The University of Arizona

Fracture-related intracrystalline transformation of olivine to ringwoodite in the shocked Sixiangkou meteorite

Ming Chen, Hui Li, Goresy, Ahmed E, Jing Liu, Xiande Xie

Abstract


Magnesium-iron olivine in the Sixiangkou L6 chondrite contains abundant fractures induced by plastic deformation during shock metamorphism. This study reports the discovery of lamellar ringwoodite that incoherently nucleated and grew along planar and irregular fractures in olivine. Magnesium-iron interdiffusion took place between olivine matrix and crystallizing ringwoodite at high pressures and high temperatures, which resulted in higher FeO content in ringwoodite lamellae than in olivine. This suggests that a quasi-hydrostatic high pressure lasting for several minutes should have been produced in the shock veins of the meteorite. The intracrystalline transformation of olivine to ringwoodite also has implications for phase transitions in subducting lithospheric slabs because planar and irregular fractures are commonly produced in olivine that suffered plastic deformation.

Keywords


lamella;fracture;Olivine;ringwoodite

Full Text:

PDF