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for constraining the morphometry of simple impact craters
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Abstract-The lengths of the shadows cast within simple, bowl-shaped impact craters have been
used to constrain their depths on a variety of planetary bodies. This technique, however, only yields
the "true" crater depth if the shadow transects the crater center where the floor is deepest. In the past,
attempts have been made to circumvent this limitation by choosing only craters where the shadow tip
lies very near the crater center; but this approach may introduce serious artifacts that adversely affect
the slope of the regressed depth vs. diameter data and its variance. Here we introduce an improved
method for deriving depth information from shadow measurements that considers three basic shape
variations of simple craters: paraboloidal, conical, and flat-floored. We show that the shape of the
cast shadow can be used to constrain crater shape and we derive improved equations for finding the

depths of these simple craters.

INTRODUCTION

Impact crater morphometry is a powerful tool, which is often
relied upon for deriving information about planetary surface
evolution (e.g., Cintala, 1977; Hale and Head, 1979, 1980;
Sharpton, 1997) and gaining insights into the impact process
itself (e.g., Pike, 1980a,b; Oberbeck, 1971; Herrick et al., 1997).
Generally, craters are classified according to their shape, which,
because of the influence of gravity, is dependent upon crater
size (e.g., Melosh, 1980, 1989). At small diameters,
morphologically "fresh" craters are usually simple bowl-shaped
depressions with raised rims. The shapes of larger complex
craters are affected by late-stage collapse of the original deep
craterform, thus producing a final shape characterized typically
by terraced walls, a shallow floor, and central structures, such
as peaks and one or more concentric rings (e.g., Pike, 1980b;
Melosh, 1989). The transitional diameter between simple and
complex craters is inversely related to the target body's surface
gravity (e.g., Pike and Arthur, 1979; Pike, 1980a); for Earth
the transition to the complex craterform occurs at diameters
between 2 and 4 km (e.g., Dence ef al., 1977); for the Moon, it
is between 15 and 20 km (e.g., Pike, 1971, 1974).

The shape of simple craters is thought to superficially
resemble the shape of the original "transient" crater (e.g.,
Melosh, 1989) (i.e., the initial cavity formed by the effects of
excavation and structural displacements of the impacted target).
Furthermore, studies have shown that the shapes of simple
craters can vary with impact velocity (e.g., Oberbeck, 1971,
1977) and target characteristics (e.g., Quaide and Oberbeck,
1968; Oberbeck, 1977; Mouginis-Mark and Hayashi, 1991),

such as strength, presence of layering, etc. Consequently,
understanding the morphometry of such features is of particular
interest. A classic means of characterizing craters is to measure
the rim-to-floor depth as a function of crater diameter.
Stereogrammetry (e.g., Pike, 1974; Herrick and Sharpton, 2000)
and photoclinometry (e.g., Davis and Soderblom, 1984; Schenk,
1989; Craddock et al., 1997) have both been used to determine
crater depths and morphologies, but both methods have
limitations. Stereogrammetry requires at least two images of
the target area, taken from different angles, making it difficult
to apply in general to most of the solid bodies in the solar system.
Photoclinometry requires knowledge of the target's photometric
function; changes in albedo across a feature can severely affect
the accuracy of the resulting measurement. Both of these
methods are adversely affected by atmospheric scattering, and
by the presence of shadows in images taken at low-Sun angles.

Cast shadows provide an independent means of measuring
crater depths and shadow measurements have been widely used
to determine crater depths on many solar system bodies (e.g.,
Arthur, 1974; Pike, 1980a; Pike and Clow, 1983; Schenk, 1989).
This method is complementary to the other methods of
constraining crater depths in that it requires only one image
and works for images taken at lower Sun angles. It is also
simple: consider a simple crater exhibiting a shadow that is
exactly half the crater diameter (D) in length as shown in Fig. 1.
The crater rim-to-floor depth (d) can be determined from the
following simple equation:

d=L/tan@ Y]
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FIG. 1. An idealized cross section showing a shadow of width D/2
cast inside a simple crater.

or to get the depth-to-diameter ratio:

4a__1 @)
D Dtan@

where L is the shadow length, measured from the crater rim to the
floor and @ is the solar incidence angle measured from the vertical.
Inspection of Fig. 1 shows that this method only measures
the true crater depth if the shadow edge passes through the crater
center. For this reason crater depth studies usually include only
craters in which the shadow edge lies very near the crater center
(e.g., Arthur, 1974; Pike, 1980a; Pike and Clow, 1983), typically
within 0.05D0-0.10D of the center, to limit the error due to crater
shape. However, this crater selection process itself may produce
serious artifacts. Choosing a sample of craters based on whether
or not they show shadows lengths approximately equal to D/2 is
equivalent to artificially constraining the depth-to-diameter ratio,
d/D, for any given solar incidence angle. Consider, for example, a
case where only simple craters for which L = D/2 + 0.05D are
measured. The limits on d/D are determined from Eq. (2):

(dj _0.5D+0.05D _ 0.55
max

B Dtan@  tan@ '

(d ] _0.5D-0.05D _ 045
min

B Dtan@ " tan@

For a given value of , these limits are fixed. Hence, by selecting
only those craters whose shadows fall near their centers, all
craters that are shallower or deeper than this narrow range of d/D
are excluded from the analysis.

A graph of d vs. D for the measured craters will be a straight
line population, with an artificial slope of (2tan €)1 because
the selection process has excluded craters that do not lie near
this line. The conventional log(d) vs. log(D) graph will be a
straight line with a slope approaching unity—irrespective of
what the actual depth vs. diameter trend may be. The scatter of
the data about this line will also depend on how much the shadow
is allowed to deviate from the crater center point. Narrow limits
will result in data that cluster near the regression line with artificially
low vanances and artificially high regression coefficients.

Some attempts have been made to mitigate this effect by
either including craters with shadows that are considerably
longer or shorter than D/2, or adding an empirical correction
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factor to the value of d arrived at using Eq. (1) (e.g., Pike,
1980a). Both methods potentially impart errors that are poorly
constrained.

For large enough study areas, or if several images of a
smaller study area are available, 8 could vary, allowing
measurements of craters of various d/D ratios to be made.
However in the first case one must assume that the d/D
distribution is constant over a large study area, and within any
region of approximately constant 8, the only craters measured
will still be those with appropriate d/D values. Thus each d/D
value will represent a region of the image. No account is taken
for any anomalously deep or shallow craters in a given region,
and regional variations in the d/D distribution will not be seen.
In addition, foreshortening of craters may cause severe
problems in making measurements, if the images are not ortho-
rectified. In the second case, several images of the study area,
taken at different incidence angles are required, but are often
not available.

Here, we derive a more precise and general method of
constraining simple crater depths that does not require the
shadow edge to be near the crater center nor is it limited to any
particular size or number of images. The problem of
foreshortening may be avoided by using nadir-looking or ortho-
rectified images. By assuming reasonable, mathematically
simple shapes (paraboloid, cone, flat-floored) for simple craters
we can derive equations that describe the shapes of the shadows
cast inside them. The shapes of actual shadows can then be
used to classify the shapes of simple craters and to constrain
the craters' depths.

SHADOWS IN PARABOLIC CRATERS

Laboratory impact experiments (Oberbeck, 1971, 1977) and
morphometric studies of actual impact craters relying upon
photogrammetry indicate that simple craters normally are
closely approximated by a paraboloid (Oberbeck, 1971) with
shape defined by the equation:

z(r) = A(x2 + y2) = Ar? 3)

where the origin is the center of the crater floor. Herein, the
positive z-axis is up, the x-axis is perpendicular to z and points
in the direction opposite the solar azimuth, and y forms a right-
handed orthogonal coordinate system with x and z. The
constant A is arbitrary and r is the perpendicular distance from
the z-axis. Evaluating Eq. (3) at the pointx=R,y=0,z=d
yields A = d/R2. Consequently:

z(r)=iz(x2+y2)=—dz—r2 )
R R

where R is the radius of the crater and d its depth.
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FIG. 2. Section through a paraboloidal crater. The bold arrow signifies
a solar ray which passes just over the sunward rim of the crater and
defines the shadowed area.
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FIG. 3. A plan view of a solar ray passing just over the rim of the
crater at P and incident on point Q inside the crater. Note that the
section P-P' is not constrained to pass through the center of the crater
as all sections of a paraboloid that are parallel to its symmetry axis
are parabolas. The dashed hne signifies the shadow boundary.

As shown in Figs. 2 and 3, the shaded area of such a simple
crater is defined by a solar ray, which passes just over the crater
rim at point P (coordinates (xg, yg, zp)) and intersects the
crater floor at point Q (coordinates (x, y, z)). The locations
of all such points Q define the shadow boundary. This
boundary can be mathematically described by equations of
the form z = z(x, y(x)), the solution of which will be in the
form of Eq. (4), and y = y(x), which describes the plan view of
the shadow. Employing the tangent function and assuming (1)
that the crater rim is perfectly circular and horizontal, with height
z = d and (2) that solar rays are parallel (i.e., the crater is far
from the Sun):

Xp =— R? —yo2 (5a)
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and

Yo=y (5b)

Consequently, from the definition of tan8:

/Rz_ 2
og XN Ty (6)

tané

Then, combining Eqgs. (4) and (6) eliminates z from the equation.
The result may be written:

dtan0 - dtand > [ 5 35 (7
2 x“+x—dtanf + 2 y =—R" -y Q)

Eq. (7), which relates the x and y coordinates of any point
on the shadow boundary, has two solutions:

y1(x) = +VR? - x?

(8)

and

Y2(6) = 2[R? —(x + R2[d tan 0)% = £/ R? — (x —x)? (8b)

where

wo=d R _lr=d L _1p ©
dtand 4d tan @

Eq. (8a,b) fully describe the boundary of the shadow, as viewed
from above. Both are circles of radius R in the x—y plane. The
first is centered at the origin, coincides with the crater rim and
forms the boundary of the shadow in the sunward direction.
The other, the shadow boundary circle, forms the rest of the
shadow boundary and is centered at x = xc, y = 0. The
intersection of these circles is the shadowed area (Fig. 4).

We can now describe what the shadow looks like and how
it evolves as the Sun rises over the crater. At sunrise over the
crater 0 is 90°, tanf is infinite, and x is zero (i.e., the circles
described by Egs. (8a,b) coincide and shadow fills the crater).
As the Sun rises, € and tanf decrease, xc increases in the
negative direction, and the shadow boundary circle shifts in
the direction of the Sun. The shadow, bounded by the arcs of
the two circles, diminishes (Fig. 5a). When tan# falls to R/d in
magnitude, x; becomes —R, and the shadow intersects the center
of the crater (Fig. 5b). This is the special case where the depth
calculated from Eq. (1) is correct.

Finally, when tan 6 = R/2d, xc = -2R, the circles become
tangent to each other and the shadow disappears completely



482

F1G. 4. An overhead view of the two circles that define the shadow;
the solid circle is also the crater rim. The other, the shadow boundary
circle, is displaced a distance x¢ to the left relative to the crater rim.

FIG. 5. The evolution of the shadow as the Sun rises over a simple,
parabolic crater.
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(Fig. 5d). At this point the solar elevation angle is greater than
the slope of the top of the crater rim and the entire interior of
the crater is illuminated. This value of 6 marks the absolute
lower limit of the usefulness of any shadow method of depth
determination for parabolic craters because for 6 < tan-1(R/2d)
there is no shadow in the crater.

Shadow length L is simply the distance between point A, at
x =-R, and point B at x = xo+ R (Fig. 4). Consequently,

R2
dtanf

L=2R-

and

___ b (10)
4(1-L/D)tan®

for a parabolic crater.
SHADOWS IN CONICAL CRATERS
Cone-shaped craters are another common variety of simple

crater, possibly caused by relatively low velocity impacts
(Oberbeck, 1971). The shape of a conical crater is given by:

d\[ 2. 2
=| = +
z (Rj X y

Inserting this crater shape into Eq. (6) yields:

11

[%jtan9\1x2+y2 =dtan9—x+\/R2—y2 (12)

The solutions of this equation are the circle:

which represents the rim, and the ellipse:

(x_xc)2 )’2 1

+i= (13)
o’ R? R?
where:
(d tan@j2
+1
a= R
dtang 2_1 (13a)
R
and
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2(dt;n9j
__—2R
dtand 1
R

which forms the other shadow boundary (Fig. 6).

As in the circular case, we can now describe the evolution
of this shadow with increasing Sun angles. As the Sun rises
above the crater rim, the ellipse extends along the surface in
the illumination direction, becoming increasingly eccentric, as
shown in Fig. 7. Finally, when 8 = tan-1(R/d), the solar incidence
angle 1s greater than the slope of the crater walls and the entire
crater is illuminated.

Using the same method as in the previous section, we derive
an equation for the depth of a conical crater:

(13b)

L (14)
2(1-L/D)tan@

SHADOWS IN CRATERS WITH FLAT BOTTOMS

The effect of a flat bottom on the shadow inside a crater
can be seen by considering the parallel rays from a light source
(Sun) incident on two parallel planes at some incidence angle €
(Fig. 8). The upper plane contains a hole of diameter D and
corresponds to the crater rim, while the lower plane represents
the flat bottom of the crater. An illuminated circle of diameter
D will be projected onto the lower plane, displaced away from
the Sun by an amount x:

xo =d'tan@

where d'is the separation of the two planes. A flatregion at the
bottom of a crater will be illuminated in the same way (Fig. 9).

FIG. 6. The shadow geometry in a cone shaped crater.
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FIG. 7. A comparison of the shadows in parabolic (right) and conical
(left) craters with d/D = 0.20. The incidence angles are (a) 89° (b) 83°
() 77° (d) 71° (e) 60°.
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FIG. 8. The projection of a circle (crater rim) onto a plane (flat crater
bottomy).

APPLICATIONS

In this section, we illustrate the utility of the shadow analysis
technique derived above by examining three lunar craters, as
represented in Clementine imagery. We will use shadow shape
to determine the simple shape that most closely fits the crater and
then constrain its depth. In all three of the craters (Fig. 10a—c),
the crater axes, crater rims and shadow boundary shapes are
marked. All images have been rotated so that solar illumination
is from the —y direction.

The crater in Fig. 10a has D =19 900 m, L = 15 200 m and
is illuminated at 8 = 82.6°. The circular shadow boundary
indicates that the crater is parabolic in shape (compare to Fig. 4),
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FIG. 9. The effect of a flat bottom on the shape of the shadow inside
a parabolic crater. Crosses mark the centers of (left to right) the
shadow boundary circle, the crater center, and the flat bottom
illumination boundary circle. The effect on the elliptical shadow
boundary in a conical crater is identical.

so from Eq. (10), d =2700 m and d/D is 0.13. Note thatd isa
maximum depth constraint, because constraints on the parabolic
shape only apply to the sunlit portion of the crater interior.
Unless additional, higher Sun angle imagery is available to
determine the configuration of the shadowed region of the crater
bottom, the possibility that the crater floor could flatten out
immediately inside the shadowed region cannot be dismissed.
In this case, the maximum diameter of a hidden flat bottom
would be Dy=2L — D =10 500 m and the minimum depth of
the crater is given by:

2
D
o[22}
D

or, more simply, by dp,in = L/tan 6 = 2000 m, from Eq. (1). The
minimum value of 4/D is 0.10.

The shadow in crater Fig. 10b is fit well by an ellipse, not
by a circle, showing that it is conical in shape (compare to Fig. 7).
Its diameter is 15 500 m, L = 9700 m and & = 72.0°. From
Eq. (14) the maximum depth, d, is 4200 m giving a maximum
d/D = 0.27. If a flat floor with the maximum permissible
diameter of D¢= 3900 m is assumed, the minimum permissible

depth is simply:
D
dinin :( - Df ]d _

Using this equation, or Eq. (1), the minimum depth is 3100 m,
giving a minimum d/D = 0.20. These examples illustrate a
limitation of the shadow measurement technique: the farther
the shadow extends beyond the crater center the greater the
potential for error due to unseen topography. In both cases the
term Dy¢/D is a measure of the potential error.
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Figure 10c shows a crater with a conspicuous flat bottom.
The effect of the flat bottom on the shadow shape is clearly
visible (compare to Fig. 9). The sides of the shadow are best
fit with an ellipse, indicating that the crater walls are probably
conical, although the limited length of the contact between the
shadow and the fit leaves this interpretation open to question.
The diameter is 14 100 m and the shadow length along the y-axis
18 6100 m. From Eq. (1) the depth is 1600 m, giving 4/D =0.11.
Note in all three of these cases that the shape of the shadow is
used only to select the proper crater shape, if any, for the depth
calculation. There is no need to actually fit a curve to the shadow
edge.

In Fig. 10, a darkening of the ends of the illuminated
crescents inside the crater is apparent. These dark broad
"wings" indicate that rims of real craters are usually rounded
and, therefore, deviate from the simple shapes assumed here.
The points along the shadow edge, where it begins to broaden,
indicate the locations where the wall-rim slopes begin to
shallow and rounding begins. This could be a useful
morphometric indicatrix: for instance the size of the shadow
"wings" could be used to determine how rounded (and,
therefore, how modified) the crater rim is.

CONCLUSIONS

(1) Previously used shadow methods of measuring crater
depths suffer from the fact that the currently used formula for
the depth is only useful when the shadow boundary passes near
to the center of the crater. This method may introduce artifacts,
because, for any fixed solar incidence angle, the selection process
is equivalent to selecting only craters that fall within a very narrow
range of d/D, where d is the depth and D the diameter.

(2) Parabolic craters show shadow shapes that are defined
by the intersection of two circles, both with diameters equal to
the crater rim diameter. The equation for determining the
maximum depth of a parabolic crater is:

i D
4(1- L/D)tand

where L is the shadow length and 6 the solar incidence angle.

(3) Craters with conical walls show shadows that are defined
by the intersection of the crater rim and an ellipse whose semi-
minor axis is the same as the crater rim diameter and whose
semi-major axis is dependent on the solar incidence angle. The
maximum of depth a conical crater is given by:

d=— L
~ 2(1-L/D)tan6

(4) The equations for the depths of both of these craters
actually represent upper bounds on the depth, since any
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FIG. 10. (a) Detail of Clementine image lub4315r.328. (b) Detail of
Clementine image luc5578q.125. (c) Detail of Clementine image
lua0594b.148.
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