.0	Deficient Pb-210 in the surface layers
TABLE 1 (continued)	0.33 ± 0.04	1	≈ 0.06 ⁺ uncertain	0.37 ± 0.04	(0.21 ± 0.04)	0.09 ± 0.01	0.10 ± 0.01	0.26 ± 0.03	0.16 ± 0.02	0.12 ± 0.01	0.20 ± 0.02	0.08 ± 0.01	Deficient Pb-21
TABLE 1	0.43 (1.60)	1	0.12 (1.5) ⁺ uncertain	0.22 (0.66)	2.21 (10.05)	0.22 (0.44)	0.34 (0.89)	0.52 (1.41)	0.34 (0.76)	0.67 (1.62)	0.69 (2.0)	0.37 (1.64)	1
	6 + 3	<pre>(sedimentation rate 5.5 ± 0.5 mm·y⁻¹)</pre>	(20 ± 10) +	3.5 ± 0.5	94 ± 15	3.3 ± 0.6	4.5 ± 0.7	7 ± 1	6 ± 0.7	7 ± 3	11 ± 2	13 ± 3	(sedimentation1) rate 0.1 mm·y ⁻¹)
	Lake Sännen, 9	Lake Växjösjön, 11	Lake Saxen, 12 (two cores)	Lake Uggsjön, 13	Lake Ramsjön, 14	Lake Karsvattnet, 15	Lake Rensjön, 16	Lake Ellisjaur, 17	Lake Sårvatjärvi, 18	Lake Nattajärvi, 19	Lake Ala Makkarijärvi, 20	Lake Tunturijärvi, 21	Lake Vasajaure, 22

1034

Farid El-Daoushy

The Baltic Sea, 23	0	C ZI	0	0	Variable (0.40±0.04 - 2.1±0.1); Variable (0.45±0.04- 2.83±0.12)
Öland's coast, The Baltic Sea, 24	-		1	2.9 ± 0.1	0.2 ± 0.1;
Stenungsund Sound,	H3) 52 <u>+</u> 6		≈ 0.16	2.5 ± 0.1	0.95 ± 0.05;
Nayerran, 20 (unree cures)	HgI) 40 ± 10		≈ 0.39	3.2 ± 0.5	0.55 ± 0.2;
	HgII) 38 ± 9		≃ 0.26	3.2 ± 0.5	0.75 ± 0.1;
Gullmarsfjorden Fjord, Skanerrak 26 (two cores)	C3) 115 ± 7	1.67 (15.83)	0.60 ± 0.04	5.3 ± 1.0	+ + +
	c1) 166 <u>+</u> 10	1.59 (17.70)	0.61 ± 0.03	4.8 ± 1.0	$\begin{array}{c} 0.50 \\ 0.50 \\ 1.15; \\ 0.65 \\ 1.010 \end{array}$
Skagerrak, 27	111 ± 16	0.32 (13.35)	0.55 ± 0.04	7.7 ± 0.6	$0.55 \pm 0.03;$ 0.55 ± 0.04
Frierfjorden Fjord, 28 (two cores)	F1) 110 ± 22	1.07 (16.90)	0.50 ± 0.04	6 ± 2	$0.4 \pm 0.2;$
	F6) 187 <u>+</u> 20	1.27 (28.01)	0.70 ± 0.06	8 ± 2	0.6 - 0.1 ; 0.6 - 0.1
Edsviken Bay, The Baltic Sea, 29	60 + 8	1.04 (9.20)	0.35 ± 0.03	8.8 ± 4.2	Variable (1.4 ± 0.1 - 0.45 ± 0.05); 1.0 ± 0.1
Store mosse bog, 30 (two cores)	Hummock ≃ 2.6 + Hollow ≃ 4.4 +	0.34 + 0.59 +	$\begin{array}{c} 0.10 \pm 0.04 \\ 0.20 \pm 0.07 \end{array}$	15 10	$0.1 \pm 0.1 $ $0.09 \pm 0.05 $
Fen I, Västerbotten, 31	≈ 3.8 +	0.45 +	0.12 ± 0.04 +	≥ 7	0.3±0.2§
Fen II, Norrbotten, 32	≈ 3.1 +	0.37 +	0.07 ± 0.03 +	8 ≈	0.2 ± 0.2 \$
<pre>Fen III, (Saltmyran), Norrbotten,33</pre>	≈ 1.3 +	0.15 +	0.04 ± 0.02 +	≈ 4	0.2 ± 0.1 §

The value of $^{\rm 210}Pb$ in Dating Scandinavian Aquatic & Peat Deposits 1035

summarizes mean deposition rates calculated using the constant initial concentration model of the ²¹⁰Pb method (except for Sites 5 and 6). In this model the initial specific activity of unsupported ²¹⁰Pb, C₀, is assumed "constant" within selected intervals beneath disturbed surface zones. These disturbed zones caused obvious anomalies in the obtained ²¹⁰Pb profiles (El-Daoushy et al, ms in preparation). At some sites the surface layers of the sediments, near the sediment-water interface, are found to be physically or biologically mixed. The bioturbated zones; Lake Sännen, Lake Ramsjön, and Gullmarsfjorden Fjord, are excluded and the initial unsupported ²¹⁰Pb is corrected (Robbins, 1978). One core, Site 24, from Oland's coast is found to be totally bioturbated and only used to determine the unsupported ²¹⁰Pb concentration in the transported deposits of the island's coast. Other sites showed a pronounced decrease in ²¹⁰Pb activities towards the water/sediment interface. This is probably caused by acidification (Davis, Galloway & Nordstrom, 1982; El-Daoushy & Johansson, 1983) and/or increasing deposition rate. Several sites have shown such character (El-Daoushy, Johansson & Garcia-Tenorio; El-Daoushy & Franzén, mss in preparation) and the anomalous zones are rejected. Frierfjorden seems to have a variable sediment composition (Erlenkeuser & Pederstad, 1984) which would alter the initial concentration (Smith & Walton, 1980; Chanton, Martens & Kipput, 1983). Thus, grain-size analyses are needed for further evaluation of our data. Lake Växjösjön (Batterbee & Digerfeldt, 1976; El-Daoushy, ms in preparation), Lake Säynäjälampi (Olsson, El-Daoushy & Vasari, 1983) and Lake Havgårdssjön (Dearing et al, 1985) showed an increased sedimentation rate due to modern human activities. The initial concentration of the latter lakes has been influenced by such perturbations.

Using the least squares method an average value is calculated for C_0 . The extrapolated initial concentrations are found higher than the actual C_0 values (El-Daoushy, 1986). A mean deposition rate, m, is estimated using the bulk density of the studied deposits. The uncertainties in C₀ and m show high variations in the deposition rates. The unsupported ²¹⁰Pb flux at the studied sites (Table 1) is calculated using the constant rate of supply model. In this model, the unsupported ²¹⁰Pb flux is assumed constant while masssedimentation rates are considered variable. The wide variations of the ²¹⁰Pb flux (Table 1) indicate that the processes by which the ²¹⁰Pb is introduced to the studied aquatic deposits, are quite different. However, single cores are not likely to represent the systems they were taken from because of the varying character of bottom dynamics and/or geochemical conditions. The atmospheric fluxes of unsupported ²¹⁰Pb over Scandinavian sites seem to be rather uniform and constant. For the past 150 yr an average value of 0.15 ± 0.05 pCi.cm⁻².y⁻¹ can be estimated. The total organic and deposited matter in the past 150 ± 20 yr (Table 1) are estimated using the constant rate of supply model. The mean deposition rates as derived from the two models agree well in most cases and the discrepancy is only high in few cases. Nevertheless, the ²¹⁰Pb models give different chronologies for these sediments and peats (El-Daoushy, ms in preparation) and other chronologic tools are used to examine the obtained model ages.

CHRONOLOGIES OF RECENT DEPOSITS

Lake Sediments

Most of the investigated lakes (Fig 1) have low accumulation rates which limited the applicability of alternative methods. Heavy metal profiles as well as fluxes could give some information on various sources and processes controlling the ²¹⁰Pb distribution in Scandinavian aquatic systems (El-Daoushy & Johansson, 1983; El-Daoushy, Johansson & Garcia-Tenorio, ms in preparation). Both ¹³⁷Cs and ²¹⁰Pb indicated a major bioturbation in Lake Sännen. Bioturbation in lakes with low deposition rates creates further difficulties in developing reliable chronologies.

Earlier ¹⁴C studies showed that recent deposits of lakes do not agree with expected ages: variations in the cosmogenic production (Stuiver, 1978), atomic bomb tests (Nydal, 1963), modern human activities (Oldfield et al, 1979) as well as exchange processes and *in situ* contamination (Olsson, 1979) introduce various errors in ¹⁴C dating of recent aquatic deposits. Sediment cores from Lake Säynäjälampi were examined using lithostratigraphy, density profiles, ²¹⁰Pb, ²²⁶Ra and ¹⁴C analyses. The results showed a higher accumulation rate during post settlement periods. However, sediment layers younger than ca 10 yr BP, showed an apparent 14 C age of ca 2000 yr (Olsson, El-Daoushy & Vasari, 1983). Another lake from southern Sweden, Site 11, demonstrated the increasing influence of human activities on sediment accumulation rates and lake eutrophication. The decreasing concentration of both ²²⁶Ra and ²¹⁰Pb in sediments older than ca 120 yr BP indicated a variable sediment composition as a result of a strong change in the rate of sediment accumulation. These data (El-Daoushy, ms in preparation) agree well with earlier studies on the same lake (Battarbee & Digerfeldt, 1976) which showed a change in sedimentation rate of about a factor 10 in the past two centuries. The latter estimation was based on ²¹⁰Pb, ¹³⁷Cs, ¹⁴C and an historical event based on lowering the water level of the lake.

Lake Havgårdssjön indicated disequilibrium between ²²⁶Ra and supported ²¹⁰Pb, as determined from the total ²¹⁰Pb in sufficiently old sediments. The unsupported ²¹⁰Pb flux and the mean deposition rate (Table 1) were calculated using the latter alternative. However, comparing the ²¹⁰Pb chronologies of the given alternatives with ¹³⁷Cs and palaeomagnetic dates it was possible to obtain a reliable sediment chronology (Dearing *et al*, 1986). The ²¹⁰Pb data of the crs model agreed only with palaeomagnetic dates. A whole lake chronology was constructed by correlating 47 cores from the lake via magnetic susceptibility profiles. The average ²¹⁰Pb flux was found to be 0.35 pCi.cm⁻².y⁻¹. The mean deposition rate for the whole lake, during the past 60 and 150 yr, was 25 and 22mg.cm⁻².y⁻¹, respectively. However, during 4950-1950 BP the deposition rate was lower by a factor 10 (Dearing *et al*, 1986).

Only one core, Lake Vasajaure, showed a deficiency in unsupported ²¹⁰Pb in the upper 1 to 2 cm. This core was 120cm long and covered the past 12,000 yr (V Karlén, pers commun.) The ²¹⁰Pb and ²²⁶Ra results indicated a state of secular equilibrium between these nuclides.

Marine Sediments

Site 23 showed a zero deposition rate and no unsupported ²¹⁰Pb flux. This core was collected from a transportation bottom (M Notter, pers commun), ²¹⁰Pb and ²²⁶Ra are in secular eqilibrium and decreasing with depth. This demonstrates the importance of ²²⁶Ra in ²¹⁰Pb dating. Judging from the total ²¹⁰Pb alone a sedimentation rate of ca 0.2mm.yr⁻¹ could be estimated.

Gullmarsfjorden Fjord showed that surface layers of the sediments are bioturbated. ¹³⁷Cs and heavy metal profiles were used for the evaluation of the ²¹⁰Pb results. Data on the benthic organisms are in progress. After correcting the ²¹⁰Pb data for bioturbation, both the cic and crs models gave similar results (El-Daoushy & Josefsson, ms in preparation). The ²¹⁰Pb results of Skagerrak were compared with heavy metal profiles and showed undisturbed sites with stable conditions (El-Daoushy & Swinder, ms in preparation).

Sediments from Edsviken Bay were analyzed using X-rays. Supported ²¹⁰Pb was found in excess of ²²⁶Ra. Similar results were also obtained for Gullmarsfjorden Fjord. Comparison of x-ray results and the unsupported ²¹⁰Pb data showed that the crs chronology agrees well with x-ray laminations when the ²¹⁰Pb in samples older than 150 yr is used as supported ²¹⁰Pb (El-Daoushy & Axelsson, ms in preparation).

Peat Deposits

Ombrotrophic (rain-fed) peat with little humification were used in this investigation. The ²¹⁰Pb of this peat is only supplied by direct atmospheric precipitation. The ²¹⁰Pb fluxes (Table 1) are among the lowest of all examined aquatic systems. Almost all the investigated sites (5, 6 and 30-33) are peat hummocks with water tables below the peat surface. The ²¹⁰Pb fluxes of such peat might give a lower estimate of the atmospheric ²¹⁰Pb fluxes. The peat hollow, which has a water table over its surface, showed a flux value higher than the corresponding hummock by a factor of two. Oldfield *et al* (1979) showed that the ²¹⁰Pb fluxes of peat hollows are generally higher than the neighboring peat hummocks. This could be explained by higher availability of ²¹⁰Pb for submerged peat hollows.

Very limited work has been done to construct recent peat chronologies. However, Sites 5 and 6 (El-Daoushy, Tolonen & Rosenberg, 1982) agreed well between the ²¹⁰Pb ages of the crs model and the moss-increment dating. The mean deposition rates at these sites (Table 1) were calculated using crs and moss-increment chronologies. The obtained data also extended earlier ¹⁴C and pollen chronologies of the studied peats. However, the criteria of peat dating using ²¹⁰Pb are still in their infancies and further research is required. If ombrotrophic peats are carefully selected and properly treated one may indeed obtain good chronologies. This would allow new possibilities of studying atmospheric transportation processes and extending our knowledge on other ecosystems (El-Daoushy & Tolonen, 1984).

CONCLUSIONS

Results presented here demonstrate the importance of evaluating various dating techniques in order to obtain reliable chronologies. The use of alternative dating methods allow broader understanding of natural processes which might introduce errors in dating aquatic deposits.

ACKNOWLEDGMENTS

The main part of these investigations was supported by the Swedish Natural Science Research Council and carried out at the Institute of Physics, Uppsala University. Many valuable contributions were also made through collaboration with other research institutes.

REFERENCES

- Battarbee, R C and Digerfeldt, G, 1976, Palaeoecological studies of the recent development of Lake Växjösjön: Archiv f Hydrobiol, v 77, no. 3, p 330–346.
- Chanton, J P, Martens, C S and Kipput, G W, 1983, Lead-210 sediment geochronology in a changing coastal environment: Geochim et Cosmochim Acta, y 47, p 1791–1804.
- Davis, A Ö, Galloway, J N and Nordstrom, D K, 1982, Lake acidification: its effect on lead in the sediment of two Adirondack lakes: Limnol Oceanog, v 27, p 163–167.
- Dearing, J A, Håkansson, H, Liedberg, B, Persson, A, Skansjö, S, Widholm, D and El-Daoushy, F, 1986, Towards quantifying sediment and nutrient fluxes in past lake-catchment ecosystems: A casestudy in S Sweden: Oikos, in press.
- El-Daoushy, M F A F, 1981, An ionization chamber and a Si-detector for lead-210 chronology: Nuclear Instruments & Methods, v 188, p 647–655.
- El-Daoushy, F, 1986, Scandinavian limnochronology of sediments and heavy metals: Hydrobiol, in press
- El-Daoushy, F and Johansson, K, 1983, Radioactive lead-210 and heavy metal analyses in four Swedish lakes: Ecol Bull (Stockholm), v 35, p 555–570.
- El-Daoushy, F and Tolonen, K, 1984, Lead-210 and heavy metal contents in dated ombrotrophic peat hummocks from Finland: Nuclear Instruments & Methods in Physics Research, v 223, p 392–399.
- El-Daoushy, F, Tolonen, K and Rosenberg, R, 1982, Lead-210 and moss-increment dating of two Finnish Sphagnum hummocks: Nature, v 296, no. 5856, p 429–431.
- Erlenkeuser, H and Pederstad, K, 1984, Recent sediment accumulation in Skagerrak as depicted by ²¹⁰Pb-dating: Norsk Geol Tidsskr, v 2, p 135–152.
- Fyfe, W S, 1981, The environmental crisis: quantifying geosphere interactions: Science, v 213, p 105–110.
- Krishnaswamy, S and Lal, D, 1978, Radionuclide limnochronology, in Lerman, A, ed, Lakes; chemistry, geology, physics: New York, Springer-Verlag, p 153–177.
- Nydal, R, 1963, Increase in radiocarbon from the most recent series of thermonuclear tests: Nature, v 200, no. 4903, p 212–214.
- Oldfield, F and Appleby, P G, 1984, Empirical testing of ²¹⁰Pb-dating models for lake sediments, *in* Haworth, F Y and Lund, J W G, eds, Lake sediments and environmental history: Great Britain, Leicester Univ Press, p 93–124.
- Oldfield, F, Appleby, P G, Cambray, R S, Eakins, J D, Barber, K E, Battarbee, R W, Pearson, G W and Williams, J M, 1979, ²¹⁰Pb, ¹³⁷Cs and ²³⁹Pu profiles in ombrotrophic peat: Oikos, v 33, p 40–45.
- Olsson, f U, 1979, A warning against radiocarbon dating of samples containing little carbon: Boreas, v 8, p 203–207.
- Olsson, I U, El-Daoushy, F and Vasari, Y, 1983, Säynäjälampi and the difficulties inherent in dating of sediments in a hard-water lake: Hydrobiol, v 103, p 5–14.
- Pennington, W, Cambray, R S, Eakins, J D and Harkness, D D, 1976, Radionuclide dating of the recent sediments of Blelham Tarn: Freshwater Biol, v 6, p 317–331.
- Robbins, J.A. 1978, Geochemical and geophysical applications of radioactive lead, *in* Nriagu, J. O, ed, The biogeochemistry of lead in the environment, Part A: Amsterdam, Elsevier, p. 285–393.
- Smith, I N and Walton, A, 1980, Sediment accumulation rates and geochronologies measured in the Saguenay Fjord using the ²¹⁰Pb dating method: Geochim et Cosmochim Acta, v 44, p 225–240.

Stuiver, M, 1978, Radiocarbon timescale tested against magnetic and other dating methods: Nature, v 273, p 271–274.

Thompson, R, Bloemendal, J, Dearing, J A, Oldfield, F, Rummery, T A, Stober, J C and Turner, G M, 1980, Environmental applications of magnetic measurements: Science, v 207, p 481–486.

ERRATUM

BACKGROUND MEASUREMENT WITH DIFFERENT SHIELDING AND ANTICOINCIDENCE SYSTEMS

H H LOOSLI, MARKUS FORSTER, and R L OTLET (Radiocarbon, Vol 28, No. 2A, 1986, P 615–622)

On page 615, line 9, under INTRODUCTION, 0.2cpm should read 0.02cpm.